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Abstract

Taking a sequence of photographs using multiple illu-
mination sources or settings is central to many computer
vision and graphics problems. A growing number of re-
cent methods use multiple sources rather than single point
sources in each frame of the sequence. Potential bene-
fits include increased signal-to-noise ratio and accommoda-
tion of scene dynamic range. However, existing multiplex-
ing schemes, including Hadamard-based codes, are inhib-
ited by fundamental limits set by Poisson distributed pho-
ton noise and by sensor saturation. The prior schemes may
actually be counterproductive due to these effects. We de-
rive multiplexing codes that are optimal under these fun-
damental effects. Thus, the novel codes generalize the
prior schemes and have a much broader applicability. Our
approach is based on formulating the problem as a con-
strained optimization. We further suggest an algorithm to
solve this optimization problem. The superiority and effec-
tiveness of the method is demonstrated in experiments in-
volving object illumination.

1. Illumination Multiplexing
In computer vision research and image-based rendering,

objects or people are often acquired under variable lighting
directions [4, 6, 13, 14, 17, 18, 19, 24, 25, 27, 31, 32, 37].
Such images are then used for object recognition and iden-
tification [4, 13, 21, 23, 31, 32], rendering [7, 13, 19, 25],
shape estimation [9, 11, 36, 37] and analysis of speculari-
ties, shadows and occlusions [26]. Traditionally, such im-
ages were taken by moving a light source around the ob-
ject, or by sequential operation of individual sources in a
constellation. However, recently, there is a growing inter-
est in illumination that is not based on single point sources.
Rather, it is based on a sequence of images, in each of which
lighting may simultaneously arrive from several directions
or sources [6, 13, 15, 20, 27, 28, 29, 30, 34]. Some of the
benefits include significant improvement in signal to noise
ratio (SNR) [29] (See for example Fig. 1), significant reduc-

Figure 1. [Left] An image taken under a single light source.
[Right] An image of the same scene, decoded from images illu-
minated by 57 multiplexed sources. It is decoded as if illuminated
by the same single source. The multiplexing code is optimal.

tion of dynamic range problems in the presence of saturated
pixels, and convenience when photographing people [34].
Other potential advantages are efficiency of the acquisition
process [28, 20], and image enhancement by simultaneous
use of flashes and ambient lighting [1, 26].

The question is, given all the possibilities of simultane-
ous operation of sources, what is the optimal way to mul-
tiplex the sources in each frame. Ref. [28] suggested that
Hadamard-based codes should be used. However, its anal-
ysis did not account for a very important problem: image
noise depends on the image irradiance itself, which may
make Hadamard multiplexing counterproductive, as was
later experienced by [34]. Fundamentally, this is due to
photon noise. It exists in images no matter the quality of
the camera, as it stems from the quantum mechanical na-
ture of light. Moreover, no prior study accounted for sat-
uration when seeking optimal lighting. This is despite the
acknowledgment that saturation and scene dynamic range
are important aspects when using multiple sources [29, 34].

This paper directly seeks multiplexing codes that are op-
timal under the fundamental limitations of photon noise and
saturation, in addition to camera readout noise. This prob-
lem and its solution have implications much broader than
computer vision and graphics. The reason is that multi-
plexing of radiation sources is used in many sensing modal-
ities, such as X-ray imaging [10, 33], spectroscopy [10],
coded-aperture imaging, and communication in fiber optics.



Hence, the approach presented here has wide applicability.
It is based on a constrained optimization formulation. We
also describe an algorithm for solving this problem. The re-
sulting novel codes are superior to prior multiplexing codes.
We demonstrate this in experiments of object lighting.

2. Theoretical Background
2.1. Multiplexing

Consider a setup where N light sources illuminate an
object from various directions. Let i = (i1, i2, . . . , iN)t be
a set of intensity values of a certain pixel, where each value
corresponds to illumination by any individual light source
in this setup. Here t denotes transposition.

