
Eurographics/ IEEE-VGTC Symposium on Visualization (2007)
Ken Museth, Torsten Möller, and Anders Ynnerman (Editors)

Online Dynamic Graph Drawing

Yaniv Frishman†1 and Ayellet Tal‡2

1Department of Computer Science, Technion, Israel
2Department of Electrical Engineering, Technion, Israel

Abstract

This paper presents an algorithm for drawing a sequence of graphs online. The algorithm strives to maintain
the global structure of the graph and thus the user’s mental map, while allowing arbitrary modifications between
consecutive layouts. The algorithm works online and uses various execution culling methods in order to reduce the
layout time and handle large dynamic graphs. Techniques for representing graphs on the GPU allow a speedup
by a factor of up to 8 compared to the CPU implementation. An application to visualization of discussion threads
in Internet sites is provided.

Categories and Subject Descriptors (according to ACM CCS):
I.3.8 [Computer graphics]: Applications H.4.3 [Information systems applications]: Communications applications

1. Introduction

Graph drawing addresses the problem of constructing geo-
metric representations of graphs [KW01]. It has applications
in a variety of areas, including software engineering, soft-
ware visualization, databases, information systems, decision
support systems, biology, and chemistry.

Many applications require the ability of dynamic graph
drawing, i.e., the ability to modify the graph [Nor95, DG02,
KW01], as illustrated in Figure 1 . Sample applications in-
clude financial analysis, network visualization, security, so-
cial networks, and software visualization. The challenge in
dynamic graph drawing is to compute a new layout that is
both aesthetically pleasing as it stands and fits well into the
sequence of drawings of the evolving graph. The latter crite-
rion has been termed preserving the mental map [MELS95]
or dynamic stability [Nor95].

Most existing algorithms address the problem of offline
dynamic graph drawing, where the entire sequence of graphs
to be drawn is known in advance [DG02, EHK∗03, KG06].
This gives the layout algorithm information about future
changes in the graph, which allows it to optimize the lay-

† e-mail: frishman@tx.technion.ac.il
‡ e-mail: ayellet@ee.technion.ac.il

outs generated across the entire sequence. In contrast, very
little research has addressed the problem of online dynamic
graph drawing, where the graph sequence to be laid out is
not known in advance [FT04, LLY06].

This paper proposes an online algorithm for dynamic lay-
out of graphs. It attempts to maintain the user’s mental map,
while computing fast layouts that take the global graph struc-
ture into account. The algorithm, which is based on force di-
rected layout techniques, controls the displacement of nodes
according to the structure and changes performed on the
graph. By taking special care in order to represent the graph
in a GPU-efficient manner, the algorithm is able to make use
of the GPU to significantly accelerate the layout.

This paper makes the following contributions. First, a
novel, efficient algorithm for online dynamic graph draw-
ing is presented. It spends most of the execution time on the
parts of the graph being modified. Second, it is shown how
the heaviest part of the algorithm, performing force directed
layout, can be implemented in a manner suitable for execu-
tion on the GPU. This allows us to significantly shorten the
layout time. For example, incremental drawing of a graph of
32,000 nodes takes 1.12 seconds per layout. Finally, the al-
gorithm is applied to the visualization of the evolution over
time of discussion threads in Internet sites. In this applica-
tion, illustrated in Figure 1, nodes represent users and edges
represent messages sent between users in discussion forums.

c© The Eurographics Association 2007.

Y. Frishman & A. Tal / Online Dynamic Graph Drawing

(a) (b) (c)

Figure 1: Snapshots from the threads1 graph sequence, visualizing discussion threads at http://www.dailytech.com, left to right.
Node labels in red show user names, edges link users replying to posted comments. Up to 119 users are shown. Discussion
topics, marked as blue A_n nodes, include GPUs (A_4864, A_4285), chipsets (A_4637, A_4425, A_4538 and A_4866) and
CPUs (A_4589). A total of 144 messages are visualized.

2. Related Work
Various methods for graph drawing have been proposed
[KW01]. Our algorithm builds on force directed layout
[KW01], where forces are applied to nodes according to
the graph structure and the layout is determined by con-
vergence to a minimum stress configuration. To accelerate
the force directed layout, several approaches have been pro-
posed. These attempt to reduce the number of calculations
performed, by using multiple levels of detail to represent the
graph [HK02, Wal03, HJ04, KCH03, BH86, ATAM04].

