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On Quantum Detection and the Square-Root
Measurement
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Abstract—In this paper, we consider the problem of con-
structing measurements optimized to distinguish between a
collection of possibly nonorthogonal quantum states. We consider
a collection of pure states and seek a positive operator-valued
measure (POVM) consisting of rank-one operators with mea-
surement vectors closest in squared norm to the given states. We
compare our results to previous measurements suggested by Peres
and Wootters [11] and Hausladenet al. [10], where we refer to
the latter as the square-root measurement (SRM). We obtain a
new characterization of the SRM, and prove that it is optimal in a
least-squares sense. In addition, we show that for a geometrically
uniform state set the SRM minimizes the probability of a detection
error. This generalizes a similar result of Banet al. [7].

Index Terms—Geometrically uniform quantum states, least-
squares measurement, quantum detection, singular value decom-
position, square-root measurement (SRM).

I. INTRODUCTION

SUPPOSE that a transmitter, Alice, wants to convey clas-
sical information to a receiver, Bob, using a quantum-me-

chanical channel. Alice represents messages by preparing the
quantum channel in a pure quantum state drawn from a collec-
tion of known states. Bob detects the information by subjecting
the channel to a measurement in order to determine the state
prepared. If the quantum states are mutually orthogonal, then
Bob can perform an optimal orthogonal (von Neumann) mea-
surement that will determine the state correctly with probability
one [1]. The optimal measurement consists of projections onto
the given states. However, if the given states are not orthogonal,
then no measurement will allow Bob to distinguish perfectly
between them. Bob’s problem is therefore to construct a mea-
surement optimized to distinguish between nonorthogonal pure
quantum states.

We may formulate this problem as a quantum detection
problem, and seek a measurement that minimizes the proba-
bility of a detection error, or more generally, minimizes the
Bayes cost. Necessary and sufficient conditions for an optimum
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measurement minimizing the Bayes cost have been derived
[2]–[4]. However, except in some particular cases [4]–[7],
obtaining a closed-form analytical expression for the optimal
measurement directly from these conditions is a difficult and
unsolved problem. Thus, in practice, iterative procedures mini-
mizing the Bayes cost [8] orad hocsuboptimal measurements
are used.

In this paper, we take an alternative approach of choosing
a different optimality criterion, namely, a squared-error crite-
rion, and seeking a measurement that minimizes this criterion.
It turns out that the optimal measurement for this criterion is the
“square-root measurement” (SRM), which has previously been
proposed as a “pretty good”ad hocmeasurement [9], [10].

This work was originally motivated by the problems studied
by Peres and Wootters in [11] and by Hausladenet al. in [10].
Peres and Wootters [11] consider a source that emits three two-
qubit states with equal probability. In order to distinguish be-
tween these states, they propose an orthogonal measurement
consisting of projections onto measurement vectors “close” to
the given states. Their choice of measurement results in a high
probability of correctly determining the state emitted by the
source, and a large mutual information between the state and the
measurement outcome. However, they do not explain how they
construct their measurement, and do not prove that it is optimal
in any sense. Moreover, the measurement they propose is spe-
cific for the problem that they pose; they do not describe a gen-
eral procedure for constructing an orthogonal measurement with
measurement vectors close to given states. They also remark that
improved probabilities might be obtained by considering a gen-
eral positive operator-valued measure (POVM) [12] consisting
of positive Hermitian operators satisfying , where
the operators are not required to be orthogonal projection op-
erators as in an orthogonal measurement.

Hausladenet al. [10] consider the general problem of
distinguishing between an arbitrary set of pure states, where the
number of states is no larger than the dimension of the space
they span. They describe a procedure for constructing a general
“decoding observable,” corresponding to a POVM consisting
of rank-one operators that distinguishes between the states
“pretty well”; this measurement has subsequently been called
the square-root measurement (SRM)(see e.g., [13]–[15]).
However, they make no assertion of (nonasymptotic) opti-
mality. Although they mention the problem studied by Peres
and Wootters in [11], they make no connection between their
measurement and the Peres–Wootters measurement.

The SRM [7], [9], [10], [13]–[15] has many desirable proper-
ties. Its construction is relatively simple; it can be determined di-
rectly from the given collection of states; it minimizes the proba-
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bility of a detection error when the states exhibit certain symme-
tries [7]; it is “pretty good” when the states to be distinguished
are equally likely and almost orthogonal [9]; and it is asymptot-
ically optimal [10]. Because of these properties, the SRM has
been employed as a detection measurement in many applica-
tions (see, e.g., [13]–[15]). However, apart from some particular
cases mentioned above [7], no assertion of (nonasymptotic) op-
timality is known for the SRM.

In this paper, we systematically construct detection measure-
ments optimized to distinguish between a collection of quantum
states. Motivated by the example studied by Peres and Wootters
[11], we consider pure-state ensembles and seek a POVM con-
sisting of rank-one positive operators with measurement vectors
that minimize the sum of the squared norms of the error vectors,
where the th error vector is defined as the difference between
the th state vector and theth measurement vector. We refer
to the optimizing measurement as the least-squares measure-
ment (LSM). We then generalize this approach to allow for un-
equal weighting of the squared norms of the error vectors. This
weighted criterion may be of interest when the given states have
unequal prior probabilities. We refer to the resulting measure-
ment as the weighted LSM (WLSM). We show that the SRM
coincides with the LSM when the prior probabilities are equal,
and with the WLSM otherwise (if the weights are proportional
to the square roots of the prior probabilities).

