Mesh analysis

N e S——

Effective techniques for representing,
analyzing, searching, and reusing

Large repositories of 3D data more accessible

= Data storage
= Computing power
* Modeling techniques

PR ——

Why “Shape Extraction”
Examining human image understanding many
works indicate that recognition and shape
understanding are based on structural
decomposition of the shape into smaller parts

HOFFMAN D., RICHARDS W.: Parts of recognition. Cognition 18, 1-3
(December 1984), 65-96.

BIEDERMAN I.: Recognition-by-Comp ts: A theory of human image
understanding. Psychological Review 94 (1987), 115-147.

HOFFMAN D., SIGNH M.: Salience of visual parts. Cognition 63 (1997),
29-78.

For instance

e

Sub-problem

N———

U Shape-based search
U Alignment

a

U “Stitching”

Segmentation

N

U Tmages — “segmentation”
U Polyhedra — “triangulation™ or “convex pieces”
U Meshes — “decomposition™ or “segmentation”
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Mesh segmentation 7

Mesh Segmentation Papers

[SEINIFN

2006
2005
2004
2003
2002
2001
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1. Definitions
2. Criteria

3. Applications
4. Algorithms

K-way segmrntation

Let S be an orientable mesh.

Goal: decompose S into
connected sub-meshes S1, S2... Sk
that are face-wise disjoint, and
whose union gives S.

e Sk ¢

Correct or Not?
Gopd or Bad?

Criteria?

U Planar segments?
U Smooth segments?
U Round segments?

Criteria?

[ Planar segments?
O Smooth segments?
[ Round segments?

[ Small segments? Large segments?




Criteria?

U Planar segments? o0

U Smooth segments?

U Round segments?

U Small segments? Large segments? ! |
U Small number of segments?
U Smooth boundar ~

Criteria?

[ Planar segments? o
[ Smooth segments?

O Round segments?

[ Small segments? Large segments?
[ Small number of segments?

[ Smooth boundary?

[ “Natural” segments?

O More...

How to choose criteria?

B~ e

U What you want / need
U Application in mind

Segmentation types
U Geometry-based
U “Meaningful” components

Segmentation as optimization definition
s — : —

Given a mesh M = {V,E,F} and the set of
elements Se {V.E,F}, find a disjoint
partitioning of S into S,,...,S; such that the
criterion function

J=1J(S,,....5)

Be minimized under a set of constraints C.

Optimal solution?
B — S —

If|S| = n and |Z| = k, then the search space
is of order k.

Segmentation must revert to some
approximation algorithm:
= Region growing (local greedy)
= Hierarchical clustering (global greedy)
= K-means (iterative)
= Graph Cut
= Spectral Analysis




Constraints vs. Attributes Types of constraints

DR e —— - S— o
O Constraints: I Cardinality
= Not too small and not too large or
= Imposed on the segments, must be a given number
preserved = Overall balanced partition
OEl ts attributes: U Geometry
c€ments atirioutes: = Size: area, diameter, radius
= Used for the criteria measure in the = Convexity, Roundness
optimization process = Boundary smoothness
U Topology

= Connectivity (single component)
= Disk topology

Types of attributes used Euclidean distances vs. Geodesic distances
n— - —— . _ B — e RS

= (Geodesic) Distance

= Planarity {

= Smoothness, curvatui® b

= Slippage %

= Symmetry

= Medial Axis /m

Normal direction, Dihedral angles Smoothness, Curvature
s - e - = e = _ R = _;#7— e = e
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Various skeletons

Symmetry (Podolak et al., SIGGRAPH 2006)
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S hpp age (Gelfand & Guibas SGP 2004) What for‘?
— e T
U Slippable motions are rigid 0 Shape-based retrieval
motions which, when :
applied to a shape, slide the O Metamorphosis
transformed version against U 3D puzzles
the stationary version 0 Simplification
without forming any gaps. .
U Compression
U Collision detection
U Texture mapping
U Object modification, modeling
U Control skeleton extraction
27 28

Application: Shape-based retrieval

U Signature = decomposition graph with attributes
[ Retrieval = sub-graph isomorphism

Support - human visual perception
(Biederman, Marr)

Shape Matching & Retrieval -

O ZUCKERBERGER E., TAL A.. SHLAFMAN
S.: Polyhedral surface decomposition with
applications. Computers & Graphics 26, 5
(2002), 733 743

