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Abstract

In this paper we introduce a multi-scale Gaussian Markov random field (GMRF) model and a corresponding

anomaly subspace detection algorithm. Natural clutter images, often appear to have several periodical patterns of

various period lengths. In such cases, the GMRF model may not sufficiently describe the clutter image. The proposed

model is based on a multi-scale wavelet representation of the image, independent component analysis, and modeling

each independent component as a GMRF. Anomaly detection is subsequently carried out by applying a matched

subspace detector to the innovations process generated by the presumed model. The robustness of the proposed

approach is demonstrated with application to automatic target detection in synthetic and real imagery. A quantitative

performance analysis and experimental results demonstrate the advantage of the proposed method in comparison to

competing methods.

r 2004 Elsevier B.V. All rights reserved.

Keywords: Anomaly detection; Object recognition; Pattern recognition; Image segmentation; Image texture analysis; Gaussian Markov
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1. Introduction

During the last decade, there has been a
remarkable progress in random field models and
their applications. Random field modeling has
been applied extensively to texture synthesis [3,5],
e front matter r 2004 Elsevier B.V. All rights reserve
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image segmentation [15,20,24], and target detec-
tion [11,19]. Most random field models are based
on the spatial interaction of pixels in local
neighborhoods. The noncausal autoregressive
(NCAR) model represents each pixel as a linear
combination of pixels at nearby locations, and an
additive white noise variable (innovations pro-
cess). Chellappa and Kashyap [3,13] proposed an
iterative estimation method and synthesis algo-
rithm for the two-dimensional NCAR model.
They illustrated the usefulness of the NCAR
d.
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models for synthesis of textures resembling several
real texture images, possessing the local replication
attribute. The local replication attribute is an
essential ingredient of many natural textures [3].

The Markov random field (MRF) model was
first introduced by Lévi [16] in 1956. Woods [25]
formulated the two-dimensional discrete MRF
based on the continuous case given by Lévi. The
discrete MRF model describes each pixel as a
weighted sum of its neighboring pixels and a
random variable which represents the innovations
process. The difference between the MRF model
and the NCAR model is that the innovations
process is spatially correlated.

A more general form of random field models is
the long correlation (LC) model proposed by
Kashyap and Lapsa [14]. The LC models can be
applied to images with a correlation structure
which extends over large regions using only a few
model parameters. These models have a limited
practical use, due to the lack of an effective
method for estimating the model parameters [2].
Eom [5] proposed an LC model with circular and
elliptical correlation structure and a corresponding
estimation algorithm. The LC model has the
advantage of modeling diverse real textures with
less than five model parameters. Three parameters
are used for defining an isotropic LC model and
the other two parameters are used for descri-
bing the linear transformation (elongation and
rotation) performed to the model’s coordinate
system. Bennett and Khotanzad [2] developed
a random field model and a corresponding
estimation scheme, based on a generalized long
correlation (GLC) model. They showed that the
NCAR and the MRF models are special cases of
this model.

Random field models were developed for
describing natural clutter images. Man-made
objects therefore appear anomalous with respect
to the random field model which is used to
represent the clutter. Anomaly detection methods
exploit the anomalous appearance of such objects
for their detection, but often make no a priori
assumptions about the nature of the targets. Hazel
[11] has developed an anomaly detection techni-
que, which is based on Gaussian MRF (GMRF)
modeling of the background in a multi-spectral
image. A single hypothesis scheme is used for the
detection of regions, which appear unlikely with
respect to the probabilistic model of the back-
ground. A similar anomaly detection method was
proposed by Bello [1] for the detection of
anomalous complex image pixels, using the simul-
taneous autoregressive (SAR) model. A comple-
tely different approach for target detection is
based on a matched signal detector (matched
filter). The matched signal detector is employed
when a typical signature of the target is available.
In many detection problems, the information
about the targets is a subspace in which the targets
lie. In these applications, the matched signal
detector is replaced by a matched subspace
detector (MSD), a generalization of the matched
filter, which was formulated by Scharf and
Friedlander [21]. The MSD is used for detecting
subspace signals in subspace interference and
additive noise, using the principle of the general-
ized likelihood ratio test (GLRT) . A recent review
of anomaly detection methods can be found in
Karkou and Singh [17]. The survey includes
different statistical approaches for image model-
ing, hypothesis testing and clustering. Most of the
presented methods are driven by modeling data
distributions and then calculating the likelihood
of test data with respect to the estimated statistical
models.