We then consider the case in which the collection of states has
a strong symmetry property called geometric uniformity [16].
We show that for such a state set the SRM minimizes the prob-
ability of a detection error. This generalizes a similar result of
Banet al. [7].

The organization of this paper is as follows. In Section II,
we formulate our problem and present our main results. In Sec-
tion III, we construct a measurement consisting of rank-one op-
erators with measurement vectors closest to a given collection
of states in the least-squares sense. In Section IV, we construct
the optimal orthogonal LSM. Section V generalizes these re-
sults to allow for weighting of the squared norms of the error
vectors. In Section VII, we discuss the relationships between
our results and the previous results of Peres and Wootters [11]
and Hausladenet al. [10]. We obtain a new characterization of
the SRM, and summarize the properties of the SRM that follow
from this characterization. In Section VIII, we discuss connec-
tions between the SRM and the measurement minimizing the
probability of a detection error (minimum probability-of-error
measurement (MPEM)). We show that for a geometrically uni-
form state set, the SRM is equivalent to the MPEM. We will
consistently use [10] as our principal reference on the SRM.

II. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we formulate our problem and describe our
main results.

A. Problem Formulation

Assume that Alice conveys classical information to Bob by
preparing a quantum channel in a pure quantum state drawn
from a collection of given states . Bob’s problem is to

construct a measurement that will correctly determine the state
of the channel with high probability.

Therefore, let be a collection of normalized
vectors in an -dimensional complex Hilbert space. Con-
cretely, we may always identify with by choosisng appro-
priate coordinates. In general, these vectors are nonorthogonal
and span an-dimensional subspace . The vectors are
linearly independent if .

For our measurement, we restrict our attention to POVMs
consisting of rank-one operators of the form
with measurement vectors . We do not require the vec-
tors to be orthogonal or normalized. However, to constitute
a POVM the measurement vectors must satisfy

(1)

where is the projection operator onto; i.e., the operators
must be a resolution of the identity on.1

We seek the measurement vectors such that one of the
following quantities is minimized.

1) Squared error

where .
2) Weighted squared error

for a given set of positive weights .

B. Main Results

If the states are linearly independent (i.e., if ), then
the optimal solutions to problems (1) and (2) are of the same
general form. We express this optimal solution in different ways.
In particular, we find that the optimal solution is an orthogonal
measurement and not a general POVM.

If , then the solution to problem (1) still has the same
general form. We show how it can be realized as an orthogonal
measurement in an -dimensional space. This orthogonal mea-
surement is just a realization of the optimal POVM in a larger
space than , along the lines suggested by Neumark’s theorem
[12], and it furnishes a physical interpretation of the optimal
POVM.

We define a geometrically uniform (GU) state set as a collec-
tion of vectors , where is a finite
abelian (commutative) group of unitary matrices , and

1Often these operators are supplemented by a projection

� = P = I � P

onto the orthogonal subspaceU � H, so that

� = I

i.e., the augmented POVM is a resolution of the identity onH. However, if the
state vectors are confined toU , then the probability of this additional outcome
is 0, so we omit it.
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is an arbitrary state. We show that for such a state set, the SRM
minimizes the probability of a detection error.

Using these results, we can make the following remarks about
[11] and the SRM [10].

1) The Peres–Wootters measurement is optimal in the least-
squares sense and is equal to the SRM (strangely, this was
not noticed in [10]); it also minimizes the probability of
a detection error.

2) The SRM proposed by Hausladenet al. [10] minimizes
the squared error. It may always be chosen as an orthog-
onal measurement equivalent to the optimal measurement
in the linearly independent case. Further properties of the
SRM are summarized in Theorem 3 (Section VII).

III. L EAST-SQUARESMEASUREMENT

Our objective is to construct a POVM with measurement vec-
tors , optimized to distinguish between a collection of
pure states that span a space . A reasonable approach
is to find a set of vectors that are “closest” to the states

in the least-squares sense. Thus, our measurement consists
of rank-one positive operators of the form ,

. The measurement vectors are chosen to mini-
mize the squared error, defined by

(2)

where denotes theth error vector

(3)

subject to the constraint (1); i.e., the operatorsmust be a
resolution of the identity on .

If the vectors are mutually orthonormal, then the solution
to (2) satisfying the constraint (1) is simply ,

which yields .
To derive the solution in the general case where the vectors

are not orthonormal, denote by and the matrices
whose columns are the vectors and , respectively. The
squared error of (2), (3) may then be expressed in terms of
these matrices as

(4)

where and denote the trace and the Hermitian con-
jugate, respectively, and the second equality follows from the
identity for all matrices , . The con-
straint (1) may then be restated as

(5)

A. The Singular Value Decomposition (SVD)

The least-squares problem of (4) seeks a measurement matrix
that is “close” to the matrix . If the two matrices are close,

then we expect that the underlying linear transformations they
represent will share similar properties. We therefore begin by
decomposing the matrix into elementary matrices that reveal
these properties via thesingular value decomposition(SVD)
[17].

The SVD is known in quantum mechanics, but possibly not
very well known. It has sometimes been presented as a corol-
lary of the polar decomposition (e.g., in [18, Appendix A]). We
present here a brief derivation based on the properties of eigen-
decompositions, since the SVD can be interpreted as a sort of
“square root” of an eigendecomposition.

Let be an arbitrary complex matrix of rank . The-
orem 1 below asserts that has an SVD of the form

, with and unitary matrices and diagonal. The
elements of the SVD may be found from the eigenvalues and
eigenvectors of the nonnegative definite Hermitian ma-
trix and the nonnegative definite Hermitian
matrix . Notice that is the Gram matrix of inner
products , which completely determines the relative ge-
ometry of the vectors . It is elementary that both and
have the same rankas , and that their nonzero eigenvalues
are the same set ofpositive numbers .