O PAGE D. ABIDI M., KOSCHAN A., ZHANG
Y.: Object representation using the minima rule
and superquadrics for under vehicle inspection.
In Proceedings of the Ist IEEE Latin American
Conference on Robotics and Automation (2003),
pp. 91-97

O BIASOTTI S.: 3d shape matching through
topological structures. In Discrete Geametry for
Computer Imagery (2003), vol. LNCS 2886,
Springer-Verlag, pp. 194-203.
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Results (8 /9 knives)

Benefltsr and drawbacks

. PR . O GREGORY A, STATEA, LINM,,
+ Invariance to non-ri gld transformations MANOCHA D, LIVINGSTON M Interactive
surface decomposition for polyhedral morphing.
. . The Visual Computer 15 (1999), 453-470.
+ No normallzatlon O ZOCKLER M, STALLING D, HEGE H-C
Fast and intuitive generation of geometric shape
transitions. The Visual Computer 16, 5 (2000),

+ Small signatures 241253
0O ZUCKERBERGERE., TALA., SHLAFMAN
+ No restrictions on topology ol Compions ¢ e 26,4 711‘“
(2002), 733-743.
_ Computation time O SHLAFMAN S, TAL A, KATZ §.

Metamorphosis of palyhedral surfaces using
decomposition. Computer Graphics forum 21, 3
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3D puzzles

Simplification

U We want to approximate a complex model
(shape) with a simpler one.

UReplacing complex mathematical objects with
simpler ones, while keeping the primal
information content.

38

Segmentation context?

U Segment the mesh into
regions which will be
replaced by simpler
elements (planes, cylinders
etc.) while the geometric
distance between the
approximation elements and
the original mesh will be
small.

Shape modeling

0 FUNKHOUSER T., KAZHDAN M.,
SHILANE P., MIN P., KIEFER W,
TAL A, RUSINKIEWICZ S.,
DOBKIN D.: Modeling by example.
ACM Transactions on Graphics
(Proceedings SIGGRAPH 2004) 23
(2004), 652-663.

0 Vladislav Kraevoy, Dan Julius, Alla
Sheffer, Shuffler: Modeling with
Interchangeable Parts, Technical
sketch, Siggraph 2006
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Modeling

O MORTARA M., PATAN, G., SPAGNUOLO
M., FALCIDIENO B., ROSSIGNAC J.
Blowing bubbles for multi-scale analysis and
decomposition of triangle meshes. Algorithmica
38, 1(2003),227 248

0O KATZS., TAL A:: Hierarchical mesh
decomposition using fuzzy clustering and cuts.
ACM Transactions on Graphics (Proceedings
SIGGRAPH 2003) 22, 3 (2003), 954-961

O WUF.-C.. MA W.C.. LIANG R.-H.. CHEN
B.-Y., OUHYOUNG M.: Domain connected
graph: the skeleton of a closed 3d shape for
animation. The Visual Computer 22, 2 (2006),
117-135.
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Control skeletpn extraction

Control skeletpn extraction

Strips & Quasi-developable surfaces

O MITANI I, SUZUKI H.: Making papercraft
toys from meshes using strip-based approximate
unfolding. ACM Transaction on Graphics
(Proceedings SIGGRAPH 2004) 23, 3 (2004),
259-263

O JULIUS D., KRAEVOY V., SHEFFER A.: D-
charts: Quasi-developable mesh segmentation.
Computer Graphics Forum (Proceedings
Eurographics 2005) 24, 3 (2005), 981 990

0O SHATZ L, TAL A, LEIFMAN G.: Paper craft
models from meshes. The Visual Computer
(Procecdings Pacific Graphics 2006) to appear
(2006).
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Parameterization

O SANDER P., SNYDER I.. GORTLER S.,
HOPPE H.: Texture mapping progressive
meshes. In Proceedings of ACM SIGGRAPH
(2001), pp. 409 416

O SORKINE O., COHEN-OR D,
GOLDENTHAL R., LISCHINSKI D.
Bounded-distortion piccewise mesh
parameterization. In Proceedings of IEEE
Visualization 2002 (2002)

O ZHANG E., MISCHAIKOW K., TURK G.
Feature based surface parameterization and
texture mapping. ACM Transaction on Graphics
24,1(2005), 1 27