In general, several light sources can be turned on at a
time (multiplexing). Define an N × N multiplex matrix
W, often referred to as a multiplexing code. Each element
of its mth row represents the power of the corresponding
illumination source in the mth measurement. The power is
measured relative to its maximum value, where 0 states that
the source is completely off and 1 indicates a fully activated
source. The measurements acquired at each pixel are de-
noted by the vector a = (a1, a2, . . . , aN )t. It is given by

a = Wi + υ , (1)

where υ is the measurement noise. Any bias to this noise is
assumed to be compensated for. The noise υ is assumed to
be uncorrelated in different pixels, with variance of σ 2

a.
Once images have been acquired under multiplexed il-

lumination, they can be demultiplexed computationally, to
derive estimates for the pixel values under single-source il-
lumination î. The best linear estimator in the sense of mean
square error (MSE) for the single source images is

î = W−1a . (2)

The MSE of this estimator [10, 29] is

MSEî =
σ2

a

N
trace

[(
WtW

)−1
]

. (3)

This is the expected noise variance of the recovered images.
The lower it is, the better the SNR. The SNR is defined as
the ratio between the expected î and

√
MSEî. Without mul-

tiplexing, W is the identity matrix (trivial sensing: only a
single source is on at a time). The improved SNR by multi-
plexing, relative to the SNR without multiplexing

G = SNRMultiplexed/SNRSingle (4)

is the multiplex gain.

2.2. Noise Mechanisms
To analyze the effect of multiplexing, we should first

understand the sources of image noise. In this section we
briefly review the affine noise model. It exists in high

grade detectors, which have a linear radiometric response.
The noise can be divided into two components, signal-
dependent and signal-independent. Regardless of the pho-
ton flux, signal-independent noise is created by dark cur-
rent [12, 16, 29], amplifier noise and the quantizer in the
camera circuity [16]. Denote the graylevel variance of the
signal-independent noise by κ2

gray.
Fundamental signal-dependent noise is related to two

random effects. The photon flux and the uncertainty of
the electron-photon conversion process which occurs in the
detector. Overall, the random number nphoto

electr of photo-
generated electrons is Poisson distributed [2, 3, 12]. In this
distribution, the variance of nphoto

electr is

VAR(nphoto
electr) = E(nphoto

electr) , (5)

where E denotes expectation. This variance linearly in-
creases with the measured electric signal nphoto

electr . This is
photon noise. The number of detected electrons nphoto

electr is
proportional to the gray-level of the acquired pixel value a

a = nphoto
electr/Qelectr . (6)

Here Qelectr is the number of photo-generated electrons re-
quired to change a unit gray-level. Typically Q electr � 1.
Combining Eqs. (5,6) yields a variance in gray levels

E(nphoto
electr)/Q2

electr = a/Qelectr . (7)

Compounded with signal-independent noise, the total noise
variance of the measured gray level [12, 29] is

σ2
a = κ2

gray + a/Qelectr . (8)

Now, consider a diffuse object and sources that illumi-
nate the object from similar directions. In this case, each
light source yields a similar object radiance, hence, a sim-
ilar level of noise. In each measurement, let C sources be
activated, each at maximum power. We rephrase Eq. (8) as

σ2
a = κ2

gray + Cη2 . (9)

Here η2 is the photon noise variance, induced by object ir-
radiance from a single source turned on completely. Eq. (9)
is an affine function of the number of active sources C.

As an example, Fig. 2 plots the average noise variance in
raw images acquired by a PtGrey Dragonfly camera. In each
measurement, C light sources were activated. The dynamic
range of the 16-bit raw data was a ∈ [0, 65535] graylevels,
while σa ∈ [70, 220] graylevels. Fitting a straight line to
this plot yields κ2

gray and η2.

2.3. Photon Noise and Multiplexing
A well known multiplexing code is based on Hadamard

codes. Its multiplex matrix is known as the S-matrix
[8, 10, 22, 29, 33, 34]. It was used in Refs. [29, 34] to
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Figure 2. Noise calibration for N = 47. In our system, the noise
variance linearly increases with the number of activated sources
C, in agreement with the affine noise model (9).

multiplex illumination sources. Here C = (N + 1)/2. The
MSE obtained using this code is

MSEî,Had =
4N

(N + 1)2
σ2

a . (10)

Using Eq. (9) with C = (N + 1)/2, Eq. (10) yields

MSEî,Had =
4N

(N + 1)2
κ2

gray +
2N

N + 1
η2 . (11)

In the special case where the photon noise is negligible, i.e.
κ2

gray � Cη2, Eq. (10) becomes:

MSEî,Had =
4N

(N + 1)2
κ2

gray (12)

and the corresponding SNR gain [29, 35] is

GHad =
SNRHadamard

SNRSingle
=

N + 1
2
√

N
. (13)

Hence, in such a scenario, Hadamard multiplexing is highly
beneficial. Ref. [10] shows that then, the S-matrix is opti-
mal, minimizing Eq. (3).