In many natural clutter images, scene elements
often appear to have several periodical patterns,
of various period lengths. In such cases, the
above-mentioned random field models may not
sufficiently fit the clutter image. Deviations of
the clutter image from the random field model
influence the detection performance by increasing
the false alarm rate. Furthermore, in real detection
problems, some a priori information about
the targets is often available. Using this informa-
tion for rejecting anomalies, which do not
resemble targets, may improve the detection
performance.

In previous papers, we proposed an iterative
anomaly detection approach for cases where the
background data is composed of a mixture of
different textures [8,10]. A different approach
is proposed in [9], where we first present a modified
MSD for anomaly detection in background
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which can be modeled by a multi-scale random
field model. The present research is also presented
in [7].

In this paper we introduce a multi-scale
Gaussian Markov random field (GMRF) model
and a corresponding anomaly subspace detection
algorithm. The proposed model is based on a
multi-scale representation of the image and
independent components analysis (ICA). We
generate from a given image, a multi-scale
representation with independent layers which are
modeled as GMRFs with different sets of para-
meters. The detection is subsequently carried out
by applying an MSD to the innovations process of
the multi-scale GMRF. The MSD incorporates the
available a priori information about the targets
into the detection process and thus improves the
detection performance. The MSD was originally
developed for signal detection in subspace inter-
ference and white Gaussian noise [21]. Here, we
formulate an MSD for signal detection in subspace
interference and noise which follows the multi-
scale GMRF model. A quantitative performance
analysis with comparison to competing methods
shows the advantages of the proposed method.
The proposed model and algorithm are applied to
detection of airplanes in simulated cloudy back-
grounds; detection of sea-mines in sonar images;
and detection of defects in wafer images. The
results demonstrate the robustness and flexibility
of the algorithm in adverse environments. The
proposed detection method we propose here is
based on predetermined set of filters for generating
the multi-scale representation, and on an intuitive
choice of signal and interference subspaces. This
may limit its practicability of the proposed method
when applied to real detection problems.

The structure of the paper is as follows: In
Section 2, we review the GMRF model and
introduce the Multi-Scale GMRF model. In
Section 3, we present the anomaly subspace
detection algorithm. In Section 4, we describe the
implementation of the proposed algorithm. In
Section 5, we analyze its performance with a
comparison to competing methods. Finally, in
Section 6, we demonstrate the application of the
proposed algorithm to automatic target detection
in simulated and real imagery.
2. Statistical model

In this section we review the GMRF model and
methods for its estimation. Subsequently we
introduce the multi-scale GMRF model.

2.1. The GMRF model

We assume that each image pixel can be
represented as a weighted sum of its neighboring
pixels and an additive innovations process (pre-
diction error). Let O be the support of an image,
and let s 2 O denote the indices of a pixel in the
image. Let R be a given set of indices representing
the neighborhood of a pixel (A simple example is
the 4-neighbors set where R ¼ fð�1; 0Þ; ð1; 0Þ;
ð0;�1Þ; ð0; 1ÞgÞ: We denote the weight coefficient
of a neighbor r 2 R by yðrÞ and the innovations
process by �ðsÞ: Assuming an image T can be
modeled as a GMRF, a pixel TðsÞ in the image1 is
related to its neighboring pixels as follows:

TðsÞ ¼
X
r2R

yðrÞTðs þ rÞ þ �ðsÞ: (1)

Let r2 ¼ Ef�2ðsÞg denote the variance of the
innovations process. Woods [25] showed that the
innovations process is spatially correlated with
covariance given by:

Ef�ðsÞ�ðs þ rÞg ¼

r2 if r ¼ ð0; 0Þ;

�yðrÞr2 if r 2 N ;

0 otherwise:

8><>: (2)

Kashyap and Chellappa [13] showed that the
correlation structure imposes symmetry on the
neighborhood set. That is, r 2 R implies �r 2 R
and yðrÞ ¼ yð�rÞ:

In most detection problems, the background
clutter model is unknown and therefore should
be estimated. Various methods for model esti-
mation were developed over the years, e.g.,
[11,13,23,22,26]. A computationally efficient meth-
od for the GMRF model estimation is the least
squares method, described in details in Hazel [11].
Let vecð	Þ denote the column stack ordering of an
image chip. Let the column stack ordering of the
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neighborhood of TðsÞ be denoted by gðsÞ:

gðsÞ ¼ vec½Tðs þ rÞ; r 2 R� (3)

and let

h ¼ vec½yðrÞ; r 2 R�: (4)

Hazel [11] showed that the least squares estimates
for h and r2 are given by

bh ¼
X
s2O

gðsÞgðsÞT

" #�1 X
s2O

TðsÞgðsÞ

" #
; ð5Þ

br2 ¼
1

jOj

X
s2O

TðsÞ � bhT
gðsÞ

	 
2

; ð6Þ

where T denotes transpose.