Charts creation

O LEVY B, PETITJEAN 8., RAY N., MAILLOT
J.: Least squares conformal maps for automatic
texture atlas generation. In ACM Computer
Graphics, Proc. SIGGRAPH 2002, pp. 362 371

0O ZHOU K. SYNDER I, GUO B., SHUM H.-Y.
Isocharts: stretch-driven mesh parameterization
using spectral analysis. In SGP '04: Proceedings
of the 2004 Eurographics’ACM SIGGRAPH
symposium on Geometry processing (New.
York, NY, USA, 2004), ACM Press, pp. 45 54
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Goal — meaningful components Segmentation as a clustering problem

O Convexity UThe basic segmentation problems can

O Curvatures viewed as assigning primitive mesh

0 Geodesic distances elements to sub meshes.

UThis is in fact a clustering problem of
primitive elements into groups or clusters.

UThis problem is well studied in Machine
Learning.

UThe different algorithms can be classified

w as variants of classic clustering algorithms.

Region growing Region growing

Region Growing Algorithm
Initialize a priority queue QO of elements
Loop until all elements are clustered
Choose a seed element and insert to Q
Create a cluster C from seed
Loop until QO is empty
Get the next element s from O
If s can be clustered into C
Cluster s into C

Insert s neighbors to Q
Merge small clusters into neighboring ones

52

Hierarchical Clustering Algorithm
Initialize a priority queue QO of pairs
Insert all valid element pairs to QO
Loop until Q is empty
Get the next pair (u,v) from O
If (u,v) can be merged
Merge (u,v) into w
Insert all valid pairs of w to QO

54




Hierarchy

Iterative clustering
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Lloyd (k-means)

Iterative Clustering Algorithm
Initialize k representatives of k clusters
Loop until representatives do not change
For each element s
Find the best representative i for s
Assign s to the i cluster
For each cluster i

Compute a new representative

Graph cuts

1 Define a graph where each
node is an element and the
edges hold weights
according to the distances
between the elements.

[ Example: dual graph and
the weight is the dihedral
angle.

58

Finding min-cut

Mostly used on portions of the mesh for
refinement of borders between segments
and smoothing.

L. gk ¢

Today’s algorithms

[ Convex decomposition — Chazelle et al, 97
] Wateshed — Mangan & Whitaker, 99
U Two-phase — Katz & Tal, 03

[ Feature-point & Core extraction, Katz et al, 05

60
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Convex decomposition, (Chazelle et al, 97)

U Easiest to represent, manipulate and render

U The human visual system tends to segment
complex objects at regions of deep concavities
(Biederman)

Convex decomposition

U Goal: decompose into convex patches

U Convex patch — lies entirely on the boundary
of its convex hull

62

Algorithms

1. Space partitioning
2. Space sweeping
3. Flooding

Flooding algorithm

| Let G be the dual graph

2 Traversing G, collecting vertices (faces), as long
as a pre-defined property is not violated

3 When traversal cannot be continued, a new patch
is started and the traversal is resumed.

64

Failures

N———

0 Local failure — the edge at which the facet is
attached to the patch exhibits non-convexity
U Global failure — the patch is locally convex

everywhere, but some facet fails to be on the
boundary of the convex hull

Flood & Retract

R—

1. Flood the surface by covers — patches might
overlap

2. Transform the covers into partition -
retracting each patch

66
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Examples

Drawbacks
U The optimization problem is NP-complete
U Over segmentation
U Jagged boundaries

68

Watershed (Mangan and Whitaker, 99)

PR —

Extension to 3D a known 2D algorithm in
image processing

Key idea - Regions are segmented into
catchment-basins (watersheds)

Watersheds

NP —

U Catchment-basin - set of points whose path of
steepest descent terminates in the same local
minimum of a height function

U Height function - depends on the application

70

Watershed segmentation algorithm

1. Compute the height function (curvature) at each vertex

2. Find the local minima and assign each a unique label

3. Find each flat area and classify it as a minimum or a
plateau

4. Loop through plateaus and allow each one to descend
until a labeled region is encountered

5. Allow all remaining unlabeled vertices to similarly
descend and join labeled regions

6. Merge regions whose watershed depth is below a

preset threshold

Initial labelin

.