Theorem 1 (SVD):Let be a set of vectors in an
-dimensional complex Hilbert space, let be the

subspace spanned by these vectors, and let . Let be
the rank- matrix whose columns are the vectors .
Then

where

1) is an eigende-
composition of the rank- matrix , in
which

a) the positive real numbers are
the nonzero eigenvalues of, and is the positive
square root of ;

b) the vectors are the
corresponding eigenvectors in the-dimensional
complex Hilbert space , normalized so that

;
c) is a diagonal matrix whose first diagonal

elements are , and whose remaining diag-
onal elements are, so is a diagonal
matrix with diagonal elements for
and otherwise;

d) is an unitary matrix whose first columns
are the eigenvectors , which span a subspace

, and whose remaining columns
span the orthogonal complement ;

and
2) is an eigende-

composition of the rank- matrix , in
which

a) the positive real numbers are
as before, but are now identified as the nonzero
eigenvalues of ;

b) the vectors are the
corresponding eigenvectors, normalized so that

;
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c) is as before, so is a diagonal matrix
with diagonal elements for and
otherwise;

d) is an unitary matrix whose first columns
are the eigenvectors , which span the subspace

, and whose remaining columns
span the orthogonal complement .

Since is unitary, we have not only , which implies
that the vectors are orthonormal, , but
also that , which implies that the rank-one projection
operators are a resolution of the identity,

Similarly, the vectors are orthonormal and

These orthonormal bases for and will be called the
-basis and the -basis, respectively. The firstvectors of the
-basis and the -basis span the subspacesand , respec-

tively. Thus we refer to the set of vectors as
the -basis, and to the set as the -basis.

The matrix may be viewed as defining a linear trans-
formation according to . The
SVD allows us to interpret this map as follows. A vector

is first decomposed into its -basis components via
. Since maps to , maps

the th component to . Therefore, by
superposition, maps to . The kernel of
the map is thus , and its image is .

Similarly, the conjugate Hermitian matrix defines the ad-
joint linear transformation as follows: maps

to . The kernel of the adjoint
map is thus , and its image is .

The key element in these maps is the “transjector” (partial
isometry) , which maps the rank-one eigenspace of
generated by into the corresponding eigenspace ofgen-
erated by , and the adjoint transjector , which per-
forms the inverse map.

B. The Least-Squares POVM

The SVD of specifies orthonormal bases forand such
that the linear transformations and map one basis to the
other with appropriate scale factors. Thus, to find anclose
to we need to find a linear transformation that performs a
map similar to .

Employing the SVD , we rewrite the squared
error of (4) as

(6)

where

(7)

The vectors form an orthonormal basis for
. Therefore, the projection operator ontois given by

(8)

Essentially, we want to construct a map such that the im-
ages of the maps defined by and are as close as possible
in the squared norm sense, subject to the constraint

(9)

The SVD of is given by . Consequently,

(10)

where denotes the zero vector. Denoting the image of
under by , for any choice of satisfying
the constraint (9) we have

(11)

and

(12)

Thus, the vectors are mutually orthonormal
and , . Combining (10) and (11), we
may express as

(13)

Our problem therefore reduces to finding a set ofor-
thonormal vectors that minimize , where

. Since the vectors are orthonormal, the
minimizing vectors must be .

Thus, the optimal measurement matrix, denoted by ,
satisfies

(14)

Consequently

(15)

In other words, the optimal is just the sum of the transjec-
tors of the map .

We may express in matrix form as

(16)

where is an matrix defined by

(17)

The residual squared error is then

(18)
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Recall that ; thus .
Also, if the vectors are normalized, then the diagonal ele-
ments of are all equal to , so . Therefore,

(19)

Note that if the singular values are distinct, then the vectors
are unique (up to a phase factor ). Given

the vectors , the vectors are uniquely determined, so the
optimal measurement vectors corresponding toare unique.

If, on the other hand, there are repeated singular values,
then the corresponding vectors are not unique. Nonetheless,
the choice of singular vectors does not affect. Indeed, if
the vectors corresponding to a repeated singular valueare

, then is a projection onto the corresponding
eigenspace, and therefore is the same regardless of the choice
of the vectors . Thus

independent of the choice of , and the optimal measure-
ment is unique.

We may express directly in terms of as

(20)

where denotes theMoore–Penrose pseudo-inverse[17]; the
inverse is taken on the subspace spanned by the columns of the
matrix. Thus

where is a diagonal matrix with diagonal ele-
ments for and otherwise; consequently,

.
Alternatively, may be expressed as

(21)

where

In Section VII, we will show that (21) is equivalent to the SRM
proposed by Hausladenet al. [10].

In Appendix A we discuss some of the properties of the
residual squared error .

IV. ORTHOGONAL LEAST-SQUARESMEASUREMENT

In the previous section we sought the POVM consisting of
rank-one operators that minimizes the least-squares error. We
may similarly seek the optimal orthogonal measurement of the
same form. We will explore the connection between the re-
sulting optimal measurements both in the case of linearly in-
dependent states , and in the case of linearly de-
pendent states ( ).

Linearly Independent States:If the states are linearly
independent and consequentlyhas full column rank (i.e.,

), then (20) reduces to

(22)

The optimal measurement vectors are mutually or-
thonormal, since their Gram matrix is

(23)

Thus, the optimal POVM is in fact an orthogonal measurement
corresponding to projections onto a set of mutually orthonormal
measurement vectors, which must of course be the optimal or-
thogonal measurement as well.