2.2. The multi-scale GMRF model

Let Y ðsÞ denote an image, and let G ¼

fG1;G2; . . . ;Gng denote a given set of multi-scale
spatially invariant filters (e.g. scaling and wavelet
filters). We generate from the image a multi-scale
image, Y; by applying the filters to the image Y

and concatenating the results in the third dimen-
sion:

Y i ¼ Y � Gi; i ¼ 1; . . . ; n; ð7Þ

YðsÞ ¼ ½Y 1ðsÞ;Y 2ðsÞ; . . . ;Y nðsÞ�; ð8Þ

where � denotes two-dimensional convolution.
The result Y is a three-dimensional representation
of the image, thus each pixel is now transformed to
a vector. The Karhunen–Loéve transform (KLT)
can be applied to YðsÞ; for generating a multi-scale
image, TðsÞ; with independent layers. TðsÞ has p

layers representing the top p independent compo-
nents of YðsÞ: Let K denote a matrix whose
columns are the top p eigen vectors of the
covariance matrix of YðsÞ: TðsÞ is then given by

TðsÞ ¼ KTYðsÞ: (9)

We assume that there is a set of filters, G; such
that each image layer, T‘ðsÞ; can be modeled as
a GMRF with a different set of parameters.
We denote the weight coefficient estimated for
neighbor r 2 R; and for the ‘th layer of TðsÞ by
y‘ðrÞ; and the innovations process of the ‘th layer
by �‘ðsÞ: TðsÞ is then given by the following
equation:

TðsÞ ¼
X
r2R

YrTðs þ rÞ þ �ðsÞ; (10)

where Yr is the following diagonal matrix:

Yr ¼ diagðy1ðrÞ; y2ðrÞ; . . . ; ypðrÞÞ (11)

and eðsÞ is a vector of the innovations in pixel s in
the different layers of TðsÞ:

eðsÞ ¼ ½�1ðsÞ; �2ðsÞ; . . . ; �pðsÞ�
T: (12)

The estimation of the model parameters for each
layer, is carried out using the method described in
Section 2.1. Subsequently, we can estimate the
innovations process by:

beðsÞ ¼ TðsÞ �
X
r2R

cYrTðs þ rÞ: (13)

3. Anomaly detection

In this section, we introduce an anomaly
subspace detection method based on a matched
subspace detector and the multi-scale GMRF
model introduced in the previous section.

Scharf and Friedlander [21] formulated a MSD
for the general problem of detecting subspace
signals in subspace interference and additive white
Gaussian noise. Here, the anomaly detection is
based on a statistical model which better describes
the background clutter. We formulate a modified
MSD for the detection of subspace signals in
subspace interference and additive noise, which
follows the multi-scale GMRF model.

Let fhjjj ¼ 1; . . . ; ug and fskjk ¼ 1; . . . ; vg denote
two sets of image chips, which span the signal and
interference subspaces of image Y, respectively.
The image chips are all of the same size:Nx � Ny

pixels, which is usually much larger than the size of
the neighborhood R: It should be large enough for
containing shapes which span the signal and
interference subspaces.

We assume that image Y contains mainly noise,
which follows the multi-scale GMRF model, and
that the target and interference signals are rare.
Let Dp denote an operator which generates the
prediction error, beðsÞ; of the multi-scale GMRF
model with p independent components. Dp is
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defined by using (7), (9), and (13), as follows:beðsÞ ¼ ½b�1ðsÞ;b�2ðsÞ; . . . ;b�pðsÞ�
T

¼ KTYðsÞ �
X
r2R

HrK
TYðs þ rÞ ¼

n
DpY ðsÞ: ð14Þ

Let n‘ðsÞ denote the column stack ordering of an
Nx � Ny pixels image-chip of b�‘ around s:

n‘ðsÞ ¼ vecðfb�‘ðtÞjt 2 ½Nx � Ny

image chip around s�gÞ: ð15Þ

We define H‘ and S‘ as follows:

H‘ ¼ ½vec ð½Dph1�‘Þ vecð½Dph2�‘Þ . . . vecð½Dphu�‘Þ�;

S‘ ¼ ½vecð½Dps1�‘Þ vecð½Dps2�‘Þ . . . vecð½Dpsv�‘Þ�;

ð16Þ

where ½	�‘ denotes the ‘th layer of the three-
dimensional data.