Dynamic layout using force directed methods is intro-
duced in [BW97]. Several algorithms address the problem of
offline dynamic graph drawing, where the entire sequence is
known in advance. In [DG02], a meta-graph built using in-
formation from the entire graph sequence, is used in order to
maintain the mental map. In [KG06] a stratified, abstracted
version of the graph is used to expose its underlying struc-
ture. An offline force directed algorithm is used in [EHK∗03]
in order to create 2D and 3D animations of evolving graphs.
Creating smooth animation between changing sequences of
graphs is addressed in [BFP05].

An online algorithm is discussed in [LLY06], where a
cost function that takes both aesthetic and stability consid-
erations into account, is defined and used. Unfortunately,
computing this function is very expensive (45 seconds for
a 63 node graph). Drawing constrained graphs has also
been addressed. Incremental drawing of DAGs is discussed
in [Nor95]. In [FT04] dynamic drawing of clustered graphs
is addressed. Dynamic drawing of orthogonal and hierarchi-
cal graphs is discussed in [GBPD04]. The current paper aims
at producing online layouts of general graphs efficiently.

In recent years, GPUs have been successfully applied to
numerous problems outside of classical computer graph-

ics [OLG∗05]. Protein folding [Pan06] and simulation of de-
formable bodies using mass-spring systems [TE05,GEW05]
are related to our application. However, while the mass-
spring algorithms take only nodes connected by edges into
account, the force directed algorithm considers all the nodes
when calculating the force exerted on a node. GPUs have
also been used to simulate gravitational forces [NHP04],
where an approximate force field is used to calculate forces.

3. Algorithm Outline

Given, online, a series of undirected graphs G0 =
(V0,E0),G1 = (V1,E1), . . . ,Gn = (Vn,En), the goal of the al-
gorithm is to produce a sequence of layouts L0,L1, . . . ,Ln,
where Li is a straight-edge drawing of Gi. The updates Ui
that can be performed between successive graphs Gi−1 and
Gi, include adding or removing vertices and edges.

A key issue in dynamic graph drawing is the preservation
of the mental map, i.e. the stability of the layouts [MELS95].
This is an important consideration since a user looking at a
graph drawing becomes gradually familiar with the structure
of the graph. The quality of the layout can be evaluated by
measuring the movement of the nodes between successive
layouts, which should be small, especially in unchanged ar-
eas of the graph. In addition, each layout in the sequence
should satisfy the standard requirements from static graph
layouts, such as minimization of edge crossings, avoidance
of node overlaps and layout symmetry [KW01].

Among the different classes of graph drawing algorithms,
the force directed algorithm class [KW01] is a natural
choice in our case, for several reasons. First, different lay-
out criteria can be easily integrated into these algorithms.
Second, in some of these algorithms, it is possible to update

c© The Eurographics Association 2007.

Y. Frishman & A. Tal / Online Dynamic Graph Drawing

node positions in parallel, thus making it possible to effi-
ciently employ the GPU’s parallel computation model. Fi-
nally, it is possible to use a convergence scheme that resem-
bles simulated annealing, in which nodes are slowly frozen
into position [FR91] . This is suitable for use in dynamic
layout, where nodes have different scales of movement.

Our algorithm utilizes several key ideas. First, nodes are
initially placed using local graph properties and information
from the previous layout. Second, a movement flexibility de-
gree is assigned to each node, allowing the algorithm to “fo-
cus” on nodes that may have large displacements. Third, an
approach similar to simulated annealing is used, where the
graph slowly freezes into its final position. The above are
performed in order to maintain the mental map. In addition,
in order to reduce the layout time while maintaining layout
quality, forces from distant nodes are approximated. Finally,
the GPU is used to accelerate the layout.

Given a sequence of graphs G0, . . .Gn, our algorithm com-
putes layouts L0, . . .Ln using the following stages:

1. Initialization: compute layout L0.
2. Merging: Merge layout Li−1 and graph Gi to produce an

initial layout.
3. Pinning: Assign pinning weights to the nodes. These

weights control the allowed displacement of each node.
4. Geometric partitioning: The nodes in the graph’s initial

layout are partitioned, in order to allow us to perform ap-
proximate calculations on partitions instead of on indi-
vidual nodes.

5. Layout: a modified force directed algorithm is used to
compute the final layout Li.

6. Animation: smoothly morph Li−1 into Li, goto step 2.

Computing layout L0 involves executing steps 1, 4 and 5.
Subsequent layouts involve steps 2-6.