Linearly Dependent States:If the vectors are linearly
dependent, so that the matrixdoes not have full column rank
(i.e., ), then the measurement vectors cannot be
mutually orthonormal since they span an-dimensional sub-
space. We therefore seek the orthogonal measurementthat
minimizes the squared error given by (4), subject to the or-
thonormality constraint .

In the previous section the constraint was on . Here the
constraint is on , so we now write the squared erroras

(24)

where

(25)

and where the columns of form the -basis in the SVD of
. Essentially, we now want the images of the maps defined by
and to be as close as possible in the squared norm sense.
The SVD of is given by . Thus

(26)

Denoting the images of under by , it fol-
lows from the constraint that the vectors

, are orthonormal.
Our problem therefore reduces to finding a set ofor-

thonormal vectors that minimize , where
(since

independent of the choice of ). Since the
vectors are orthonormal, the minimizing vectors must be

, .
We may choose the remaining vectors , ,

arbitrarily, as long as the resulting vectors are mutually
orthonormal. This choice will not affect the residual squared
error. A convenient choice is , .
This results in an optimal measurement matrix denoted by,
namely

(27)

We may express in matrix form as

(28)

where is given by (17) with .
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The residual squared error is then

(29)

where is given by (18).
Evidently, the optimal orthogonal measurement is not strictly

unique. However, its action in the subspacespanned by the
vectors and the resulting are unique.

A. The Optimal Orthogonal Measurement and Neumark’s
Theorem

We now try to gain some insight into the orthogonal measure-
ment. Our problem is to find a set of measurement vectors that
are as close as possible to the states, where the states lie in
an -dimensional subspace. When we showed that the
optimal measurement vectors are mutually orthonormal.
However, when , there are at mostorthonormal vectors
in . Therefore, imposing an orthogonality constraint forces the
optimal orthonormal measurement vectors to lie partly in
the orthogonal complement . The corresponding measure-
ment consists of projections onto orthonormal measurement
vectors, where each vector has a component in, , and a
component in , . We may express in terms of these
components as

(30)

where and are the columns of and , re-
spectively. From (27) it then follows that

(31)

and

(32)

Comparing (31) with (15), we conclude that and
therefore . Thus, although , their com-
ponents in are equal, i.e., .

Essentially, the optimal orthogonal measurement seeksor-
thonormal measurement vectors whose projections onto
are as close as possible to thestates . We now see that
these projections are the measurement vectorsof the op-
timal POVM. If we consider only the components of the mea-
surement vectors that lie in, then

Indeed, Neumark’s theorem [12] shows that our optimal
orthogonal measurement is just a realization of the optimal
POVM. This theorem guarantees that any POVM with mea-
surement operators of the form may be realized
by a set of orthogonal projection operators in an extended
space such that , where is the projection operator
onto the original smaller space. Denoting by and the

optimal rank-one operators and , respectively,
(31) asserts that

(33)

Thus the optimal orthogonal measurement is a set ofpro-
jection operators in that realizes the optimal POVM in the
-dimensional space . This furnishes a physical interpre-

tation of the optimal POVM. The two measurements are equiv-
alent on the subspace.

We summarize our results regarding the LSM in the following
theorem.

Theorem 2 (LSM):Let be a set of vectors in an
-dimensional complex Hilbert space that span an-dimen-

sional subspace . Let denote the optimal mea-
surement vectors that minimize the least-squares error defined
by (2), (3), subject to the constraint (1). Let be the
rank- matrix whose columns are the vectors , and
let be the measurement matrix whose columns are the
vectors . Then the unique optimal is given by

where and denote the columns of and , respectively,
and is defined in (17).

The residual squared error is given by

where are the nonzero singular values of. In
addition

1) if ,

a) ;
b) and the corresponding measurement

is an orthogonal measurement;
2) if ,

a) may be realized by the optimal orthogonal mea-
surement

b) the action of the two optimal measurements in the
subspace is the same.

V. WEIGHTED LSM

In the previous section we sought a set of vectorsto min-
imize the sum of the squared errors , where

is the th error vector. Essentially, we are as-
signing equal weights to the different errors. However, in many
cases we might choose to weight these errors according to some
prior knowledge regarding the states . For example, if the
state is prepared with high probability, then we might wish
to assign a large weight to . It may therefore be of interest
to seek the vectors that minimize a weighted squared error.
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Thus, we consider the more general problem of minimizing
the weighted squared error given by

(34)

subject to the constraint

(35)

where is the weight given to theth squared norm error.
Throughout this section we will assume that the vectorsare
linearly independent and normalized.

The derivation of the solution to this minimization problem is
analogous to the derivation of the LSM with a slight modifica-
tion. In addition to the matrices and , we define an
diagonal matrix with diagonal elements . We further de-
fine . We then express in terms of , , and

as

(36)

From (8) and (9), must satisfy

where are the columns of , the -basis in the SVD of
. Consequently, must be of the form ,

where the are orthonormal vectors in , from which it
follows that . Thus

Moreover, since is diagonal and the vectors
are normalized, we have

Thus, we may express the squared erroras

(37)

where is defined as

(38)

Thus minimization of is equivalent to minimization of
. Furthermore, this minimization problem is equivalent to

the least-squares minimization given by (4), if we substitute
for .

