

Polyhedron

Polyhedron

A finite collection of planar bounded convex polygonal faces such that

- 1. The faces intersect properly
- 2. The neighborhood of every point is topologically an open disk
- 3. The surface is connected

Euler formula (genus 0): V-E+F=2

3

Not a 2-manifold Information flow 1. Data acquisition 2. Image processing 3. Surface reconstruction 4. Display Marching cubes (Lorensen & Cline, 87) ☐ Intermediate geometric representation ☐ High-resolution 3D surface construction algorithm ☐ Create a polygonal representation of constant density surfaces from a 3D array of data ☐ Result can be displayed with conventional

graphics rendering algorithms

Steps

- 1. Define a surface value = threshold (by user)
- 2. Algorithm:
 - 1. Find cubes intersected by the surface
 - 2. Examine cubes in the boundary cells and produce a set of connected polygons
 - 3. Calculate normals at each vertex

7

Cube

Locate the surface in a logical cube created from eight pixels

.

Locating the surface

- 1. Determine how the surface intersects the cube
 - a. Assign 1 to a vertex if the data value exceeds threshold (=inside)
 Surface intersects cube edges where one vertex is out and one is in
 - b. Determine the topology of the surface within a cube
 - c. Find the location of the intersection
- 2. March to the next cube

9

Cases

Reduce the number of cases by

- 1. Complementary cases
- 2. Rotational symmetry

10

Triangulated cubes

11

Edge table

8-bit index — Figure 4. Cube Numbering.

pointer into an edge table

12

Shading

1. Calculate gradient for every cube vertex

G_x(i, j, k) =
$$\frac{D(i+1, j, k) - D(i-1, j, k)}{D(i-1, j, k)}$$

$$G_{x}(i, j, k) = \frac{G_{x}(i, j, k) - D(i, j+1, k) - D(i, j+1, k)}{\frac{\Delta_{y}}{D(i, j, k+1)} - D(i, j, k+1)}$$

$$G_{y}(i,j,k) = \frac{\Delta_{y}(i,j,k+1)^{2}D(i,j,k-1)}{\Delta_{z}}$$

- 2. Find normals at every triangle vertex
- 3. Gouraud shading

13

Summary

- 1. Read four slices into memory
- 2. Create a cube from 2 slices
- 3. Calculate an index by comparing to threshold
- 4. Lookup the list of edges in table
- 5. Find surface-edge intersection interpolation
- 6. Calculate normal at each cube vertex Interpolate the normal to each triangle vertex
- 7. Output triangle vertices and normals

Enhancement

Coherence – only three new edges

Results Figure 8. Bone Surface.

Results Figure 11. Sagittal Cut with Texture Mapping.	
Results	
Figure 12. Rotated Sequence of Cut MR Brain.	