4. Algorithm
This section describes the algorithm in detail.

Initialization (Step 1): L0 is computed using a multi-
level force-directed layout scheme, where coarser represen-
tations of the graph are recursively built. At each level, given
a fine graph, a coarser representation is constructed using a
series of edge collapse operations. A collapse operation re-
places two connected nodes and the edge between them by
a single node, whose weight is the sum of the weights of the
nodes being replaced. The weights of the edges are updated
accordingly. (The initial weight of a node/edge is 1.) The al-
gorithm is similar to [Wal03]. However, the order of the edge
collapse operations is different: First, nodes, which are can-
didates to be eliminated, are sorted by their degree (so as to
eliminate low-degree nodes first). An adjacent edge of a low-
degree node is chosen for collapse by maximizing the fol-
lowing measure: w(u,v)

w(v) +
w(u,v)
w(u)

, where w(x) is the weight of
node x and w(x,y) is the weight of edge (x,y). This function

helps to preserve the topology of the graph by “uniformly”
collapsing highly connected nodes.

The coarsest graph is laid out using the Kamada-Kawai
algorithm [KK89]. It is not used on the finer graphs since
it is expensive. However, it gives good results on the coarse
graph. To recursively lay the finer graphs, a series of interpo-
lations and layouts is performed, as described in Steps 4–5,
until the initial, finest graph is laid out.

Merging (Step 2): Computing a good initial position is
vital for reducing the layout time and maintaining dynamic
stability [Coh97, GGK04]. The coordinates of nodes that
exist both in Gi−1 and in Gi are copied from Li−1. Nodes in
Gi that do not exist in Gi−1 are assigned coordinates while
considering local graph properties, as follows.

Each un–positioned node v is examined in turn. Let PN(v)
be the set of neighbors of node v ∈ Vi that have already
been assigned a position. If v has at least two positioned
neighbors, v is placed at their weighted barycenter: pos(v) =

1
|PN(v)| ∑

u∈PN(v)
pos(u). If v has a single positioned neighbor,

u, then v is positioned along the line between pos(u) and the
center of the bounding box of Gi−1. This procedure is per-
formed in a BFS manner, starting from the positioned nodes.
The nodes that cannot be placed by this procedure are placed
in a circle around center(Li−1).

A Positioning score Γ(v) is assigned to each node, based
on the method used to position it. Scores of 1, 0.25, 0.1 and
0 are assigned to nodes positioned according to their coor-
dinates at Li−1, at the barycenter of two or more neighbors,
according to one neighbor, and at the center of Li−1, respec-
tively. These scores indicate the “confidence” in the node’s
position and will be used in the next step of the algorithm.

Pinning (Step 3): After all the nodes are placed, their pin-
ning weights, wpin(v) ∈ [0,1], which reflect the stiffness in
the positions of the nodes, are computed [FT04,KG06]. The
position of a node with a pinning weight 1 is fixed during
layout, while a node with a pinning weight 0 is completely
free to move during layout, as if the layout is static.

Pinning weights are assigned using two sweeps. The first
sweep, which is local, uses information regarding the posi-
tioning scores Γ of the node and its neighbors:

wpin(v) = α∗Γ(v)+(1−α)
1

degree(v) ∑
u:(u,v)∈E

Γ(u),

where in our implementation α = 0.6. Taking the neighbors
of v into account amounts to performing low pass filtering of
the pinning weights, according to graph connectivity infor-
mation. This mimics the creation of flexible ligaments in the
graph around areas that were modified.

In the second sweep, the local changes are propagated, in
order to create a global effect. A BFS-type algorithm assigns
each node a distance-to-modification measure, as follows.
The distance-zero node set, D0, is defined as the union of

c© The Eurographics Association 2007.

Y. Frishman & A. Tal / Online Dynamic Graph Drawing

the set of nodes with a pinning weight of less than one and
the set of nodes adjacent to an edge that was either added or
removed from Gi−1. The distance-one set, D1, is defined as
the subset of nodes in V \D0 adjacent to a node in D0. In gen-
eral, Di is the subset of nodes not yet marked, which are ad-
jacent to a node in Di−1. This process continues until all the
nodes in V are assigned to one of the sets D0,D1, · · · ,Ddmax.

Pinning weights are assigned to nodes based on their
distance-to-modification. In particular, nodes that are farther
than some cutoff distance dcutoff , are assigned a pinning
weight of one, thus remaining fixed, since they are far away
from areas of the graph that were changed. The movement
of other nodes depend on the set Di they belong to. This is
done as follows. Given dcutoff = k ∗dmax, the nodes in Di,
i ∈ [1,dcutoff] are assigned pinning weights:

wpin = (winitial
pin)(1−

i
dcutoff)

.