Therefore, we now employ the SVD of , namely,
. Since is assumed to be invertible, the space

spanned by the columns of is equivalent to the
space spanned by the columns of, namely . Thus, the first

columns of , denoted by , constitute an orthonormal
basis for , and , where

(39)

We now follow the derivation of the previous section, where
we substitute for and , and for , , and ,
respectively. The minimizing follows from Theorem 2

(40)

where the are the columns of . The resulting error
is given by

(41)

Defining , we have

In addition, . Assuming the vectors
are normalized, the diagonal elements ofare all equal to

, so and

(42)

From (37), the residual squared error is therefore given by

(43)

Note that if where is an arbitrary constant,
then and , where and are the unitary
matrices in the SVD of . Thus in this case, as we expect,

, where is the LSM given by (22).
It is interesting to compare the minimal residual squared error

of (43) with the of (19) derived in the previous sec-
tion for the nonweighted case, which for the case reduces
to . In the nonweighted case,
for all , resulting in and . Therefore, in
order to compare the two cases, the weights should be chosen
such that . (Note that only the ratios
of the ’s affect the WLSM. The normalization
is chosen for comparison only.) In this case

(44)

Recall that and are the eigenvalues of
and , respectively. We may therefore use Ostrowski’s theorem
(see Appendix A) to obtain the following bounds:

(45)

Since and , can be greater or
smaller then , depending on the weights .
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VI. EXAMPLE OF THE LSM AND THE WLSM

We now give an example illustrating the LSM and the WLSM.
Consider the two states

(46)

We wish to construct the optimal LSM for distinguishing be-
tween these two states. We begin by forming the matrix

(47)

The vectors and are linearly independent, so is a
full-rank matrix . Using Theorem 1 we may determine
the SVD , which yields

(48)

From (16) and (17), we now have

(49)

and

(50)

where and are the optimal measurement vectors that
minimize the least-squares error defined by (2), (3). Using (22)
we may express the optimal measurement vectors directly in
terms of the vectors and

(51)

thus

(52)

As expected from Theorem 2, ; the vectors
and are linearly independent, so the optimal mea-

surement vectors must be orthonormal. The LSM then consists
of the orthogonal projection operators and

.
Fig. 1 depicts the vectors and together with the op-

timal measurement vectors and . As is evident from
(52) and from Fig. 1, the optimal measurement vectors are as
close as possible to the corresponding states, given that they
must be orthogonal.

Suppose now we are given the additional information
and , where and denote the prior probabilities of

and , respectively, and . We may still employ
the LSM to distinguish between the two states. However, we
expect that a smaller residual squared error may be achieved by
employing a WLSM. In Fig. 2, we plot the residual squared error

given by (43) as a function of, when using a WLSM with
weights and (we will justify this choice
of weights in Section VII). When , , and the
resulting WLSM is equivalent to the LSM. For , the

Fig. 1. Two-dimensional example of the LSM. The state vectorsj� i andj� i
are given by (46), the optimal measurement vectorsj�̂ i andj�̂ i are given by
(50) and are orthonormal, andje i andje i denote the error vectors defined in
(3).

Fig. 2. Residual squared errorE (43) as a function ofp, the prior
probability ofj� i, when using a WLSM. The weights are chosen asw =

p
p

andw =
p
1� p. Forp = 1=2, the WLSM and the LSM coincide.

WLSM does indeed yield a smaller residual squared error than
the LSM (for which the residual squared error is approximately

).

VII. COMPARISON WITHOTHER PROPOSEDMEASUREMENTS

We now compare our results with the SRM proposed by
Hausladenet al. in [10], and with the measurement proposed
by Peres and Wootters in [11].

Hausladenet al. construct a POVM consisting of rank-one
operators to distinguish between an arbitrary set
of vectors . We refer to this POVM as the SRM. They give
two alternative definitions of their measurement: Explicitly,

(53)

where denotes the matrix of columns . Implicitly, the
optimal measurement vectors are those that satisfy

(54)

i.e., is equal to the th element of , where
.
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Comparing (53) with (21), it is evident that the SRM coin-
cides with the optimal LSM. Furthermore, following the dis-
cussion in Section IV, if the states are linearly independent then
this measurement is a simple orthogonal measurement and not
a more general POVM. (This observation was made in [13] as
well.)

The implicit definition of (54) does not have a unique solution
when the vectors are linearly dependent. The columns of
are one solution of this equation. Since the definition depends
only on the product , any measurement vectors that are
columns of such that constitutes a solution
as well. In particular, the optimal orthogonal LSM for the
linearly dependent case, given by (27), satisfies ,
rendering the optimal orthogonal LSM a solution to (54). Con-
sequently, even in the case of linearly dependent states, the SRM
proposed by Hausladenet al. and used to achieve the classical
capacity of a quantum channel may always be chosen as an or-
thogonal measurement. In addition, this measurement is optimal
in the least-squares sense.

We summarize our results regarding the SRM in the following
theorem.