Let hH‘i denote the signal subspace, spanned by
the columns of matrix H‘ and let hS‘i denote the
interference subspace, spanned by the columns of
matrix S‘: We denote the additive noise by b‘: The
problem is to determine whether the sample vector
n‘ contains a target signal. The target signal x‘ can
be described as a linear combination of the
columns of H‘ i.e., x‘ ¼ H‘w‘; where w‘ is a
vector of coefficients. The interference signal is
described similarly, using the matrix S‘ and the
coefficients vector /‘: Considering the detection
problem, we define two hypotheses, H0 and H1

which indicate, respectively, absence and presence
of target signal in the vector n‘:

H0 : n‘ ¼ S‘/‘ þ b‘;

H1 : n‘ ¼ H‘w‘ þ S‘/‘ þ b‘:
(17)

Let PS‘ denote the projection of a vector onto the
subspace hS‘i:

PS‘n‘ðsÞ ¼ S‘ðS
T
‘ S‘Þ

�1ST
‘ n‘ðsÞ (18)

and let PH‘S‘ denote the projection of a vector

onto the subspace hH‘S‘i; spanned by the columns
of the concatenated matrix ½H‘ S‘�: The maximum
likelihood estimates of the additive noise
vector, b‘; under H0 and under H1 are denoted

by bb‘H0
and bb‘H1

; respectively. These estimates are

obtained by subtracting from n‘ the components
which lie in the signal and interference subspaces
as follows:

bb‘H0
¼ ðI � PS‘ Þn‘;bb‘H1
¼ ðI � PH‘S‘ Þn‘; ð19Þ

b‘ is the innovations process of a GMRF and
therefore is normally distributed with zero mean.

We denote the covariance matrix of b‘ by r2
‘F‘;

where r2
‘ is the variance of b‘: r2

‘F‘ is obtained by

using (2).
The detection problem can be formulated as a

GLRT between H0 and H1: The log-likelihood
ratio, L‘; calculated based on the ‘th layer of the
innovations process is given by

L‘ðsÞ ¼ 2 ln
Prðb‘ðsÞjH0Þ

Prðb‘ðsÞjH1Þ

� 

¼ 2 ln

exp
½F�1=2

‘
bb‘H0

ðsÞ�2

2r2
‘

0@ 1A
exp

½F�1=2
‘

bb‘H1
ðsÞ�2

2r2
‘

0@ 1A

26666664

37777775
¼

1

r2
‘

½kF�1=2
‘

bb‘H0
ðsÞk2

2 � kF�1=2
‘

bb‘H1
ðsÞk2

2�: ð20Þ

The log-likelihood ratio, based on p layers of the
innovations process is given by LðsÞ ¼

Pp
‘¼1 L‘ðsÞ

as follows:

LðsÞ ¼
Xp

‘¼1

1

r2
‘

½kF�1=2
‘

bb‘H0
ðsÞk2

2 � kF�1=2
‘

bb‘H1
ðsÞk2

2�

¼
Xp

‘¼1

1

r2
‘

½F�1=2
‘ n‘ðsÞ�

TðPH‘S‘ � PS‘ Þ

�½F�1=2
‘ n‘ðsÞ�: ð21Þ

The signal-to-noise ratio (SNR) is the ratio
between the signal and the noise in terms of
intensity. We define the SNR as the second power
of the ratio between the signal, which do not lie in
the interference subspace, and the standard devia-
tion of the noise, as follows:

SNR ¼
Xp

l¼1

1

r2
‘

xT
‘ ½I � PeS‘

�x‘: (22)

Let u denote the rank of the signal subspace and
let q ¼ u p: L is the sum of squared independent
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normally distributed variables and therefore is
chi-square distributed with q degrees of freedom,
as follows:

L �
w2

qð0Þ under H0

w2
qðSNRÞ under H1:

(
(23)

Under the hypothesis H1; the non-centrality
parameter of the chi-square distribution of L is
equal to the SNR. The decision rule

L _

H0

H1

Z (24)

yields false-alarm and detection probabilities,
which are, respectively, given by