In our implementation k = 0.5 and winitial
pin = 0.35. This as-

signment creates a decaying effect in which nodes farther
away from D0 are assigned higher pinning weights. Note
that a larger k results in a more global effect, possibly trad-
ing layout stability for better layout quality (since nodes are
more free to move).

Geometric partitioning (Step 4): The partitioning step is
used to accelerate the layout step, discussed below. There are
three requirements that should be satisfied by partitioning.
First, the partitions should be geometrically localized, thus
the nodes in each partition should be relatively close to each
other. This will let us represent each partition using a single
"heavy" node. Second, the number of nodes in each partition
should be similar. This is important in order to achieve good
load balance between the parallel processors of the GPU, as
discussed in Section 5. Third, the algorithm should be fast.

This step creates a KD-tree-type partitioning. Proceeding
from coarse to fine, the nodes are partitioned according to
their median, alternating between computation of the me-
dian of the X and Y coordinates. The recursive subdivision
terminates when the size of the subset is below the required
partition size.

Layout (Step 5): This step of the algorithm computes the
layout. Our algorithm builds on the basic force directed al-
gorithm [FR91], which is modified, so as to make it suitable
both for incremental layout and for efficient implementation
on the GPU. The basic algorithm is thus modified in three
ways. First, an approximate force model is used in order to
speedup the calculation. Second, node pinning allows indi-
vidual control over the movement of each node. Third, the
algorithm is reformulated in a manner suitable for efficient
implementation on the GPU.

Figure 2 outlines our algorithm. The input is a graph
G = (V,E) decomposed into partitions Pi, nodes with initial
placement pos(v), and their pinning weights wpin(v). The
output is the positions for all nodes. The key idea of the al-

gorithm is to converge into a minimal energy configuration,
which is shown to correlate with an aesthetic layout.

fracdone = 0 , K = 0.1, t = K ∗
√

|V |, λ = 0.9
do iteration_count times,

update partitioning (step4) if required
parallel_foreach partition Pi ∈ P,

calculate partition center of gravity CG(Pi) =
∑

v∈Pi
pos(v)

|Pi|
parallel_foreach node v, v ∈ Pi where fracdone > wpin(v),

Frepl
int (v) = ∑

u∈Pi,u6=v
K2 pos(v)−pos(u)

‖pos(v)−pos(u)‖2

Frepl
ext (v) = ∑

Pj∈P,Pj 6=Pi
K2|Pj|

pos(v)−CG(Pj)
‖pos(v)−CG(Pj)‖2

Fattr(v) = ∑
u:(u,v)∈E

‖pos(u)−pos(v)‖(pos(u)−pos(v))
K

F total(v) = F repl
int (v)+ Frepl

ext (v)+ Fattr(v)
parallel_foreach node v where fracdone > wpin(v),

posnew(v) = pos(v)+ Ftotal (v)
‖Ftotal (v)‖min(t,‖F total(v)‖)

t∗ = λ, fracdone+ = iteration_count−1

Figure 2: Parallel force directed layout algorithm

The initialization of the algorithm includes setting the op-
timal geometric node distance K (that affects the scale of
the graph), the initial annealing temperature t, the tempera-
ture decay constant λ, and the fraction of the iterations done
fracdone ∈ [0,1].

Partitioning is used to accelerate the algorithm. Instead
of calculating all-pair repulsive forces, as is customary, ap-
proximate forces are calculated. An exact calculation is per-
formed only for nodes contained in the same partition, while
an approximate calculation is performed for nodes belong-
ing to different partitions. The center of gravity is found for
each partiton Pi and is used to replace the nodes in Pi.

Our experiments show that there is flexibility in the num-
ber of nodes in each partition , e.g. Figure 3 shows that using
twenty times fewer nodes in each partition has little effect on
the final layout. Moreover, it is not necessary to re-partition
at every iteration, except for the initial iterations of the initial
layout (step 1), where the nodes may have a high displace-
ment. During the incremental layout, the merge stage (step
3) already gives a good approximation of the final layout.

The key to efficient implementation of this algorithm on
the GPU is the use of the parallel_foreach loops. Each itera-
tion of the algorithm operates only on the subset of the nodes
in G for which fracdone > wpin(v). This makes it possible
to control the relative displacement of nodes. Nodes with a
low pinning weight will be displaced during more iterations
of the algorithm. Because the allowed displacement is de-
creased from one iteration to the next, setting a higher pin-
ning weight limits the total displacement of nodes. Hence,
the pinning weight controls the stability of node positions.