Theorem 3 (SRM):Let be a set of vectors in an
-dimensional complex Hilbert space that span an-dimen-

sional subspace . Let be the rank-
matrix whose columns are the vectors . Let and de-
note the columns of the unitary matricesand , respectively,
and let be defined as in (17). Let be vectors satis-
fying

where ; a POVM consisting of the operators
, , is referred to as SRM. Let be the

measurement matrix whose columns are the vectors; is
referred to as SRM matrix. Then

1) if ,

a)

is unique;

b) and the corresponding SRM is an
orthogonal measurement;

c) the SRM is equal to the optimal LSM;
2) if ,

a) the SRM is not unique;

b)

is SRM matrix; the corresponding SRM is equal to
the optimal orthogonal LSM;

c) define , where is a projection onto
and is any SRM matrix; then

i) is unique, and is given by

ii) is a SRM matrix; the corresponding
SRM is equal to the optimal LSM;

iii) may be realized by the optimal orthog-
onal LSM

The SRM defined in [10] does not take the prior probabili-
ties of the states into account. In [9], a more general def-
inition of the SRM that accounts for the prior probabilities is
given by defining new vectors . The weighted
SRM (WSRM) is then defined as the SRM corresponding to the
vectors . Similarly, the WLSM is equal to the LSM corre-
sponding to the vectors . Thus, if we choose the weights

proportional to , then the WLSM coincides with the
WSRM. A theorem similar to Theorem 3 may then be formu-
lated where the WSRM and the WLSM are substituted for the
SRM and the LSM.

We next apply our results to a problem considered by Peres
and Wootters in [11]. The problem is to distinguish between
three two-qubit states

(55)

where , , and correspond to polarizations of a photon
at 0 , 60 , and 120, and the states have equal prior probabili-
ties. Since the vectors are linearly independent, the optimal
measurement vectors are the columns ofgiven by (20)

(56)

Substituting (55) in (56) results in the same measurement vec-
tors as those proposed by Peres and Wootters. Thus, their
measurement is optimal in the least-squares sense. Furthermore,
the measurement that they propose coincides with the SRM for
this case. In the next section, we will show that this measure-
ment also minimizes the probability of a detection error.

VIII. T HE SRM FORGEOMETRICALLY UNIFORM STATE SETS

In this section, we will consider the case in which the collec-
tion of states has a strong symmetry property, called geometric
uniformity [16]. Under these conditions, we show that the SRM
is equivalent to the measurement minimizing the probability of
a detection error, which we refer to as the MPEM. This result
generalizes a similar result of Banet al. [7].

A. Geometrically Uniform State Sets

Let be a finite abelian (commutative) group of unitary
matrices . That is, contains the identity matrix; if con-
tains , then it also contains its inverse ; the product

of any two elements of is in ; and for
any two elements in [19].

A state set generated byis a set

where is an arbitrary state. The groupwill be called the
generating groupof . Such a state set has strong symmetry
properties, and will be calledgeometrically uniform(GU). For
consistency with the symmetry of, we will assume equiprob-
able prior probabilities on .
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If the group contains a rotation such that for
some integer , then the GU state set is linearly depen-
dent, because is a fixed point under , and the only
fixed point of a rotation is the zero vector .

Since , the inner product of two vectors in is

(57)

where is the function on defined by

(58)

For fixed , the set

is just a permutation of since for all [19].
Therefore, the numbers are a
permutation of the numbers . The same
is true for fixed . Consequently, every row and column of the

Gram matrix is a permutation of the
numbers .

It will be convenient to replace the multiplicative groupby
an additive group to which is isomorphic.2 Every finite
abelian group is isomorphic to a direct product of a finite
number of cyclic groups: , where

is the cyclic additive group of integers modulo , and
[19]. Thus, every element can be associ-

ated with an element of the form ,
where . We denote this one-to-one correspondence by

. Because the correspondence is an isomorphism, it fol-
lows that if , , , and , then

, where the addition of and
is performed by componentwise addi-

tion modulo the corresponding .
Each state vector will henceforth be denoted

as , where is the group element corresponding to
. The zero element corresponds

to the identity matrix , and an additive inverse
corresponds to a multiplicative inverse . The
Gram matrix is then the matrix

(59)
with row and column indices , where is now the
function on defined by

(60)

B. The SRM

We now obtain the SRM for a GU state set. We begin by
determining the SVD of . To this end we introduce the fol-
lowing definition. The Fourier transform (FT) of a complex-
valued function defined on
is the complex-valued function defined by

(61)

where the Fourier kernel is

(62)

2Two groupsG andG are isomorphic, denoted byG �= G , if there is a
bijection (one-to-one and onto map)': G ! G which satisfies'(xy) =
'(x)'(y) for all x; y 2 G [19].

Here, and are the th components of and , respectively,
and the product is taken as an ordinary integer modulo.
The Fourier kernel evidently satisfies

(63)

(64)

(65)

(66)

We define the FT matrix over as the matrix

The FT of a column vector is then the
column vector given by . It
is easy to show that the rows and columns ofare orthonormal,
i.e., is unitary

(67)

Consequently, we obtain the inverse FT formula

(68)

We now show that the eigenvectors of the Gram matrixof
(59) are the column vectors

of . Let be the th row of .
Then

(69)

where the last equality follows from (66), and is
the FT of . Thus, has the eigendecomposition

(70)

where is an diagonal matrix with diagonal elements

(the eigenvalues are real and nonnegative becauseis
Hermitian). Consequently, the-basis of the SVD of is

, and the singular values of are .
We now write the SVD of in the following form:

(71)

where is the matrix whose columns are the
columns of the -basis of the SVD of for values of
such that and are zero columns otherwise, and

has rows

It then follows that

if

otherwise
(72)
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where

(73)

is the th element of the FT of regarded as a row vector of
column vectors .

Finally, the SRM is given by the measurement matrix

(74)

The measurement vectors (the columns of ) are thus
the inverse FT of the columns of

(75)

Note that if where , and ,
then

Therefore, left multiplication of the state vectors

by permutes the state vectors to

We now show that under this transformation the measurement
vectors are similarly permuted, i.e.,

The FT of the permuted vectors is

(76)

Normalization by when yields
. Finally, the inverse FT yields the measurement

vectors

(77)

where we have used (63) and (65).
This shows that the measurement vectors have the

same symmetries as the state vectors, i.e., they also form a
GU set with generating group. Explicitly, if , then

, where denotes .