On the other hand, when photon noise dominates, then
Cη2 � κ2

gray. In this case, Eq. (11) indicates that the de-

multiplexed images {î} are more noisy than those obtained
by simple single-source acquisition [10, 34]. The noise vari-
ance doubles by this process, if N � 1. The reason is that
increasing the signal by multiplexing light sources increases
the photon noise as well.

Ref. [35] looked into the problem of multiplexing under
photon noise. It formulated a general expression for the
multiplex gain under the affine model of Eq. (5):

G = G0

√
1 + χ2

1 + Cχ2
, (14)

where
χ = η/κgray . (15)

Here,

G0 =
√

N/trace
[
(WtW)−1

]
(16)

is the multiplex gain when photon noise is not consid-
ered. Hence, for a given characteristic χ of the noise, G
in Eq. (14) is maximized by reducing C while increasing
G0. Ref. [35] proposed multiplexing codes, which optimize
G out of the set of cyclic binary matrices W, hence they are
not general multiplexing matrices. Moreover, these codes,
termed perfect sequences, exist only for a very limited set
of N and noise parameters. For most values of χ and N ,
perfect sequences do not exist.

3. Optimal Saturated Multiplexing
We begin the discussion by considering saturation.

While an object may be moderately bright when illuminated
by a single source, it can become saturated if illuminated by
numerous light sources. When this is the case, multiplex-
ing too many sources, e.g. using the S-matrix is impractical.
While exposure time may be reduced to counter saturation,
Refs. [28, 29] proved that such a step should be avoided: it
is better to decrease the number of illumination sources C
activated in each measurement. This raises the need for new
multiplexing codes, that comply with a constraint on C.

Assume that the saturation phenomenon is insensitive to
the specific identities of the illuminating sources. Saturation
is assumed to occur when the total illumination radiance
exceeds a threshold, Csat. If all light sources yield a similar
object radiance, then Csat expresses units of light sources,
and is analogous to C in Sec. 2.3.

Saturation is avoided if

N∑
s=1

wm,s � Csat ∀m ∈ {1, 2, . . . , N} . (17)

Recall that all sources can be activated with some portion
of their maximum intensity i.e.

0 � wm,s � 1 ∀m, s ∈ {1, 2, . . . , N} . (18)

We use Eq. (16) to formulate a maximization problem on
the multiplex gain, G0. In this section, we do not consider
photon noise. Hence, a signal-dependency of the noise is
not used here. Maximizing G0 is equivalent to minimizing
its reciprocal square i.e.

arg max
W

G0 ≡ arg min
W

1
G2

0

=

argmin
W

1
N

trace
[(

WtW
)−1

]
. (19)
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Figure 3. A 2D illustration of the optimization task. The shaded
area is the domain in which w1 satisfies the constrains.

The constraints for our problem are taken from Eqs. (17,18).
Thus, the optimization problem is

min
W

1
N

trace
[(

WtW
)−1

]
(20)

s.t. 11,N ·wm − Csat � 0 ∀m ∈ {1, . . . , N} (21)

− wm,s � 0 ∀m, s ∈ {1, . . . , N} (22)

wm,s − 1 � 0 ∀m, s ∈ {1, . . . , N}. (23)

Here 11,N is a row vector, all of whose elements are 1 and
wm is the m’th row of W. See Fig. 3 for an illustration of
this optimization task.

This problem is simple if Csat > (N + 1)/2. In this
case, codes based on the S-matrix are optimal. The reason
is that saturation is not met in Hadamard multiplexing when
Csat > (N + 1)/2. Hence, the optimality [10] of Hadamard
codes holds in this case.

