Metamorphosis between polyhedra	
Wetamorphosis between polyneura	
•	
<u>L</u>	
Harder to compute, but has many advantages	
1	
Correspondence by projection	
☐ 1992, Kent et al	
□ 1997, Kanai et al	
☐ 1998, Shapiro et al.	
☐ 1999, Gregory et al.	
□ 2000, Alexa	
□ 2002, Shlafman et al.	
□ 2004, Kraevoy et al	
2	
	1
Genus-0 polyhedra (Kent et al.)	
Concents	
Concepts: ☐ Topology (1-skeleton) = vertex / edge / face	
connectivity graph	
☐ Geometry = specific instance of the topology	
☐ Objects homeomorphic = continuous, invertible,	
one-to-one mapping exists	
3	

Outline of the algorithm

- 1. Project the polyhedra into a unit sphere
- 2. Merge the two topologies
- 3. Map the merged topology onto the surfaces of the original polyhedra
- 4. Interpolate the coordinates

4

Example

5

Projection methods

- ☐ Convex and star-shaped objects
- ☐ Methods using model knowledge, in particular objects of revolution and extruded objects
- ☐ Physically-based methods

Example

7

The merging algorithm

- 1. Read the topology and geometry of the objects and their projected vertices
- 2. Translate their centers to the origin
- 3. Intersect each edge of (Ma)p with a subset of the edges of (Mb)p
- 4. Find vertex locations using barycentric coordinates
- 5. Identify the faces

8

Calculating the intersections of an edge

Sorting the intersections

10

Interpolation issues

- ☐ Interpolation of each pair of corresponding vertex location (linear, Hermite,...)
- ☐ Self-intersection is not avoided
- ☐ Interpolation of other attributes

11

Results

CH-snap technique into tabular object

Problems Not general Only genus 0 Self intersection during morph User control is limited

Finding correspondence (Shapiro)

- 1. Create a convex polyhedron P' which realizes the given polyhedron P
- 2. Similarly, find Q' for Q
- 3. Merge the vertex/edge connectivity graphs of *P*' and *Q*'
- 4. Induce the merged graph onto *P*, forming a congruent polyhedron *P* "
- 5. Similarly form Q''

17

Polyhedron realization

Polyhedron realization

A polyhedron P' is said to realize a polyhedron P, if P' is convex and the vertex/edge connectivity graphs of P' and P are isomorphic

19

The realization algorithm

☐ Simplification - Simplify the vertex/edge connectivity graph by removing vertices and triangulating

The result is a sequence of graphs Gn Gn-1... G4

☐ *Reattachment* - Construct a convex polyhedron bottom-up

20

Simplification

- \square Find a vertex v of degree 3, 4, or 5 and remove it from the graph
- □ Re-triangulate the resulting face

Simplification - correctness

<u>Theorem</u>: Given Gi as described above, v of degree 3, 4, or 5 can be found and removed and the graph can be re-triangulated and remain planar and triangular

22

Simplification - correctness (Cont')

<u>Lemma 1</u>: A planar triangular graph must contain at least one vertex of degree three, four or five

23

Simplification - correctness (Cont')

<u>Lemma 2</u>: If a vertex v of degree 4 is removed from a planar triangular graph *Gi* then

- (1) the neighbors of v cannot all be inter-connected
- (2) a diagonal can be added between two of v's neighbors so that the graph remains planar and triangular

Simplification - correctness (Cont')

<u>Lemma 3</u>: If a vertex v of degree 5 is removed from a planar triangular graph *Gi* then

- (1) there are at most 3 diagonals between the neighbors of v in Gi and
- (2) two diagonals that share a common vertex can be added so that the graph remains planar and triangular.

25

Simplification

26

Re-attachment

Proceed bottom-up, realizing G_{+} by a tetrahedron

The major consideration is how to locate vertex v, detached during simplification, to P_i , in order to form a convex polyhedron P_{i+1} .

Case I: v of degree 3

<u>Lemma 4</u>: It is possible to position v correctly. That is to say, v is above $F_{I(i)}$ and below F_{I} { $0 \le j \le 4$ }

28

Case II: v of degree 4

<u>Lemma 5</u>: It is possible to position v correctly. That is to say, v is above $F_{I(i)}$ and $F_{2(i)}$ and below F_{j} $\{0 \le j \le 5\}$

29

Case III: v of degree 5

It is sometimes necessary to apply a transformation in order to position *v* correctly

Main theorem

Given a convex polyhedron P_i , v can be attached so that the resulting polyhedron P_{i+1} is convex

31

Re-attachment

32

Results

Advantages and disadvantages

- + General and be applied to other applications
- + Avoid circular arcs
- + Always convex
- Lack of user control
- Lack of finer correspondence
- Only genus zero

34

Finer correspondence

Results	
Results	
38	
Results	
39	

Results	
40	
Summary A Compatible triangulation is useful for	
finding correspondence It is doable both in 2D and in 3D, both theoretically and practically Surface decomposition - useful for fine control non genus zero models	
Future challenges	
 □ Handling non genus-zero polyhedra □ Non self-intersecting morph in 3D 	