C. The SRM and the MPEM

We now show that for GU state sets, the SRM is equivalent
to the MPEM. In the process, we derive a sufficient condition
for the SRM to minimize the probability of a detection error for
a general state set (not necessarily GU) comprised of linearly
independent states.

Holevo [2], [4] and Yuenet al. [3] showed that a set of
measurement operators comprises the MPEM for a set of
weighted density operators if they satisfy

(78)

(79)

where

(80)

and is required to be Hermitian. Note that if (78) is satisfied,
then is Hermitian.

In our case, the measurement operatorsare the operators
, and the weighted density operators may be taken

simply as the projectors , since their prior proba-
bilities are equal. The conditions (78), (79) then become

(81)

(82)

We first verify that the conditions (78) (or equivalently (81))
are satisfied. Since the matrix is symmetric

where is a complex-valued function that sat-
isfies . Therefore

(83)

(84)

Substituting these relations back into (81), we obtain

(85)

which verifies that the conditions (78) are satisfied.
Next, we show that conditions (79) are satisfied. Our proof is

similar to that given in [7]. Since

(86)

where denotes the row of corresponding to. Then

(87)
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From (71) and (74) we have

(88)

and

(89)

Substituting (87)–(89) back into (82), the conditions of (82)
reduce to

(90)

where is given by (86). It is therefore sufficient to show
that

(91)

or equivalently, that for any . Using the
Cauchy–Schwartz inequality, we have

(92)

which verifies that the conditions (79) are satisfied.
We conclude that when the state setis GU, the SRM is also

the MPEM.
An alternative way of deriving this result for the case of lin-

early independent states is by use of the following criterion
of Sasakiet al. [13]. Denote by the matrix whose columns
are the vectors where is the prior proba-
bility of state . If the states are linearly independent and

has constant diagonal elements, then the SRM cor-
responding to the vectors (i.e., a WSRM), is equivalent to
the MPEM.

This condition is hard to verify directly from the vectors .
The difficulty arises from the fact that generally there is no
simple relation between the diagonal elements of and the
elements of . Thus, given an ensemble of pure states with
prior probabilities , we typically need to calculate (which
in itself is not simple to do analytically) in order to verify the
condition above. However, as we now show, in some cases this
condition may be verified directly from the elements ofusing
the SVD.

Employing the SVD we may express as

(93)

where is a diagonal matrix with the first diagonal elements
equal to , and the remaining elements all equal to zero, where
the are the singular values of . Thus, the WSRM is equal
to the MPEM if , , where the vectors

denote the columns of , and is a constant. In particular,
if the elements of all have equal magnitude, then is
constant, and the SRM minimizes the probability of a detection
error.

If the state set is GU, then the matrix is the FT matrix
, whose elements all have equal magnitude. Thus, if the states

are linearly independent and GU, then the SRM is equivalent to
the MPEM.

We summarize our results regarding GU state sets in the fol-
lowing theorem.

Theorem 4 (SRM for GU State Sets):Let

be a geometrically uniform state set generated by a finite abelian
group of unitary matrices, where is an arbitrary state. Let

, and let be the matrix of columns . Then the SRM
is given by the measurement matrix

where is the FT matrix over , is the diagonal matrix
whose diagonal elements are when and
otherwise, where are the singular values of

when and otherwise, where is
the FT of , and is the th row of .

The SRM has the following properties:

1) the measurement matrix has the same symmetries
as ;

2) the SRM is the LSM;
3) the SRM is the MPEM.

D. Example of a GU State Set

We now consider an example demonstrating the ideas of the
previous section. Consider the groupof unitary ma-
trices , where

(94)

Let the state set be

where . Then is

(95)

and the Gram matrix is given by

(96)

Note that the sum of the states is , so the state set is
linearly dependent.

In this case, is isomorphic to , i.e.,
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The multiplication table of the group is

(97)

If we define the correspondence

(98)
then this table becomes the addition table of :

(99)

Only the way in which the elements are labeled distinguishes
the table of (99) from the table of (97); thus . Comparing
(97) and (99) with (96), we see that the tables and the matrix
have the same symmetries.

Over , the Fourier matrix is the Hadamard
matrix

(100)

Using (72) and (74), we may find the measurement matrix of
the SRM

(101)

We verify that the columns of may be expressed as
, , where .

Thus, the measurement vectors also form a GU set gener-
ated by .

E. Applications of GU State Sets

We now discuss some applications of Theorem 4.
1) Binary State Set:Any binary state set

is GU, because it can be generated by the binary group
, where is the identity and is the reflection about the

hyperplane halfway between the two states. Specifically, if the
two states and are real, then

(102)

where . We may immediately verify that
, so that , and that .

If the states are complex with , then define
. The states and differ by a phase factor

and therefore correspond to the same physical state. We may
therefore replace our state set by the equiv-
alent state set . Now the generating group
is , where is defined by (102), with

.
The generating group is isomorphic to .

The Fourier matrix therefore reduces to the discrete FT
(DFT) matrix

(103)

The squares of the singular values ofare therefore

where are the DFT values of ,
with and . Thus

(104)

From Theorem 4 we then have

(105)

We may now apply (105) to the example of Section VI. In
that example . From (104) it then follows
that and . Substituting these values
in (105) yields

(106)

which is equivalent to the optimal measurement matrix obtained
in Section VI.