PFA ¼ 1 � P½w2
qð0ÞpZ�; ð25Þ

PD ¼ 1 � P½w2
qðSNRÞpZ�: ð26Þ
process of
layer 1

MSD

process of
layer 2

process of
layer p

� � �1 (s)   2 (s)    p (s)� � �
4. Implementation

In this section, we describe the implementation
of the proposed anomaly detection algorithm.
Fig. 1 presents a flow chart with the main steps of
the algorithm:
L(s)
Likelihood Ratio
(1)
Decision Rule
Generation of a multi-scale representation: The
image Y is filtered by a set of spatial filters, G;
using (7), in order to create its multi-scale
representation, Y:
(Threshold)
(2)
Detected Targets
Independent components analysis: The Karhu-
nen–Loéve transform is applied to the vectors
of the multi-scale representation, Y; using (9).
The result is a multi-scale representation, T;
with independent layers.
Fig. 1. Flow chart of the proposed algorithm.
(3)
 Estimation of the innovations process: The
GMRF parameters set is separately estimated
for each layer of T: The sample innovations,b�‘ðsÞ; are calculated for each layer, ‘; of T using
(14) and the estimated parameters.
(4)
 Matched subspace detector: S‘ and H‘ are
calculated using (16). A matched subspace
detector is formed and the log-likelihood ratio,
L, is calculated for each pixel using (21).
(5)
 Decision rule (thresholding): The decision rule
given in (24) is applied to the log-likelihood
ratio, L, in order to determine whether a pixel s
belongs to a target. The threshold, Z; is
determined by the admissible false alarm rate
(FAR) using (25).
The computational complexity of the proposed
algorithm is a function of the size of the image
(Mx � My), the rank of the subspace in which the
signal and interference lie (Nx � Ny), and the
number of independent components p employed



ARTICLE IN PRESS

10
-1

100

P
D

S
N

R
=

9

S
N

R
=
2
7S

N
R

=5
8

S
N

R
=
4
1

A. Goldman, I. Cohen / Signal Processing 85 (2005) 463–479 469
for the detection. The computational complexity
of the multi-scale representation generation is
OðnNxNyMxMyÞ where n is the number of multi-
scale filters. Applying the KLT to the multi-scale
representation of the image using the covariance
matrix of the data is: OðN2

xN2
yMxMy þ N3

xN3
yÞ [6].

Using the singular value decomposition (SVD) -
based approach, reduces the computational com-
plexity of the KLT to OðN2

xN2
yMxMyÞ [12]. The

estimation of the innovations process is
OðjRjMxMyÞ and the MSD is OðMxMyNxNypÞ:
Thus, the total computational complexity of
the proposed algorithm is OðN2

xN2
yMxMy þ

NxNyMxMyn þ jRjMxMyÞ:
10
-15

10
-10

10
-5

10
0

10
-2

P
FA

Fig. 2. An example of ROC calculated for the proposed

algorithm, using three principle component ðp ¼ 3Þ and various

values of SNR.

10−15 10−10 10−5 100
10−2

10−1

10 0

P
FA

P D

p=
3

S
N

R
=6

6

p=
2

S
N

R
=2

1

p=
1

S
N

R
=2

.2

Fig. 3. An example of ROC calculated for the proposed

algorithm using p independent components. Using larger

number of independent components, increases the SNR and

improves the performance.
5. Performance analysis

In this section we analyze the performance of
the proposed algorithm. We investigate the re-
ceiver operating characteristics (ROC) of the
algorithm with respect to different parameters.
The ROC of the proposed algorithm is calculated
using (22), (25), and (26). The SNR, given by (22),
is a function of the target’s shape and intensity,
the variance of the background’s innovations
process and the interference subspace span.
The SNR increases with the norm of x; the
number of independent layers (p), and the angle
between x and hSi: Large background variance
results in a smaller SNR and therefore, perfor-
mance degradation.

Fig. 2 presents the ROC of the proposed
algorithm for various SNRs. This example pre-
sents the performance of the proposed anomaly
detection algorithm using three independent com-
ponents ðp ¼ 3Þ: The probability of false alarm
(PFA) and the probability of detection (PD) are
calculated using (25) and (26), respectively. Fig. 3
presents the ROC versus p given a constant target
norm and background variance. The SNR and the
probability of detection (PD) improve with p. The
use of more independent layers improves the
detection performance due to the additional
information concealed in each layer. Another
factor which may influence the performance is
the dimension of the interference subspace. Ac-
cording to (22), when the dimension of S0

‘

decreases, the SNR is lower and the performance
is reduced. In this section we refer to the proposed
method as ‘‘Proposed Method III’’ and compare it
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to a competing method and to other proposed
methods, namely Methods I and II. The latter
proposed methods are similar to the Proposed

Method III except that they do not include all of its
elements. We applied the competing methods to
synthetic images of airplanes on cloudy back-
grounds. The synthetic images are generated by
the process described in Section 6.1. Fig. 4 shows
the flowcharts of the different methods compared
in this section:

Competing Method: We assume the image
follows the GMRF model. A single hypothesis
scheme is applied to the estimated innovations
process of the image for the detection of regions,
which appear unlikely with respect to its normal
distribution [11].