We thus focus on Csat ≤ (N + 1)/2. Simulations we
performed found local minima in (20). The best minimum
occurred when (21) was active. This may be intuitively
explained by arguing that one prefers to exploit the max-
imum radiance for every measurement. 1 We therefore re-
place Eq. (21) by the equality constraint

11,N · wm = Csat ∀m ∈ {1, 2, . . . , N} . (24)

While using Csat in Eq. (24) facilitates optimization under
saturation, for the remainder of the work we favor the use
of C instead. This is done to allow a subsequent generaliza-
tion of the formulation to photon noise. Note that Eq. (24)
means that wm must lie on a hyperplane (see Fig. 3), whose
unit normal vector is (1/

√
N)1t

1,N .
1This argument holds if the noise is signal independent. The more gen-

eral case is discussed in Sec. 4.
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4. Optimal Photon Limited Lighting
Sec. 3 considered only saturation. We now extend the ap-

proach presented in Sec. 3 to cope with photon noise. Solv-
ing the optimization problem in Eq. (20) subject to the con-
straints (22,23,24) results in an illumination matrix W(C),
that is optimal, for a given C. In other words, we determine
the values in each row wm of W(C), such that 11,N · wm

is exactly C, while W(C) has the highest gain, G0, under a
signal-independent noise model. Eq. (14) then converts G 0

to the multiplex gain under the general affine noise model. 2

Recall that χ2 can be obtained from calibration, as
described in Sec. 2.2 and Eq. (15). Based of χ2 and
G0(W(C)), Eq. (14) yields the multiplexing gain G(C).
Now, let a range of values of C be scanned. For each C,
we obtain W(C), as well as G(C). This function G(C)
is plotted in Fig. 4, for actual results obtained by our algo-
rithm. Out of the plot, the value of C that maximizes G is
selected. In other words, this scan finds the number of ac-
tivated sources per measurement that maximizes the gain,
accounting for photon noise (via Eq. 14), and the system
characteristic χ. To recap,

1. Calibrate the system to find χ2.

2. Scan the range of C values from 1 to C sat. For each3

value of C, perform the subsequent steps 3 and 4.

3. Find the matrix W(C) that optimizes Eq. (20) subject
to Eqs. (22,23,24).

4. Calculate the expected multiplex gain G(C) using
Eqs. (14,16).

2Note that there is no point in checking cases where C � N+1
2

. They
are certainly suboptimal, for a given N , as we now explain. Recall that
for signal-independent noise and no saturation, G is optimized by the S-
matrix. From (14) it can also be seen that if G0 is optimized, there is no
point in increasing C, as it will only degrade G.

3There is no necessity for exhaustive search of G(C). Since G(C) is
well behaved, one can incorporate efficient optimization procedures.
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5. Let Copt = argmaxC G(C), as in Fig. 4.

6. The desired multiplexing code is W(Copt).

5. Minimization Procedure
We now describe a numerical scheme for solving the sys-

tem given in Eqs. (20,22,23,24). It consists of a core, which
is based on a projected gradient method [5]. It also con-
sists of a higher-level procedure, designed to escape local
minima. Define

M̃SE =
1
σ2

a

MSEî(W) =
1
N

trace
[(

WtW
)−1

]
. (25)

We iteratively minimize M̃SE as a function of W. The min-
imization core is based on projected gradient descend. In
each basic step, W is updated by the gradient

Γ � dM̃SE
dW

= − 2
N

(
WtWWt

)−1
. (26)

The updated W is then projected onto constraints (18) and
(24), one at a time. This is illustrated in Fig. 5. Further
details are given in App. A.

The M̃SE in Eq. (20) is a multimodal function of W.
Therefore, the core generally converges to a local minimum,
rather than a global one. To escape local minima, we embed
the core in a higher level process. When the core converges
to a local minimum, W is modified, as we describe below.
Then, the core is re-initialized with the modified W.

The minimization core gets stuck in a local minimum be-
cause specific rows of W are prevented from undergoing
any modification. This prevention is caused by the con-
straints. To understand this, note that Eq. (26) is never

nulled.4 Hence, following the Karush-Kuhn-Tucker theo-
rem [5], all of the extrema of M̃SE are obtained when con-
straints are active. For this reason, local minima are caused
by matrix rows which reside on constraints, as illustrated
in Fig. 5. On the other hand, other rows of W are free to
change. We therefore seek to identify rows that stagnate the
minimization core.

The m’th row of W is wm. Its corresponding row in
the gradient matrix Γ is gm. When gm is parallel to 11,N ,
it means that this row of the gradient is orthogonal to the
constraint surface (24), as illustrated in Fig. 5. If this is the
case, then wm is equivalent to its projection, stagnating the
minimization core. Hence, a sufficient condition of row m
of W to stagnate is that gm ‖ 11,N .

