3D object retrieval Query Object Retrieval Similar Objects 5 5 7 8 9 9 1

Related areas	
Computational geometry	
☐ Computer vision	
☐ Computer graphics	
	2

□ Extending methods of comparing polygonal curves is non-trivial. ° No arc-length parameterization, no direction ° "Polygon Soup" - no topological information □ Images - is the problem easier or more difficult?

In three dimensions

.

M ''	
Main issues	
☐ Choice of features (signature)	
■ Compact	
■ Identify the object	
■ Reflect similarity	
☐ Choice of a distance measure	
4	
Signatures	
Signatures	
☐ Moments	-
☐ Histograms of statistics	
☐ Shape distributions	
☐ Sphere projection	
☐ Surface decomposition	
☐ Topological properties (Reeb graph)	
☐ Lightfields	
☐ Spherical harmonics 5	
Signature: moments	
The features are the shape moments	
$m_{pqr} = \int_{DD} x^p y^q z^r dx dy dz$ $D Objects are compled$	
Objects are sampled $m_{pqr} = \frac{1}{N} \sum_{i=1}^{N} x_i^p y_i^q z_i^r$	
$ \operatorname{IIIpqr} = -\sum_{i} X_{i} \cdot y_{i} \cdot Z_{i} $	
☐ After applying normalization, the moments are	
computed, up to the pre-specified order	
6	

Signature: histograms of statistics	
□ Normals	
☐ Curvatures ☐ Cords	
Colors	
☐ Materials	
☐ Angles	
7	
Signature: shape distributions	
probability distribution samples from a <i>shape</i>	
function measuring geometric properties	
\square A3 – measures the angle between 3 random points	
□ D1 – measures distance between a fixed point and a random point	
\square D2 – measures distance between 2 random points \square D3 – measures the area of the triangle between 3	
random points $\square D4$ – measures the volume of the tetrahedron	
between 4 random points	
Signature: sphere projection	
Idea: Measure the amount of "energy" to	
deform an object to sphere: $E = \int \vec{F} d\vec{r}$	
dist	

Computing the signature

Sphere surface is uniformly sampled

For each sample 3 values are calculated:

- D1 Distance from object to sphere
- D2 Distance from sphere to object
- D3 Radii Variance

10

Signature concatenation

Three matrices are produced

Feature vector = Signature

Normalization

- ☐ Goal similarity measure should be invariant to spatial position, scale and rotation
- ☐ The first moments represent the object's center of mass: $[x_i, y_i, z_i] \leftarrow [x_i m_{100}, y_i m_{010}, z_i m_{001}]$
- ☐ The second moments represent the object's rotation and scale: $U\Delta U^T = SVD(M)$
- ☐ The orientation of the object is determined relative to each axis

12

Main issues	
☐ Choice of features (signature)	
☐ Choice of a distance measure	
☐ An adaptation rule for the distance measure	
16	
Similarity measure	
Consider what the human user has in mind $\Rightarrow d(D_x, D_y) = [x-y]^T W[x-y] + b$	
⇒ a(bx,b))-[x 1] w[x 1] ∪	
Reflects similarity, amenable to adaptations	
17	
	1
Relevance feedback	
Relevance leedback	
☐ Given an object, the system searches the database for similar objects.	
☐ The user marks a subset of the results as	
relevant or as irrelevant. The distance function is updated and another	
iteration may be conducted.	
Each user may get different objects as the closest to the chosen one	
State of the shooth one	

Iterative refinement of the search	
 □ Distance adaptation is done by recalculating distances, based on the user's preferences. □ The new distance to the relevant results must be small and to the irrelevant results - large. 	
19	
Learning	
☐ The constraints posed on the weight function: $k = 1, 2, n_G, d(D_O, D_{Gk}) = [O - G_k]^T W[O - G_k] + b \le 1$ $l = 1, 2, n_B, d(D_O, D_{Bi}) = [O - B_i]^T W[O - B_i] + b \ge 2$ ☐ Denote the diagonal by ω $k = 1, 2, n_G, d(D_O, D_{Gk}) = [O - G_k]^2 \omega + b \le 1$ $l = 1, 2, n_B, d(D_O, D_{Bi}) = [O - B_i]^2 \omega + b \ge 2$ ☐ This is a classification problem between $[O - G_k]^2 \text{ and } [O - B_i]^2$	
20	
Which solution is the best?	
The maximal margin separation is achieved by the ω with the smallest norm	
$\begin{array}{ll} \mbox{Minimize} & \ \omega\ ^2 \\ \mbox{Subject to:} \\ k = 1, 2, n_G, & d(D_0, D_{G^k}) = [O - G_k]^2 \omega + b \leq 1 \\ l = 1, 2, n_B, & d(D_0, D_{B^l}) = [O - B_l]^2 \omega + b \geq 2 \\ \omega \geq 0 & \end{array}$	

Experimentation Database: over 1000 VRML objects Pre-processing: Objects are sampled with 10,000 points Objects are normalized Signatures: A feature vector of the moments (4-7) is computed for each object

Airplanes - 4th iteration 16 Airplanes How to perform a comparative study? ☐ Choose a large database, classified into categories ☐ Automatic Evaluation: • Each classified model is used as a query • Relevant = same class as the query • Average over all the queries Evaluation methods ☐ Nearest neighbor ☐ Precision/Recall measurements ☐ First/Second tier ☐ Cumulated gain based measurements

Precision/recall

 \square Let C = models in query's class

S = set of retrieved models

I = intersection of S and C

- $R = \frac{|I|}{|C|}, P = \frac{|I|}{|S|}$ $F-\text{measure } F = \frac{2PR}{P+R} = \frac{2}{\frac{1}{P} + \frac{1}{R}}$

First/Second tier

- ☐ Measure the success percentage among the first k retrieved objects
- \square First: k = (size of model's class)
- \square Second: k = 2X(size of model's class)

Discounted Cumulative Gain

Gained value with discount factor Gain vector: Gi=1 if object in the same class Cumulated gain vector with discount factor:

$$DCG_i = DCG_{i-1} + G_i / \log i$$

$$DCG = \frac{DCG_k}{1 + \sum \frac{1}{\log(j)}}$$