Proposed Method I: We assume the image
follows the conventional GMRF model rather
than the multi-scale GMRF model. The MSD,
proposed by Scharf and Friedlander [21], is
applied to the estimated innovations process. By
analyzing the performance of this method and
Y

E

Y(s)

Estimate the innovations 
process of Y(s) 

L(s)
Likelihood 
Ratio

MSD

(s)

Y(s)

Estimate the innovations 
process of Y(s) 

L(s)
Likelihood 

Single Hypothesis Test

Competing Method Proposed Method I P

��(s)��

Fig. 4. Flowcharts of the comp
comparing it to Method III we examine the
contribution of the proposed multi-scale model
to the detection performance.

Proposed Method II: The multi-scale GMRF
model is employed, skipping the KLT step. We
assume the layers of the multi-scale representation
YðsÞ follow the GMRF model and estimate the
innovations process of each of these layers.
The MSD, proposed in Section 3, is applied to
the estimated innovations process. By analyzing
the performance of this method we examine the
significance of the KLT in the modeling process.

Proposed Method III: This method includes all
the elements of the multi-scale model proposed in
Section 3. We assume the image follows the
proposed multi-scale GMRF model. The MSD,
proposed in Section 3, is applied to the estimated
innovations process.

Figs. 5 and 6 present examples in which the
proposed and competing algorithms are applied to
the same synthetic images of airplanes on cloudy
background. Fig. 5 shows the synthetic images,
Generate
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ared detection methods.
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generated using a mixture of three images of
different periodical patterns (generated by sum-
ming up three GMRFs with three different
parameters sets). The airplane is planted in the
center of each image.

Figs. 6(a)–(d) present the results of applying the
Competing Method, the Proposed Method I, the
Proposed Method II, and the Proposed Method III

to the images in Fig. 5, respectively. Fig. 6(d)
shows the best detection results. The likelihood
ratios are relatively low everywhere except in the
target’s region. The results of the Competing

Method contain high level of background noise
which does not allow the targets detection by
Fig. 5. Synthetic images containing cloudy background and an

airplane target in their centers.

Fig. 6. A comparison between detection methods. (a) Results of the C

Proposed Method I applied to the images in Fig. 5; (c) results of Pro

Proposed Method III applied to the images in Fig. 5. The images in (
thresholding the likelihood image. The results of
Proposed Method II contain a noisy pattern which
exceeds the likelihood level in the targets region
(in the center of the image). According to these
examples, it seems that skipping the KLT in
the modeling process, significantly reduces the
performance obtainable by using the Proposed

Method III.
Fig. 7 presents the ROC, analytically calculated

for synthetic images of an airplane on cloudy sky.
The ROC curves reflect the performance of
Proposed Method II (solid) compared to the
performance of Proposed Method I (dashed). The
images, for which the ROC’s where calculated, are
similar to the right example presented in Fig. 5.
The only difference between the images is in the
SNR.

The SNRs for which the ROCs where drawn are
summarized in Table 1. The table specifies four
different cases of background variances and target
norms (L-infinity norms of the targets image). The
SNRs obtained by Proposed Method III, which is
based on the multi-scale GMRF model, are higher
than those obtained by Proposed Method I, which
is based on a conventional GMRF model, and
Proposed Method II, which is based on a modifica-
tion of the multi-scale GMRF model.
ompeting Method applied to the images in Fig. 5; (b) results of

posed Method II applied to the images in Fig. 5; (d) results of

d) seems to have the lowest false alarm rate (FAR).
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Table 1

Properties of the different cases for which the ROC curves in Fig. 7 were drawn. The SNR calculated for Proposed Method III is

significantly higher than the SNR calculated for the other methods

Case Background variance Target norm SNR[dB]

Proposed Proposed Proposed

Method I Method II Method III

(a) 188 1.3 2.8 �0.5 7.3

(b) 188 1.4 3.2 0 7.7

(c) 188 1.5 3.6 0.4 8.1

(d) 188 1.7 4.0 0.8 8.5
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Fig. 7. Performance of the anomaly detection based on Proposed Method III (solid), Proposed Method II (dashed), and Proposed

Method I (dotted). (a)–(d) correspond to different parameter settings as specified in Table 1.
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6. Experimental results

In this section, we present the results of applying
the proposed model and algorithm to synthetic
and real images from different sources. The
algorithm is applied to: (1) simulated images
of airplanes on cloudy background; (2) sonar
images of sea-mines on sea-bottom background;
and (3) detection of defects in wafer images.
The different examples and applications
demonstrate the robustness and flexibility of the
algorithm.

