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Abstract

One of the most challenging problems in automatic target detection is associated with the large variability of background
clutter and object appearance. In this paper, we propose an anomaly detection approach which does not rely on an exhaustive
statistical model of the targets, but rather on the local statistics of the data and possibly on some a priori information regarding
the sizes and shapes of targets. Iterative procedures of feature extraction and anomaly detection are carried out, gradually
reducing the false alarm rate while maintaining a high probability of detection. The background is characterized in a feature
space of principal components, and a single hypothesis scheme is used for the detection of anomalous pixels. Morphological
operators are subsequently employed for extracting the sizes and shapes of anomalous clusters in the image domain, and
identifying potential targets. The robustness of the proposed approach is demonstrated with application to sea-mine detection
in sonar imagery.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Target detection in radar and sonar imagery is a
challenging problem due to the large variability in
background clutter and in object appearance. The de-
tection of sea-mines, for example, involves addressing
the varying shape of the ocean surface and its veg-
etation [2]. Land-mine detection, using ground pene-
trating radar (GPR) encounters the problem of the ex-
treme clutter environment within the <rst 5 cm of the
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soil surface. Almost any object under the surface of the
ground yields a return signal, which may be confused
with a lethal land-mine [6]. In most cases, lethal targets
must be detected with nearly 100% reliability. False
detections may not be disastrous but might slow down
the dimining process.
The majority of work in the area of target de-

tection has focused on detection methods, which
involve statistical characterization of both targets and
background [9]. Classi<cation methods which are
based on the Bayesian approach, require knowledge
of a priori statistics (i.e., conditional density func-
tions) that may be a source of loss of robustness.
Matched <lters, for example, require a priori knowl-
edge of a typical signature of the target [2]. In a
realistic situation, however, there is a wide variety of
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potential targets which do not conform to a uniform
model.
In this paper, we propose an anomaly detection

approach, which does not rely on an exhaustive sta-
tistical model of the targets, but rather on the local
statistics of the data and possibly on some a priori
information regarding the sizes and shapes of targets.
An iterative procedure of feature extraction, based
on local statistics and principal components analysis
(PCA) is performed. The background is statistically
characterized in a feature space of principal com-
ponents. A single hypothesis scheme is used for the
detection of anomalous pixels in a given region of in-
terest (ROI). Subsequently, morphological operators
are employed for extracting the sizes and shapes of
anomalous clusters in the image domain, and identi-
fying potential targets. We may compromise on the
false alarm rate in order to achieve a high probability
of detection, since each iteration gradually reduces the
false alarm rate while maintaining the high probability
of detection.
The paper is organized as follows. Section 2

presents a formulation of the problem, Section 3 pro-
vides a mathematical model, Section 4 describes the
proposed anomaly detection algorithm, and Section
5 demonstrates the application of the algorithm to
sea-mine detection in sonar imagery.

2. Problem formulation

Let � be the support of a gray-scale image. The
image may contain diCerent textures as background
(i.e. grass, trees, soil, water) and some targets which
are anomalous with regards to the background. We
would like to <nd a disjoint partition of �, such that
�=B∪A, whereB contains a few uniform subsets of
background pixel clusters: B=

⋃K
k=1 Bk , and A con-

tains anomalous pixels. The subsets of the background
pixels represent diCerent textures of the background.
For example, in a typical terrain scene, B1 may con-
tain pixels which constitute grass, B2 may represent
trees, and so on.
The proposed algorithm is based on an iterative

two-category classi<cation procedure. A set of pixels,
Ak−1, which have been identi<ed as anomalous in the
(k − 1)th iteration, is partitioned into background and

anomalous subsets, Bk and Ak , respectively

Ak−1 =Bk ∪ Ak ; (1)

where k¿ 1 and A0 is initialized to the ROI in the
image (possibly A0 = �).
The fundamental problem of the iterative anomaly

detection procedure is to partition the set of pixels,
Ak−1, into two subsets: one, which is relatively uni-
form, large and thus considered as the background sub-
set (Bk), and a second subset which contains anoma-
lous pixels (Ak). Another problem is to determine a
stopping rule for the iterative procedure. The proce-
dure should be iterated until the number of targets per-
taining to Ak does not exceed a given number. The
maximal number of detectable targets in a given ROI
is closely related to the permissible false alarm rate.
A stopping rule based on such a criterion should in-
corporate into the procedure a low complexity routine
for coarse target detection.