1. Local minima consisted of single vertex
2. Flat minimum

-~

3. Flat plateau

Flat Platcau

Flat Minimum

72
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Descent

P ———

Imagine a drop of water placed at the starting
vertex, flowing downhill on the height
function

N
N

Region merging (why?)

74

Region merging

Metric — greatest depth of water that segment
can hold before it “spills over”

Watershed
Depth

® Vertex of current region
O Vertex of neighboring region

Fig. 5. Defining the depth of a region based on its lowest vertex and lowest boundary vertex.

Region merging algorithm

For each region, find its lowest point,
neighbors, and lowest boundary point with
each neighbor

Find depth of region, the difference between
the lowest point to lowest boundary point

If depth is below predefined threshold,
merge this region to region adjacent to
lowest boundary point and update new
region’s information accordingly

Repeat until no regions exist that are below

the minimum depth
76

Curvature calculation

N———

Depends on type of data and the level of noise

U Inputs:

= Volumes (voxels) - data is used to compute curvature
= Meshes — several possibilities

Over-segmentation
Noise — partitions might fail dramatically
Threshold sensibily

78
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OBy S

Threshold sensmVlty

PN

PCe—pa———

Threshold sensmVlty

T = 0.15 (103R) 0.2 (64R) 0.4 (36R)

80

Segmentatlon based oon mesh 1nput

OBy S

T = 0.05 (42 Regions) 0.0025 (126
Regions)

Two- phase algorlthm (Katz and Tal 03)

1. Find major components
with fuzzy boundaries

2. Find exact boundaries

82

Algorithm outline

I.  Construct fuzzy decomposition
a. Assign distances to pairs of faces
b. Assign probabilities of belonging to patches
c. Compute a fuzzy decomposition

2. Construct exact boundaries

Distance functlon

U Initially, adjacent faces:

AngDist(oy) =n(1-cosa,)

_GeodDist( fi, 1}
avg(GeodDist),

U Final distances - shortest paths

14



Probabilities

Dist( fi, REP4) ar

P i) = =
»(f) Dist( fi, REP4)+ Dist( fi, REPs) a5+ by

Properties

[ Vap<brPy(f;)<0.5
Il Vai>bi Py(f,)>0.5
L. Van =bs. Py(f,)=0.5
V. B (f)=1-P,(f)

Fuzzy K-means

optimize F = ZP Y ,Pr(f € patch(p))- Dist(f . p
1. Initialization - select set of representatives
Vi

Compute probabilities

Re-compute the set of representatives Vi
REPs=min ;Y P,(f)- Dist(f. f7)

4. IfVkis sufﬁcieffltly different from Vi,

set Vk " Vi and go back to 2

[SS IS

Fuzzy decomposition

The surface is decomposed into 4, B, Fuzzy

A={f| P,(f)<0.5-5]

B={fi|P,(f)>05+¢}
Fuzzy ={f|0.5-s < P,(f)<0.5+¢}

A
Fuzzy
B

O Given:
= G=(V,E) the dual graph of the mesh
. A,B,Fuzzy

L Partition V into Va’ and Vp' s.t.
L V=V, uVy
L VeV, =g
MLV, 2V, Ve € Vi
IV. Good cut!

Algorithm for finding boundaries

U Assign capacities
U Construct a flow network on Fuzzy
U Find the minimum cut

weight(Cut(V,,,Vy)) =Y. w(u,v)

uel . ,velp

Assigning capacities

Cuts should pass at regions of deep concavities
(Biederman)

1
AngDist(c,
14 ngDist(c,)
avg(AngDist)

Cap(i, j) =

15



Hierarchical decomposition

K-way decomposition

U Determining the number of patches
U Selecting initial representatives

[ Assigning probability

U Extracting fuzzy areas

92

Determining #patches Determining #patches
G(k) = mka(Dist(REP}(, REP)) G(k)=min,_, (Dist(REP,, REP))
I f
m | I N i
(7 (k) i\ I Gk) \‘\M ,« “\
: ‘L“\»J,- \V\ B A W
k - k
Hlerarchlcal k-way decomposition Examples

96
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Examples

Examples

98

Segmentation by feature point & core extraction

For each hierarchical-level
1. Mesh coarsening

N

Pose invariant representation
Feature point detection

Core component extraction
Mesh segmentation

Coarse mesh cut refinement

N N o AW

Fine mesh cut refinement

Segmentation by feature point & core exﬁn

For each hierarchical-level
1. Mesh coarsening

2. Pose invariant representation

(98]