6.1. Synthetic images

The synthetic examples presented in this sub-
section contain airplanes on cloudy background.
The synthetic cloudy background is generated
using random images which follow the GMRF
model. These random images are obtained by
using a formulation of the GMRF model in terms
of white noise. Let TðsÞ be an image of Mx � My

pixels which follows the GMRF model, let F be
the discrete Fourier transform (DFT) operator,
and let w ¼ ðw1;w2Þ be the two-dimensional
indices of the data in the frequency domain. Then
the DFT of TðsÞ is as follows [13]:

FfTgðwÞ

¼
rFfnðsÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 2
P

r2Rh
yðrÞ cosð2p½r1w1=Mx þ r2w2=My�Þ

q ;

ð27Þ

where fnðsÞjsg are independent and identically
distributed (IID) Gaussian random variables, with
zero mean and unit variance, Rh is half of the
symmetric neighborhood R; and r ¼ ðr1; r2Þ: For
the model to exist and be stable, the following
expression must be true for every w in the support
of the image:

1 � 2
X
r2Rh

yðrÞ cos 2p
r1w1

Mx

þ
r2w2

My

� � �
40: (28)

From (27), the procedure for synthetic generation
of random fields obeying this model is evident.
Further details can be found in [13].
The synthetic examples of airplanes on cloudy
background are generated as follows:
(1)
 Three random images are generated based on
the GMRF model. Each image is obtained by
using (27) with different sets of parameters.
(2)
 A weighted sum of the three images is
calculated. The result contains several period-
ical patterns with different period lengths.
(3)
 A small airplane image is planted in the
background image in a random position and
orientation.
The results of this procedure contain mixtures of
periodical patterns with different period lengths.
This procedure does not describe an accurate
synthesis of images which follow the multi-scale
GMRF model. The process only claims to
generate images that may be better described by
the multi-scale GMRF model rather than the
conventional GMRF model. The results demon-
strate that the effective SNR achieved by the MSD
under the multi-scale GMRF model assumption
(Proposed Method III) is higher than the SNR
achieved under the conventional GMRF model
assumption (Proposed Method I).

Fig. 8 shows examples of synthetic images
generated as described above. A multi-scale
representation of each image is obtained by
applying undecimated wavelet transform with
two scale levels to the image. Accordingly, the
layers of the multi-scale representation are the
result of convolving the image with the wavelet
basis images. We employ a signal subspace that is
constructed from the span of four image chips of
11 � 11 pixels. The image chips contain bar shapes
in different orientations: 0�; 45�; 90�; and 135�

which resemble the fuselage of airplane targets.
Fig. 9 shows the log-likelihood ratio (in gray-
scale), calculated using (20). Black regions denote
high log-likelihood ratio. The target detection is
carried out by thresholding the likelihood images.
The threshold is determined by the predefined
admissible level of FAR. The detected targets are
marked by circles (in Fig. 9). This example
demonstrates the robustness of the algorithm in
presence of different patterns of background. The
image chips which span the signal subspace (target
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Fig. 8. Synthetic images of cloudy sky with airplane images planted in random places and orientations.

Fig. 9. Results of anomaly detection applied to the images in Fig. 8. The gray-scale represents the degree of local anomality around a

given pixel. The circles indicate regions where the local anomality is above a predetermined threshold.
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subspace) are simple and generally do not require
detailed information about the targets.

Figs. 10 and 11 show an example of target
detection using the proposed algorithm with three
independent components ðp ¼ 3Þ: Fig. 10 shows a
synthetic image of cloudy sky with an airplane in its
middle. The airplane is unnoticeable by a human
viewer due to its weak signature. Figs. 11(a)–(c)
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Fig. 10. A synthetic image of cloudy sky with an airplane in its

middle. The airplane is unnoticeable by a human viewer due to

its weak signature.

Fig. 11. Anomaly detection applied to the image in Fig. 10. (a) First, (

ratio calculated by the proposed algorithm.
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show the images of the three top independent
components generated by the algorithm (as detailed
in Section 2). The target is clearly revealed in the
third independent component. Fig. 11(d) shows
the likelihood ratio calculated by the proposed
algorithm. This image, unlike the images of the
independent components, lacks the background
patterns, which are rejected by the innovations
noise and likelihood ratio calculations. Thus, the
target is more clearly revealed.
6.2. Sea-Mine sonar images