We could have obtained the measurement vectors directly
from the symmetry property of Theorem 4.1. The state set

is invariant under a reflection about the line
halfway between the two states, as illustrated in Fig. 3. The
measurement vectors must also be invariant under the same
reflection. In addition, since the states are linearly independent,
the measurement vectors must be orthonormal. This completely
determines the measurement vectors shown in Fig. 3. (The only
other possibility, namely, the negatives of these two vectors, is
physically equivalent.)

2) Cyclic State Set:A cyclic generating group has ele-
ments , , where is a unitary matrix with

. A cyclic group generates a cyclic state set

where is arbitrary. Banet al. [7] refer to such a cyclic state
set as a symmetrical state set, and show that in that case the
SRM is equivalent to the MPEM. This result is a special case of
Theorem 4.
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Fig. 3. Symmetry property of the state setS = fj� i; j� ig and the
optimum measurement vectorsfj�̂ i; j�̂ ig. j� i andj� i are given by (46),
and j�̂ i and j�̂ i are given by (50). Because the state vectors are invariant
under a reflection about the dashed line, the optimum measurement vectors
must also have this property. In addition, the measurement vectors must
be orthonormal. The symmetry and orthonormality properties completely
determine the optimum measurement vectorsfj�̂ i; j�̂ ig (up to sign
reversal).

Using Theorem 4 we may obtain the measurement matrix
as follows. If is cyclic, then is a circulant matrix,3 and is
the cyclic group . The FT kernel is then
for , and the Fourier matrix reduces to the
DFT matrix. The singular values of are times the square
roots of the DFT values of the inner products

We then calculate .
3) Peres–Wootters Measurement:We may apply these re-

sults to the Peres–Wootters problem considered at the end of
Section VII. In this problem, the states to be distinguished are
given by , , and , where

, , and correspond to polarizations of a photon at 0,
60 , and 120, and the states have equal prior probabilities. The
state set is thus a cyclic state set with

, , where and is a
rotation by 60.

In Section VII, we concluded that the Peres–Wootters mea-
surement is equivalent to the SRM and consequently minimizes
the squared error. From Theorem 4 we now conclude that the
Peres–Wootters measurement minimizes the probability of a de-
tection error as well.

IX. CONCLUSION

In this paper, we constructed optimal measurements in the
least-squares sense for distinguishing between a collection of

3A circulant matrix is a matrix where every row (or column) is obtained by
a right circular shift (by one position) of the previous row (or column). An ex-
ample is

a a a

a a a

a a a

:

quantum states. We considered POVMs consisting of rank-one
operators, where the vectors were chosen to minimize a possibly
weighted sum of squared errors. We saw that for linearly inde-
pendent states, the optimal LSM is an orthogonal measurement,
which coincides with the SRM proposed by Hausladenet al.
[10]. If the states are linearly dependent, then the optimal POVM
still has the same general form. We showed that it may be real-
ized by an orthogonal measurement of the same form as in the
linearly independent case. We also noted that the SRM, which
was constructed by Hausladenet al.[10] and used to achieve the
classical channel capacity of a quantum channel, may always be
chosen as an orthogonal measurement.

We showed that for a GU state set the SRM minimizes the
probability of a detection error. We also derived a sufficient con-
dition for the SRM to minimize the probability of a detection
error in the case of linearly independent states based on the prop-
erties of the SVD.

APPENDIX A
PROPERTIES OF THERESIDUAL SQUARED ERROR

We noted at the beginning of Section III that if the vectors
are mutually orthonormal, then the optimal measurement is

a set of projections onto the states , and the resulting squared
error is zero. In this case, and ,

.
If the vectors are normalized but not orthogonal, then we

may decompose as , where is the matrix of
inner products for and has diagonal elements all
equal to . We expect that if the inner products are relatively
small, i.e., if the states are nearly orthonormal, then we will
be able to distinguish between them pretty well; equivalently,
we would expect the singular values to be close to. Indeed,
from [20] we have the following bound on the singular values
of :

(107)

We now point out some properties of the minimal achievable
squared error given by (19). For a given , depends
only on the singular values of the matrix. Consequently, any
linear operation on the vectors that does not affect the sin-
gular values of will not affect .

For example, if we obtain a new set of states by unitary
mixing of the states , i.e., where is an
unitary matrix, then the new optimal measurement vectors
will typically differ from the measurement vectors ; how-
ever, the minimal achievable squared error is the same. Indeed,
defining , where , we see that
the matrices and are related through a similarity transfor-
mation and consequently have equal eigenvalues [20].

Next, suppose we obtain a new set of statesby a general
nonsingular linear mixing of the states , i.e., ,
where is an arbitrary nonsingular matrix. In this case,
the eigenvalues of will in general differ from the
eigenvalues of . Nevertheless, we have the following theorem:
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Theorem 5: Let and denote the minimal achiev-
able squared error when distinguishing between the pure state
ensembles and respectively, where

Let denote the matrix whoseth element is . Let
and denote the largest and smallest eigenvalues of

, respectively, and let denote the singular
values of the matrix of columns . Then

Thus

if

and

if

In particular, if is unitary then .
Proof: We rely on the following theorem due to Ostrowski

(see, e.g., [20, p. 224]).

Ostrowski Theorem:Let and denote matrices
with Hermitian and nonsingular, and let .
Let denote the th eigenvalue of the corresponding ma-
trix, where the eigenvalues are arranged in decreasing order. For
every , there exists a positive real numbersuch
that and .

Combining this theorem with the expression (19) for the
residual squared error results in

Substituting results in Theorem 5.
If is unitary, then , and for all .
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