The algorithm computes the total force acting on each

c© The Eurographics Association 2007.

Y. Frishman & A. Tal / Online Dynamic Graph Drawing

(a) 0.5
√

|V | partitions (b) 10
√

|V | partitions

Figure 3: Partition size effect on layout, graph 4elt, |V | =
15606, |E| = 45878

node in several steps. First, the centers of gravity of all par-
titions are computed. Next, the set of active nodes, which
are allowed to be displaced in the current iteration, is deter-
mined. For each such node, the repulsive forces F repl

int ,Frepl
ext

and the attractive force Fattr acting on it, are calculated. Fi-
nally, the nodes are displaced by an amount bounded by the
current temperature of the algorithm, which slowly decays,
mimicking particles freezing into position.

The asymptotic complexity of the merging and pinning
steps is O(|E|+ |V |). The complexity of the partitioning step
is O(|V |∗ log(|V |)): finding the median is linear at each level
in the partition tree which contains O(log|V |) levels. Assum-
ing that each partition contains Cs nodes, the running time
of each layout iteration is O(|E|+ |V | ∗ (Cs +

|V |
Cs

)). This ex-
pression is minimized when Cs =

√

|V |, resulting in a total
complexity of O(|E|+ |V |1.5). In many cases |E| ≈ |V | and
the dominating term is |V |1.5. Although this may look rela-
tively high, the simplicity of the calculation and its parallel
implementation on the GPU give good results, as discussed
in Section 5. We use 50 layout iterations [Wal03].

5. Implementation and Results
This section describes our GPU implementation of the lay-
out stage (step 5, see Figure 2), which is the most time con-
suming stage, and our results. On the GPU, parallel com-
putation is achieved by rendering graphics primitives that
cover several pixels. The GPU runs a program called a ker-
nel program for each pixel candidate, called a fragment. The
key to high performance on the GPU is using multiple frag-
ment processors, which operate in parallel. The GPU suits
uniformly structured data, such as matrices. The challenge
is representing graphs, which are unstructured, in a manner
that makes efficient use of GPU resources.

Several textures are used on the GPU to represent the
graph: the textures represent the nodes, the partitions, the
edges, and the forces. The location texture holds the (x,y)
positions of all the nodes in the graph and their partition
number. Each graph node has a corresponding (u,v) index in
the texture. The partition center of gravity texture holds the

current (x,y) coordinates of the center of gravity of each par-
tition. Graph edges are represented using the neighbors tex-
ture and the adjacency texture. The adjacency texture con-
tains lists of (u,v) pointers into the location texture, repre-
senting the neighbors of each node. The neighbors texture
holds for each node v, a pointer into the adjacency texture,
to the coordinates of the first neighbor of the node. Pointers
to additional neighboring nodes are stored in consecutive lo-
cations in the adjacency texture. The neighbors texture also
holds the degree of each node. The forces computed during
layout are stored in two textures: the attractive force texture
and the repulsive force texture. The attractive force texture
contains for each node the sum of the attractive forces Fattr

exerted on it by its neighbors. The repulsive force texture
holds the sum of repulsive forces, both by nodes in the same
partition – Frepl

int and by the other partitions in the graph –
Frepl

ext . The overall storage complexity is O(|V |+ |E|): every
node and edge is stored a fixed number of times.

Computing each layout iteration is done in several steps,
which are implemented as kernel programs that run on the
GPU. The partition CG kernel calculates the center of grav-
ity of each partition. The repulse kernel calculates the repul-
sive forces exerted on each node. This kernel first calculates
for each fragment it processes, the internal forces, e.g. forces
exerted by nodes contained in the partition that the fragment
belongs to. Then, it approximates the forces by all other par-
tition. The attract kernel is used to calculate the attractive
forces caused by graph edges. For each node, the kernel ac-
cesses the neighbors texture in order to get a pointer into the
adjacency texture, which contains the (u,v) location texture
coordinates of the node’s neighbors. For each neighboring
node, the attractive force is calculated and accumulated. Fi-
nally, the anneal kernel calculates the total force on each
node, F total . This kernel updates a second copy of the loca-
tion texture. This double buffering is required since the GPU
can not read and write to the same texture.