While this condition is sufficient, it is not a necessary
one. We now describe a wider class of stagnating rows.
Suppose that wm has elements s for which wm,s = 1 or
0 and that wm − gm shifts them beyond the bounds of
Eqs. (22,23). Denote the set of indices of these elements
by Soverflow. Now, define a row vector geff

m ∈ RN−|Soverflow|.
It is extracted from gm. It is defined as geff

m � gm,s�∈Soverflow .
Hence, it consists only of those elements s in gm whose
indices are not in Soverflow. It can be shown that

geff
m ‖ 11,N−|Soverflow| (27)

is a necessary condition for stagnation of row m.
An algorithm is intended to detect a local minimum of

the core, and then escape it:

1. Execute the minimization core given in App. A once.
Use its output multiplexing code and corresponding

M̃SE to initialize W0 and M̃SE
min

.

2. Iterate the subsequent steps 3,4,5 until the number of
allowed iterations is exhausted. The iteration index is l.

3. For all m ∈ {1, . . . , N}, if Eq. (27) holds, then row
m is detected as stagnated. Replace it by a random
row vector. This new row complies with (18,24) and is
formulated as described in App. B.

4. Execute the minimization core again. Initialize it by

W(l−1). Its output is W(l), as well as M̃SE
(l)

and its
corresponding gradient Γ(l).

5. If M̃SE
(l)

< M̃SE
min

, then M̃SE
min

:= M̃SE
(l)

.

6. Experiments
We demonstrate the new multiplexing codes by apply-

ing them to lighting. An EPSON EMP-7800 projector cre-
ated patterns of light patches on a white diffuse wall, as in
Ref. [29]. Light reflected by these patches acted as distinct

4A valid inverse of a matrix A can never be nulled. If it could, it would
have yielded a contradiction: A−1A = IN×N = 0N×NA, where
0N×N is an N × N null matrix.



Figure 6. Multiplexing codes produced by our algorithm.
[Left] {N, C} = {57, 24}. [Right] {N, C} = {47, 12}. Here,
black pixels denote wm,s = 0. White denotes wm,s = 1. The
intermediate values are in gray.

sources irradiating the viewed objects. The exposure time
of the Dragonfly camera was 63msec, corresponding to a
15Hz frame rate. It eliminates radiance fluctuations of the
projector [29], which have a period of 7msec.

6.1. Calibration
For noise calibration, images of the object were taken,

by simply turning on C of the N illumination sources. For
each value of C, a sequence of 10 frames was taken. From
this sequence, the noise variance σ2

a(x, y, C) was estimated
per pixel (x, y). Then, spatial mean yielded σ2

a(C). This
process was repeated for a range of C values. The result-
ing σ2

a(C) generally agreed with the affine noise model,
as in Fig. 2. From the plot of σ2

a(C), the parameters
κgray and η were extracted. Consequently, Eq. (15) yielded
χ. For example, in an experiment using N = 57 light
patches (sources), we obtained κgray = 42.4 graylevels,
η = 9.0 [graylevels/light-source] thus χ2 = 0.045.

6.2. Constructing Multiplexing Codes
Following the calibration, multiplexing codes were tai-

lored. Our algorithm can deal with an arbitrary value of
N or χ, even if no Hadamard code or a matrix suggested
by [35] exists for these parameters. In this domain, lack of
competing codes in the literature has been the rule, rather
than exception. However, to make a comparison when
possible, we deliberately selected, in the following exper-
iments, special cases having values of N and χ, for which
competing codes exist.

For N = 57, we obtained W(Copt = 24), shown in
Fig. 6. Ref. [35] yielded C = 20 as the value that should
be used, considering our calibrated value of χ. However,
Ref. [35] does not provide a way to obtain a multiplexing
code having {N, C} = {57, 20}. Rather, it only offers
{N, C} = {57, 8}: it is not optimal, but it is the only com-
peting code in this specific case.

Experiments were also conducted to compare perfor-
mance vs. Hadamard codes (S-matrices), for N = 47
and N = 11. The respective values of Copt in our setup
were Copt = 12 and 5. The matrix corresponding to
{N, C} = {47, 12} is shown in Fig. 6. In all case, we also
compared the performance to that obtained by multiplexing
using the identity matrix (trivial acquisition).
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Figure 7. MSEs obtained by decoding of illumination multiplexed
images (N = 57). Our optimal code outperforms both the code of
Ref. [35] and trivial illumination.

