Metamorphosis
Metamorphosis Metamorphosis is the gradual evolution of a source object, through intermediate objects to a target object Object = image, polygon, curve volume, polyhedron, surface
You must do things right!

Cross dissolves Problem - misaligned regions
Issues in morphing Correspondence: Feature specification Warp generation Transition control
Some image metamorphosis methods Mesh Warping (Wolberg) Field Morphing (Beier & Neely) Radial Basis Functions (Arad et al, Edge&Maddock) Energy minimization (Lee et al) Compatible triangulation (Aronov et al, Tal&Elber, Surazhsky et al)

 Distortion of a single image
There are two ways to warp an image: Forward mapping Reverse mapping
Forward mapping
Scan through the source (input) image pixel by pixel and copy them onto the destination (output) image at positions determined by the X and Y mapping functions
A B A B B A B B B B B B B B B B B B B B
Properties
 Input pixels are mapped from the set of integers to the set of real numbers This corresponds to the regularly spaced input samples and the irregular output distribution
☐ It can cause two types of problems: <i>Gaps</i> and <i>Overlaps</i>

	Avoiding gaps
	Use <u>Four-corner-mapping</u> = Consider input pixels as square patches that may be transformed into arbitrary quadrilaterals in the output image
	Input array Output (accumulator) array
	Properties
	☐ Input remains contiguous after the mapping☐ Input pixels often straddle several output pixels or lie embedded in one
	☐ An Accumulator Array is required to properly integrate the input contributions at each output pixel
	☐ Problem - Costly intersection tests are needed to derive the weights
Г	
	Reverse mapping
	Go through the destination image, pixel by pixel, and sample the correct pixel from the source image
	Guaranteed that all output pixels are computed
	D Mapping D E E E E E E E E E E E E E E E E E E

 Properties
 More convenient approach than forward mapping No Accumulator Array is necessary Output pixels that lie outside a clipping window need not be evaluated
Mesh-based morphing (Wolberg)
Is Mt
 Correspondence in mesh warping
A combination of warping two images so they have the same "shape" and then cross-dissolving the resulting images Image warping: Specify a warp that distorts the first image into the second Cross-dissolve between image elements: The color of each pixel is interpolated over time from the first image to the corresponding second image value

Mesh warping For each frame f Linearly interpolate mesh M between Ms and Mt Warp Is to I1 using meshes Ms and M Warp It to I2 using meshes Mt and M Linearly interpolate image I1 between I1 and I2
Warping algorithm Given a source image and two 2D arrays of coordinates S and D, fit splines to produce a continuous mapping Apply a two-pass algorithm: Map (u,v) to (x,v) Map (x,v) to (x,y)
Triangulation-based morphing Polygon triangulation = A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals

 The problem (Aronov et al)
□ P1 and P2 are two simple polygons □ Generally cannot be triangulated compatibly without extra points
But If we are allowed to add (Steiner) points, it can be done
Compatible triangulation

Compatible triangulation Given two polygons P1 and P2 each with n vertices, their compatible triangulation is a joint labeling of their vertices and some of their internal points, such that a triangulation
of one polygon admits a triangulation in the other polygon and it is labeled compatibly
 Use in morphing (Tal&Elber)
 Outline extraction Establishment of correspondence between the boundaries Compatible triangulation
4. Texture mapping
 Compatible triangulation algorithm
Intuition: "convexize" the polygons
 Find a triangulation T₁ (T₂) for P₁ (P₂) Map T₁ into T₁' (T₂') of a convex polygon P Overlaying T₁' and T₂' on P yields a convex subdivision, that can be triangulated into T
4. Map T back into T ₁ and T ₂ to obtain a compatible triangulation of P ₁ and P ₂

Polygons with holes

Results
Results
Results

	Composing objects like clip-arts
,	
	Transition control
	 Determine the rate of warping and color blending across the morph sequence If transition rates differ from part to part, more interesting animations are possible
	Example
	8888 8888 8888 8888
	Uniform transition Non-uniform transition