The proposed method is demonstrated on
real images from a database of sea-mine sonar
images. A sea-mine appears in the sonar images as
a bar shaped object-highlight accompanied by a
b) second, and (c) third independent components. (d) Likelihood
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shadow which represents the hiding of the
seabottom-reverberation by the sea-mine [19].
Mignotte and Collet [18] presented 3-class Mar-
kovian segmentation method for the detection of
sea-mines in sonar images. The sea-mine images
were segmented to three regions: echo, shadow,
and sea-bottom reverberation areas, based on
different MRF models, estimated for the different
classes. Dobeck et al. [4] implemented a matched
filter, K-nearest neighbor neural network classifier,
and a discriminatory filter classifier to detect
such mine-like objects in sonar images. The
classification process employs up to 45 features
for every possible mine-like object. The detection
in [4] is based on a large collection of mine-like
objects signatures. In the example presented
here, no real signature examples are used for
defining the signal subspace. Fig. 12 shows six
sonar images. Each image contains one sea-mine
on highly cluttered seabottom background. The
background patterns are diverse. Figs. 12(a)–(e)
contain relatively slow changing backgrounds while
Fig. 12(f) contains background with a dominant
periodical pattern. The sea-mine’s highlight in
Fig. 12. Examples of sea-mine sonar images: sea-mines appear in the s

shadow which represents the hiding of seabottom-reverberation by th
Fig. 12(f) is unnoticeable while its shadow clearly
appears as a dark region. The proposed method is
applied to these images for detecting sea-mines. The
multi-scale representations of the images are
generated by applying undecimated wavelet trans-
form with three scale levels to the images. The
signal subspace is formed from the span of four
image-chips of highlighted bars with dark shadows,
in different orientations. The result of the proposed
anomaly detection, applied to the sonar images, is
shown in Fig. 13. The sea-mine in Fig. 12(f) is
detected despite the absence of sea-mine highlight,
due to its dominant shadow. The lower right circle
in Fig. 13(c) marks a false alarm. This false alarm
might result from a mine-like highlight in the
background pattern.

The detection results presented here, demon-
strate the capability of the proposed model and
algorithm to cope with variety of background
clutter patterns, using the same filters set and
signal subspace. All the sea-mines in these
examples are detected. The false alarm in
Fig. 13(c) may be prevented by a more specific
definition of the signal subspace.
onar images as a bar shaped object-highlight accompanied by a

e sea-mine [19].
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Fig. 13. Results of the anomaly detection applied to the images in Fig. 12. The sea-mines are detected by thresholding the gray-scale

values which represent the degree of local anomality around a given pixel.

Fig. 14. Example of wafer images. The 128 � 128 images include small round defects of about 3 � 3 pixels.
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6.3. Wafers images

The proposed algorithm is applied to detection
of defects in wafers images for quality assurance.
Fig. 14 shows examples of wafer images. Each
image contains a defect whose diameter is smaller
than three pixels. The MSD is set to detect circles
of three pixels diameter and linear shapes of three
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Fig. 15. Results of the anomaly detection applied to the images in Fig. 14.
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pixels length. The multi-scale representation is
generated in the same way as described in the
synthetic example. The likelihood images and the
detected targets are presented in Fig. 15. The
results are less impressive than those obtained in
the previous applications. However, we are still
able to detect the defects with a manageable rate of
false alarms. The cause of the performance
degradation may be explained by the low correla-
tion of the background patterns. Images with
weakly correlated patterns are not well described
by the multi-scale GMRF model.
7. Conclusion

We have introduced a multi-scale GMRF model
and a corresponding anomaly subspace detection
algorithm. The proposed model is based on a
multi-scale representation of the image and ICA.
We assumed that there is a set of scaling filters, for
which, each independent component of the multi-
scale representation of the image follows a GMRF
model. Under this assumption, each image layer is
modeled as a GMRF. The detection is then carried
out by applying MSD to the innovations process
of the estimated multi-scale GMRF. The MSD
incorporates the available a priori information
about the targets into the detection process and
thus potentially improves the detection perfor-
mance. The performance of the algorithm was
demonstrated with application to automatic target
detection in synthetic images, side-scan sonar data
and wafer images. The results show the capability
of the proposed model and algorithm to cope with
variety of targets and background clutter patterns.
Performance analysis was carried out by investi-
gating the influence of different parameters on the
detection performance, and comparing the perfor-
mance of the proposed method to those of
competing methods. The analysis as well as the
experimental results demonstrate the advantages
of the proposed method.

The model and algorithm presented here are
based on given subspaces of signal and inter-
ference. Interactive definition of the signal and
interference subspaces may limit the practicability
of the proposed method when applied to real
detection problems. The examples we present have
demonstrated the robustness of the algorithm,
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based on an intuitive choice of these subspaces. A
rigorous procedure which defines the signal and
interference subspaces may improve the perfor-
mance of the proposed algorithm and enable its
adjustment to different detection problems.
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