6.3. Measurements
We used each set of codes to illuminate a scene while

acquiring image sets. From each set of acquired images,
we reconstructed the scene as if illuminated by individual
illumination sources. This procedure was repeated 10 times,
to facilitate empirical estimation of MSE î.

For N = 57, an example of a demultiplexed image is
shown in Fig. 1. The corresponding MSE î is plotted in
Fig. 7. A demultiplexing example for N = 47 is plot-
ted in Fig. 8. The estimated MSE î for both N = 11 and
N = 47 are shown in Fig. 9. In these rare cases, where
competing codes exist, the best multiplexing scheme (low-
est output noise) is the one created by our method.

The experiment using N = 47 demonstrates the impli-
cation of saturation on the applicability of Hadamard codes.
In this case, single-source illumination created a bright spot
in a small part of the raw image (the soda can in Fig. 8). Al-
though most of the image is dark (graylevels up to 1000 in
the 16-bit data), the highlight exhausted the dynamic range.
In this case, saturation bans Hadamard code from being
used. Nevertheless, we did use Hadamard codes, and the
plots in Fig. 9 use only the unsaturated pixels. Needless to
say, in pixels that were saturated by Hadamard-coded illu-
mination, the data was useless. However, in these pixels
saturation was avoided by our codes.

7. Discussion
Our approach provides optimal multiplexing codes for

every desired number of light sources N and radiance inhi-
bition (saturation, photon noise). It does so for cases that
are much more general than those reported in the literature,
covering cases for which no codes are known. By account-
ing for fundamental physical limits of image acquisition,
we achieve results that are superior to other multiplexing
codes, even when such codes exist. Our work may apply to
many applications that use multiplexing, other than object



Figure 8. [Left] An image taken under a single light source. [Right] An image of the same scene, decoded from {N = 47, C = 12}
multiplexed frames. It is decoded as if illuminated by the same single source. The multiplexing code is optimal. The marked rectangles
are magnified to the right of each image.
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Figure 9. MSEs of the images decoded from illumination multi-
plexed frames. [Top] N = 11. Hadamard multiplexing becomes
counter productive for high gray levels. Our multiplexing code
is better than the Hadamard code and the identity (trivial) matrix.
[Bottom] N = 47. Plotting only pixels unsaturated by Hadamard.

lighting (Xray, spectroscopy, coded aperture imaging etc.).
Ref. [29] showed that compensating for nonlinearity in

γ-corrected cameras induces radiance noise that is similar
to the affine noise model. Hence, the formalism used here
may apply to such cameras. Moreover, σa can also have a
multiplicative component that stems from fluctuations in the
light sources being multiplexed, as analyzed in Ref. [29]. It
is thus worth accounting for this effect as well.

A. Minimization Core
We iterate on k, minimizing M̃SE as a function of W.

1. Given N and C, create an initial matrix W0 (See
App. B). The initial matrix W0 complies with con-
straints (22,23,24).

2. Repeat the subsequent stages 3 and 4, until
|M̃SEk − M̃SEk+1| < ε, where ε is a pre-determined
small threshold.

3. Calculate the gradient, Γk (Eq. 26). Then, calculate an
updated matrix Wunconst

k+1 � Wk − Γk, as in standard
gradient descent (Fig. 5). We take care of the step size
in stage 4.

4. Project Wunconst
k+1 in the following way:

(i) Project Wunconst
k+1 onto the hyperplane used in (24)

as in Fig. 5. It is easy to show that for each row
wunconst

m , its projection is

wproj
m = wunconst

m +

[
C −

N∑
s=1

wunconst
m,s

]
1t

1,N

N
.

(28)

(ii) Denote dk � Wproj
k+1 − Wk. Then, update

Wunbounded
k+1 = Wk − βdk, where β is a param-

eter controlling the step size.

(iii) Project Wunbounded
k+1 onto constraints (22,23) to

create Wk+1. This is done by truncating the ele-
ments of Wunbounded

k+1 to [0, 1].

B. Initialization of the Minimization Core
We now describe the initialization procedure

for the initial matrix W0. We randomly generate
wm,s ∈ [0.1, 0.9] ∀m, s. This avoids activation of con-
straints (22,23) in this step. We then normalize each row,
m of W0 such that its sum is C. Any element violating
(18) is regenerated and the normalization process is then
repeated until satisfaction of Eqs. (18, 24).
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