Two criteria are used to measure the quality of the re-
sulting dynamic layouts: average displacement of nodes be-
tween each pair of successive layouts and potential energy.
The first criterion measures the stability of the layout. The
second criterion judges the quality of the layout. Lower
energy implies low stress in the graph, corresponding to
a good layout. The energy U is derived from the relation
F = ∇U . For attractive forces acting on edges, Fattr(~x) =
−K−1‖~x‖~x = ∇Uattr , hence Uattr = −(3K)−1‖~x‖3. For
repulsive forces acting between all node pairs, F repl(~x) =
K2~x‖~x‖−2 = ∇U repl , hence U repl = 0.5K2log(‖~x‖2) . The
total energy is U total = Uattr +U repl . Other static graph lay-
out quality criteria are indirectly handled by the underlying
force directed algorithm.

The quality of the layout is compared to two algorithms.
The first is a force-directed non-incremental algorithm that
lays each graph in the sequence independently. This algo-
rithm, which is expected to produce the best layouts since

c© The Eurographics Association 2007.

Y. Frishman & A. Tal / Online Dynamic Graph Drawing

graph threads1 threads2 3elt 4elt fe_pwt
metric ∆pos U total ∆pos U total ∆pos U total ∆pos U total ∆pos U total

non-incr 1.34 38.9 1.40 9.65 28.7 2.73x105 56.3 1.01x106 99.9 9.59x105

basic-incr 0.33 39.8 0.32 9.76 1.35 3x105 2.58 9.17x105 4.65 8.37x105

ours 0.05 28.0 0.05 5.76 0.66 2.72x105 1.05 9.87x105 1.97 8.26x105

Table 1: Layout quality - values are averages for a sequence of layouts

it has no constraints, is used to check the quality of our dy-
namic layouts. The second is a variant of our dynamic algo-
rithm which does not use pinning weights (e.g. wpin ≡ 0).
This algorithm demonstrates that simply using the previous
placement is insufficient for generating stable layouts.

Several well–known graphs (3elt, 4elt, fe_pwt) are used
to demonstrate our algorithm [Wal]. The dynamic sequences
are generated by performing random changes on the graphs,
modifying |E| and |V | by up to 15%. In addition, the se-
quences marked threads1,2 come from real data, discussed
in Section 6. Figure 4 shows a few snapshots from the dy-
namic graph layout of 3elt. Table 1 shows average results
for the layout quality metrics. (Lower values are better.) The
∆pos column shows the average displacement of nodes and
the U total column shows the potential energy of the graph. It
is clear that our incremental algorithm outperforms the other
algorithms and maintains dynamic stability. The potential
energies achieved by all algorithms are similar, demonstrat-
ing that the quality of layouts computed by our algorithm is
good. In some cases (fe_pwt, 4elt) the two incremental algo-
rithms surprisingly perform better than the static one. This is
due to the fact that the force-directed algorithm finds a local
minimum which depends on the initial conditions, which are
different for each algorithm used here. In summary, the re-
sults demonstrate that our algorithm computes aesthetic lay-
outs while minimizing the movements of the nodes.

For our performance tests we used a PC equipped with a
1.86 GHz Intel Core 2 Duo CPU and an NVIDIA 7900GS
GPU. Our algorithm was implemented using C++, Cg and
OpenGL. Table 2 gives information about the graph se-
quences and running times. As can be seen in the table, our
GPU implementation provides a significant speedup of up
to 8 compared to the CPU. Due to the high ratio of arith-
metic operations to memory accesses, the algorithm is com-
pute and not memory bound. Such an algorithm is expected
to scale well when using faster, newer GPUs.

6. Application to Discussion Thread Visualization
We applied our algorithm to the visualization of Internet dis-
cussion forums. We collected data from several discussion
threads at http://www.dailytech.com. This site contains
various hi-tech related news items. The discussion threads
visualized contain the comments people make on the news
items. In the graph, each node represents a user. Edges are
constructed between the user adding a comment and users

Figure 4: Snapshots from layouts of the 3elt sequence (|V | ≈
4000, |E| ≈ 10,500), left-to-right, top-to-bottom

Graph avg. avg. initial layout incr. layout
name |V| |E| GPU CPU GPU CPU
3elt 4097 10468 1.51 2.2 0.1 0.34
4elt 14588 40176 2.89 13.27 0.39 2.93
fe_pwt 32045 112395 6.05 35.7 1.12 9.23
g7 9783 19179 1.9 5.94 0.18 0.85

Table 2: Graph sequence information and running time
[sec.]. The last two columns show average incremental lay-
out time for one graph. Total running times for the CPU only
and GPU accelerated variant of the algorithm are shown.

which replied to that comment. Each discussion thread is
represented by a node labeled A_n where n is the discussion
thread number (corresponding to a news item).