3. Mathematical model

Let �∈� be the coordinates of a pixel in the im-
age. Let q� be a feature vector related to the pixel
�. Considering a two-category classi<cation problem,
we de<ne two possible hypotheses:

H0: �∈B (background pixel)

H1: �∈A (anomalous pixel):

A two-category classi<cation problem is often worked
out using the Bayes decision rule for minimum cost
[1]. Let C(H1|H0) and C(H0|H1) denote, respectively,
the costs of false detection and miss detection. Then
the optimal minimum cost decision rule is given by [5]

f(q�|H0)P(H0)C(H1|H0)
H0

?
H1

f(q�|H1)P(H1)C(H0|H1);

(2)

where f(q�|Hi) is the conditional pdf of q� given Hi
and P(Hi) is the a priori probability of Hi.

In practice, the background can be well character-
ized (an empirical f(q�|H0) can be generated) while
the anomalies are of a wide variety and rare (a reli-
able estimate of f(q�|H1) is unavailable). Therefore,
the Bayes decision rule for minimum cost is inappli-
cable. A suitable alternative to such problems is based
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on a single hypothesis scheme [5]. Let  = E[q�|H0]
denote the expected feature vector and � = E[(q� −
)(q� − )T|H0] the covariance matrix under H0

hypothesis. Let the normalized distance of q� from its
expected vector, , be de<ned by

d(q�) = (q� − )T�−1(q� − ): (3)

Then the decision rule is given by

d(q�)
H0

?
H1

D; (4)

where D is the threshold to determine whether a given
pixel is anomalous or not. This decision rule is based
on the statistics of the background only. No knowl-
edge about the anomalies statistics is taken into con-
sideration. The threshold, D, can be determined ac-
cording to a speci<ed con<dence level, �, which is
the probability of correctly deciding on H0 given H0

is true. The threshold, D, and the con<dence level, �,
are related by

� ≡ Pr(H0|H0) = Pr(d(q�)6D|H0): (5)

In case the feature vector, q�, is a Gaussian random
vector of dimension n, the pdf of d2(q�) under the H0

hypothesis, denoted by pd2 (�), is the gamma density
function with parameters � = n=2 − 1 and � = 1=2
[5]. Accordingly, the relation between � and D can be
written as

�=
∫ D2

0
pd2 (�) d�

=
∫ D2

0

1
2n=2�(n=2)

�(n−2)=2e−�=2 d�: (6)

The aforementioned decision rule is based on a
one-dimensional measure, d(q�), whereas the feature
vector, q� is multi-dimensional (size n). It is quite
clear that reducing the dimension of the feature space
to a one-dimensional distance space eliminates valu-
able information. Accordingly the false detection rate
is likely to increase. However high false detection rate
is acceptable, since we consider an iterative procedure,
and each iteration gradually reduces the false alarm
rate while maintaining a high probability of detection.

4. Anomaly detection algorithm

A block diagram of the proposed algorithm is pre-
sented in Fig. 1. The algorithm consists of two iter-
ative procedures. The basic procedure is an iterative
disjoint partition of Ak−1 into Ak and Bk . After the
partitioning, the decision whether to further partition
Ak depends on the number of potential targets found
in Ak . This procedure iterates, reducing Ak ’s pop-
ulation (Ak ⊂ Ak−1) until the number of potential
targets, found in Ak , is smaller than or equal to a
given number, N . The second procedure is implicit in

Fig. 1. Block diagram of the anomaly detection algorithm.
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the partition of Ak−1 into Ak and Bk . This step it-
self is carried out in an iterative manner. A <rst guess
of background subset, denoted by B

(0)
k is chosen in

Ak−1. For each pixel in B
(0)
k , an observation vector,

r�, is produced (containing the values of the pixels in
the neighborhood of the pixel �). The most dominant
principal components of {r�|�∈B

(0)
k } are chosen to

be the features which span the feature space. A disjoint
partition of Ak−1 into A

(1)
k and B

(1)
k is then carried

out using the single hypothesis scheme, as described
in Section 3. The next step includes an update of the
feature space using the <rst most dominant principal
components of {r�|�∈B

(1)
k } and disjointly partition-

ingAk−1 intoA
(2)
k andB(2)

k in the new feature space.
This procedure iterates, with partitioning Ak−1 into
A

(n)
k and B

(n)
k where the feature space is obtained at

each iteration by PCA done on the background subset
B

(n−1)
k . The stopping rule for this iterative procedure

relies on the relative change, �(n)
k , between B

(n−1)
k

andB(n)
k . Speci<cally, we compute the relative change

de<ned by

�(n)
k =

|(B(n)
k ∪ B

(n−1)
k ) \ (B(n)

k ∩ B
(n−1)
k )|

|B(n−1)
k |

; (7)

where |B(n)
k | is the number of pixels in the subset

B
(n)
k . Then we compare the relative change to a certain

threshold, �, and stop the iterations when �(n)
k 6 �.