. Feature point detection
Core component extraction
Mesh segmentation

Coarse mesh cut refinement

NSk

Fine mesh cut refinement

100

Segmentation by feature point & core exﬁn
For each hierarchical-level -
1. Mesh coarsening 4
Pose invariant representation

Feature point detection
Core component extraction
Mesh segmentation

Coarse mesh cut refinement

Nk wd

Fine mesh cut refinement o1

Segmentation by feature point & core extra jén

For each hierarchical-level

1. Mesh coarsening
Pose invariant representation
Feature point detection
Core component extraction
Mesh segmentation

Coarse mesh cut refinement

Nan kAW

Fine mesh cut refinement 0

17



Segmentation by feature point & core extra ion

2

. .
For each hierarchical-level 1Jj

1. Mesh coarsening
2. Pose invariant representation

Feature point detection

(98]

Segmentatlon by feature pomt & core ex\acgon
"“‘"—_"‘ 5

For each hierarchical-level
1. Mesh coarsening
2. Pose invariant representation

Feature point detection

(98]

o
r
-

y

4. Core component extraction 'S 4. Core component extraction

S. 5. Mesh segmentation

6. Coarse mesh cut refinement 6.

7. Fine mesh cut refinement 7. Fine mesh cut refinement
Focus O Pose invariant representation

S I——— - B e

For each hierarchical-level %Jj . &

1. Mesh coarsening .

! : S

3. ;

/ s

4, \

5. S Swis

6. Multi-Dimensional Scaling (MDS)

7. Fine mesh cut refinement

108

Pose invariant representation by MDS

[ Transform the vertices such that

Geodesic dist. in S = Euclidean dist. in SMps
6, = dissimilarity = GeodesicDist(v,,v,) in S

d; = EuclideanDist(v,,v,) in SMDs

2., (f6)-d,)
Zx<jdi]2

§ A

”/

U Using MDS optimize Fg =

Feature points
e IIN——

U Should reside on tips of prominent components
U Useful for:

= Deformation transfer

= Mesh retrieval

= Texture mapping

= Metamorphosis (cross-parameterization)

th

18



0 Local maximum of sum of geodesic distances
> GeodDist(v,v,)> Y, GeodDist(v,.v,)
v,eS ves

] Resides on the convex-hull of SMDS

Insensitive to noise, does not require user

narameterg

Feature point detectiqn results /

110

Core extraction & Mesh segmentation

Spherical mirroring of Smps
Extraction of the core component of S

1.
2.
3.

Extraction of the other segments of S

Spherical mirroring

—

—v+2R-p-p =9

v
=l

mirror

R =max,

v—C|

C=center of S,ps

12

Core extraction

13

114

19



Core extraction results

Mesh segmentation

116

Refining the boundaries

[ Construct a flow network on the search
region

[ Assign capacities

) Find the minimum cut

weight(Cut(V ,.,Vy)) = Zud R Ch V)%

Cut reﬁnement — Minimum cut

For each coarse boundary between segments:

a - the faces whose distance to the
coarse boundary is small
a
angW, edge,
o, =a(———"—)+(-a)(—)
A VGangW A VGedge

118

Results — Smooth boundarles

Results — Insensitivity to pose

First hierarchical level

/’"

Third Hierarchical

®
level Y F

"

20
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Results — Insensitivity to proportions

121

Results — Meaningful components
SRR S

122

Results — Small feature extraction

S =

Hierarchical-level 1st 3rd

Results — Correct hierarchical rlevels

e =

124

Pose
1

Pose

Advanced Issues
e —

U Can we say it is “correct”?

U What is the notion of “shape™?

U Some interpretation would be that our
notion and perception of the shape (our
“segmentation”) would not change under
certain transformations:
= Rigid body invariant
= Generally NOT Affine invariant

= Pose invariant? %

Final Remarks
P - S —

U Many applications use mesh segmentation

J Segmentation usually has more effect on
the results than seem to be realized

U 3D segmentation is still a very difficult
problem — and still in its infancy, e.g.
compared to image segmentation

U More advanced coherency issues should

be addressed - pose invariance, extracting
similar parts and more... 126
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