Figure 1 shows a sample visualization of 7 discussion
threads with 119 users. Although during visualization the
graph more than doubles, our layout manages to preserve

c© The Eurographics Association 2007.

http://www.dailytech.com

Y. Frishman & A. Tal / Online Dynamic Graph Drawing

Figure 5: Snapshots from the threads2 graph sequence, visualizing discussion threads at http://www.dailytech.com, left to right,
top to bottom. 109 messages from 86 users in 5 discussion threads are shown. Discussion topics, marked as blue A_n nodes,
include computer games (A_5054), nuclear fusion (A_5027), low-cost PCs (A_5060), Windows/Linux switch (A_5069) and
Christmas e-shopping (A_5082) .

the mental map. Several insights can be gained from the vi-
sualization. Clusters are evident around the A_n nodes, rep-
resenting each discussion thread. As time progresses, more
clusters, representing new discussion threads, become vis-
ible. There are clusters of various sizes – correlating to
threads drawing different levels of attention. Some users post
messages on several threads while others discuss only one
topic. Some users are very active and post many messages,
acting as central nodes in the graph. The degree of nodes rep-
resenting such users increases over time and they contribute
to the connectivity of the graph. Some users, who are drawn
at the boundaries of the graph, contribute only one comment.

As a second example we studied the latest headlines sec-
tion of the website. We selected five items, appearing over
a span of three days, from seemingly unrelated fields: com-
puter games, nuclear fusion, low-cost PCs, Windows/Linux
switch and Christmas e-shopping. The number of comments
for each article varied from 15 to 31. A total of 86 users con-
tributed to the discussion threads. Figure 5 presents several
snapshots from the animation sequence showing the evolu-
tion of these discussion threads over time.

Looking at the visualization, several conclusions can be

drawn. The graph is initially partitioned into disconnected
clusters, representing nuclear fusion, low-cost PCs and com-
puter games. Later, connections start to appear in the graph.
The threads discussing low-cost PCs and Windows/Linux
switch are highly connected. Some connections exist be-
tween these clusters and the computer game cluster. Surpris-
ingly, several users discussing nuclear fusion join both the
computer games and Windows/Linux switch threads. Good
correlation also exists between nuclear fusion and the Christ-
mas e-shopping discussion.

7. Conclusion

We have presented an online algorithm for dynamic layout
of graphs, whose goal is to efficiently compute stable and
aesthetic layouts. The algorithm has several key ideas. First,
a good initial layout is computed. Second, the allowed dis-
placement of nodes is controlled according to the changes
applied to the graph. In particular, each node is assigned an
individual convergence schedule. Third, the global interac-
tions in the graph are approximated in order to maintain the
structure of the graph and compute an aesthetic layout. Last
but not least, the GPU is used to accelerate the algorithm,

c© The Eurographics Association 2007.

Y. Frishman & A. Tal / Online Dynamic Graph Drawing

requiring the representation of unstructured graphs in an or-
dered manner that fits the GPU.

It has been demonstrated that the algorithm computes an
aesthetic layout, while minimizing displacement and main-
taining the user’s mental map between layout iterations. Our
GPU implementation of the algorithm performs up to 8 times
faster than the CPU version. We have applied our algorithm
to visualization of discussion threads on the Internet.

Acknowledgements
This work was partially supported by European FP6 NoE
grant 506766 (AIM@SHAPE) and by the Fund for the Pro-
motion of Research at the Technion.

References
[ATAM04] A. T. ADAI S. V. DATE S. W., MARCOTTE

E. M.: Lgl: creating a map of protein function with an
algorithm for visualizing very large biological networks.
J. Mol Biol (2004), 179–190. 2

[BFP05] BRANDES U., FLEISCHER D., PUPPE T.: Dy-
namic spectral layout of small worlds. In Proc. 13th Int.
Symp. Graph Drawing, GD (2005), pp. 25–36. 2

[BH86] BARNES J., HUT P.: A hierarchical O(N logN)
force-calculation algorithm. Nature 324, 4 (1986), 446–
449. 2

[BW97] BRANDES U., WAGNER D.: A Bayesian
paradigm for dynamic graph layout. In Proc. 5th Int.
Symp. Graph Drawing, GD (1997), pp. 85–99. 2

[Coh97] COHEN J. D.: Drawing graphs to convey prox-
imity: an incremental arrangement method. ACM Trans.
Comput.-Hum. Interact. 4, 3 (1997), 197–229. 3

[DG02] DIEHL S., GORG C.: Graphs, They Are Chang-
ing - Dynamic Graph Drawing for a Sequence of Graphs.
No. 2528 in LNCS, pp. 23–31. 1, 2