The relative change is de<ned here as the ratio between
the number of pixels in the exclusive-or set of B(n)

k

and B
(n−1)
k , and the total number of pixels in B

(n−1)
k .

Small relative change indicates an insigni<cant diCer-
ence between the present background subset and the
previous one.
The diagram in Fig. 1 shows also an external loop

for partitioning the anomalous subsets iteratively. Its
stopping rule is based on the number of the potential
targets in the anomalous subset. Speci<cally, the num-
ber of potential targets in Ak should be smaller than
or equal to the presumed maximal number of possible
targets in the given ROI. The number of potential tar-
gets is determined without much a priori knowledge
about the targets, by clustering the pixels in the spa-
tial domain and identifying a cluster as target based on
the size and shape of the cluster. Morphological tools
are used for <nding connected sets with areas which
<t the presumed size. These are classi<ed as potential

targets and counted as such. The number of potential
targets, Nk , in the anomalous subset, is then compared
to the presumed maximum number of targets, N . The
external iterative procedure proceeds until Nk6N .

5. Example

Sea-mines detection in shallow water involves ad-
dressing the varying shape of the ocean surface and
vegetation [3] which yields large variability in back-
ground clutter. Conventional methods using a prepro-
cessing procedure and matched <lters [7] for detection
of mine-size regions, that closely match a typical mine
signature, presume a priori knowledge of the mine’s
size and shape. Normally, mines in a sonar image in-
clude a highlight region, representing the mine’s body
and a dark region representing its shadow. The vari-
ability in the background clutter and mine appearance
in the sonar image, leads to a high false alarm rate
in conventional methods. Fig. 2(a) presents two sonar
images with sea-mines (one in each image). These
images include diCerent clutter patterns. The left im-
age in Fig. 2(a) contains a clutter pattern of highlights
and shadows whereas the particular mine in this image
contains no highlight. The clutter in the right image has
a diCerent pattern containing mine-like shaped blobs.
Conventional methods fail in detecting sea-mines in
such varying environments. Furthermore, such clut-
ters may produce a large number of false alarms.
An experienced human viewer would be able to de-
tect the mines based on the diCerence from the back-
ground clutter. The proposed algorithmmimics the de-
tection mechanism of the human viewer by detecting
anomalies in the background clutter.
The application of the proposed algorithm to the

sonar images is demonstrated in Fig. 2. The algorithm
employs the three most dominant principal compo-
nents of 5×5 pixel neighborhoods. This neighborhood
size characterizes the information which diCerentiates
between the background texture and mines. The rel-
ative change threshold was set to 1%, the con<dence
level was set to 95%, the presumed maximum number
of targets was set to two. The coarse target detection
procedure was based on spatial morphologic detection
of anomalous clusters composed of 15 pixels or more.
Fig. 2(b) show the result of the <rst external iteration,
containing several potential targets (connected pixel
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Fig. 2. (a) Original sonar images containing sea-mines. (b) The
corresponding images of <rst iteration anomalies, A1 (black pix-
els). (c) The second iteration anomalies, A2. (d) The result of a
morphological <ltering for coarse target detection.

groups of at least 15 pixels). The second iteration, as
shown in Fig. 2(c), signi<cantly reduces the number
of potential targets. These potential targets are pre-
sented in Fig. 2(d) after the morphological <ltering.

6. Conclusion

The proposed algorithm includes an iterative proce-
dure of feature extraction, based on PCA of the spa-
tial information around each pixel. The background

is statistically characterized in the feature space, and
a single hypothesis scheme is used for the detection
of anomalous pixels. This method was successfully
employed on a large data-set of sea-mines sonar
images.
The method proposed in this paper can be extended

to hyper-spectral imagery [8] by incorporating the
additional spectral information, related to each pixel,
into the feature vectors. Rather than considering
each pixel spectra separately, the spatial information
is combined with the spectral data to improve the
anomaly detection performance. Multi-resolution rep-
resentations [4] may as well improve the detection
performance, particularly in cases the background
textures are nonuniform, and in cases of no a priori in-
formation regarding the sizes and shapes of targets is
available.
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