[EHK∗03] ERTEN C., HARDING P. J., KOBOUROV
S. G., WAMPLER K., YEE G. V.: GraphAEL: Graph an-
imations with evolving layouts. In Proc. 11th Int. Symp.
Graph Drawing (2003), pp. 98–110. 1, 2

[FR91] FRUCHTERMAN T. M. J., REINGOLD E. M.:
Graph drawing by force-directed placement. Software—
Practice & Experience 21, 11 (1991), 1129–1164. 3, 4

[FT04] FRISHMAN Y., TAL A.: Dynamic drawing of clus-
tered graphs. In Proc. of the IEEE Symp. on Information
Visualization, InfoVis (2004), pp. 191–198. 1, 2, 3

[GBPD04] GÖRG C., BIRKE P., POHL M., DIEHL S.:
Dynamic graph drawing of sequences of orthogonal and
hierarchical graphs. In Proc. 12th Int. Symp. Graph Draw-
ing, GD (2004), vol. 3383 of LNCS, pp. 228–238. 2

[GEW05] GEORGII J., ECHTLER F., WESTERMANN R.:
Interactive simulation of deformable bodies on gpus. In
SimVis (2005), pp. 247–258. 2

[GGK04] GAJER P., GOODRICH M. T., KOBOUROV
S. G.: A multi-dimensional approach to force-directed
layouts of large graphs. Comput. Geom 29, 1 (2004), 3–
18. 3

[HJ04] HACHUL S., JÜNGER M.: Drawing large graphs
with a potential-field-based multilevel algorithm. In
Graph Drawing (2004), pp. 285–295. 2

[HK02] HAREL D., KOREN Y.: A Fast Multi-Scale Al-
gorithm for Drawing Large Graphs. J. Graph Algorithms
Appl. 6, 3 (2002), 179–202. 2

[KCH03] KOREN Y., CARMEL L., HAREL D.: Drawing
huge graphs by algebraic multigrid optimization. Multi-
scale Modeling & Simulation 1, 4 (2003), 645–673. 2

[KG06] KUMAR G., GARLAND M.: Visual exploration
of complex time-varying graphs. IEEE Trans. on Visual-
ization and Computer Graphics, Proc. InfoVis (2006). 1,
2, 3

[KK89] KAMADA T., KAWAI S.: An algorithm for draw-
ing general undirected graphs. Information Processing
Letters 31, 1 (1989), 7–15. 3

[KW01] KAUFMANN M., WAGNER D. (Eds.): Drawing
Graphs: Methods and Models. 2001. 1, 2

[LLY06] LEE Y.-Y., LIN C.-C., YEN H.-C.: Mental Map
Preserving Graph Drawing Using Simulated Annealing,
vol. 60 of Conferences in Research and Practice in Infor-
mation Technology. 2006. 1, 2

[MELS95] MISUE K., EADES P., LAI W., SUGIYAMA
K.: Layout adjustment and the mental map. J. Visual
Languages and Computing 6, 2 (1995), 183–210. 1, 2

[NHP04] NYLAND L., HARRIS M., PRINS J.: The rapid
evaluation of potential fields using programmable graph-
ics hardware. In ACM Workshop on General Purpose
Computing on Graphics Hardware (2004). 2

[Nor95] NORTH S. C.: Incremental layout in dynadag. In
Proc. 3rd Int. Symp. Graph Drawing (1995), no. 1027 in
LNCS, pp. 409–418. 1, 2

[OLG∗05] OWENS J. D., LUEBKE D., GOVINDARAJU
N., HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL
T. J.: A survey of general-purpose computation on graph-
ics hardware. In Eurographics (2005), pp. 21–51. 2

[Pan06] PANDE V.: Folding@home on ati gpu’s, 2006.
http://folding.stanford.edu/FAQ-ATI.html. 2

[TE05] TEJADA E., ERTL T.: Large Steps in GPU-based
Deformable Bodies Simulation. Simulation Modelling
Practice and Theory 13 (2005), 703–715. 2

[Wal] WALSHAW C.: graph collection. http:-
//staffweb.cms.gre.ac.uk/˜c.walshaw/-
partition/. 6

[Wal03] WALSHAW C.: A Multilevel Algorithm for
Force-Directed Graph Drawing. J. Graph Algorithms
Appl. 7, 3 (2003), 253–285. 2, 3, 5

c© The Eurographics Association 2007.

http://folding.stanford.edu/FAQ-ATI.html

