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Abstract

In this work we show how to combine bottom-up and top-
down approaches into a single figure-ground segmentation
process. This process provides accurate delineation of ob-
ject boundaries that cannot be achieved by either the top-
down or bottom-up approach alone. The top-down ap-
proach uses object representation learned from examples to
detect an object in a given input image and provide an ap-
proximation to its figure-ground segmentation. The bottom-
up approach uses image-based criteria to define coherent
groups of pixels that are likely to belong together to either
the figure or the background part. The combination pro-
vides a final segmentation that draws on the relative mer-
its of both approaches: The result is as close as possible
to the top-down approximation, but is also constrained by
the bottom-up process to be consistent with significant im-
age discontinuities. We construct a global cost function that
represents these top-down and bottom-up requirements. We
then show how the global minimum of this function can
be efficiently found by applying the sum-product algorithm.
This algorithm also provides a confidence map that can be
used to identify image regions where additional top-down or
bottom-up information may further improve the segmenta-
tion. Our experiments show that the results derived from the
algorithm are superior to results given by a pure top-down
or pure bottom-up approach. The scheme has broad appli-
cability, enabling the combined use of a range of existing
bottom-up and top-down segmentations.

1. Introduction
The goal of figure-ground segmentation is to identify an ob-
ject in an image and separate it from the background. One
approach to segmentation, the bottom-up approach, is to
first segment the image into regions and then identify the

1This research was supported in part by the Moross Laboratory at the
Weizmann Institute of Science.

image regions that correspond to a single object. Relying
mainly on continuity principles, this approach groups pixels
according to the grey level or texture uniformity of image
regions, as well as the smoothness and continuity of bound-
ing contours. The main difficulty of this approach is that
an object may be segmented into multiple regions, some of
which may merge the object with its background.

This difficulty as well as evidence from human vision
[1, 2], suggests that object recognition facilitates segmen-
tation. A complementary approach, called top-down seg-
mentation, is therefore to use prior knowledge about an ob-
ject, such as its possible shape, color, or texture, to guide
the segmentation [3]. The main difficulty in this approach
stems from the large variability in the shape and appearance
of objects within a given class. Consequently, segmentation
results produced by a top-down approach alone may not ac-
curately delineate the object’s figure-ground boundary.

The relative merits of bottom-up and top-down ap-
proaches are illustrated in Fig. 1. In this paper we de-
scribe a scheme that integrates top-down with bottom-
up segmentation to achieve optimal segmentation. The
method combines two recently developed segmentation ap-
proaches: a top-down class-specific approach [3] that effec-
tively addresses high variability within object classes and
automatically learns the class representation from unseg-
mented training images [4]; and a bottom-up approach [5]
that rapidly detects homogeneous image regions. In con-
trast with previous approaches for combining class-specific
knowledge with bottom-up information ([6, 7, 8]), the com-
bined approach presented here is fast (linear in the num-
ber of pixels) and takes into account image measurements
at multiple scales, converging to a global optimum in just
one pass. In addition, the combination is general and can
be applied to combine a variety of top-down and bottom-up
algorithms.

In section 2 we describe briefly the bottom-up and top-
down schemes used. We then focus on the new combined
approach.
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Figure 1: The relative merits of the bottom-up and the top-down
approaches. (a.) Input image. (b.) The bottom-up hierarchical
segmentation [5] (at three different scales) can accurately detect
image discontinuities but may also segment an object into multi-
ple regions and merge object parts with the background. (Each
region in uniform color represents a segment.) (c.) The top-down
approach [3] provides a meaningful approximation for the figure-
ground segmentation of the image, but may not follow exactly im-
age discontinuities. The goal of this paper is to combine these
approaches to achieve optimal segmentation.

2. Related work

Bottom-up segmentation

Bottom-up segmentation approaches use different image-
based criteria and search algorithms to find homogenous
segments within the image. A common bottom-up approach
is to use a graph representation of the image (with the nodes
representing pixels) and partition the graph into subsets cor-
responding to salient image regions. A recent bottom-up
segmentation [5] (also used in this work) produces a multi-
scale, hierarchical graph representation of the image. The
resulting segmentation takes into account texture, average
intensity and boundary properties of image-regions. The
segmentation applies successive, recursive coarsening, in
which homogenous segments at a given level are used to
form larger homogenous segments at the next level. In this
manner, the image is segmented into fewer and fewer seg-
ments. This process produces a segmentation weighted, hi-
erarchical graph in which each segment is connected with
a relating weight to any other segment at a coarser level,
if the first was one of the segments used to define the lat-
ter. Neighboring segments within each level in the hierar-
chy are connected with appropriate weights that reflect their
similarities. This coarsening process is produced efficiently,
linear in the number of pixels.

The algorithm also provides a measure of saliency (re-
lated to a normalized-cut function) that ranks segments ac-
cording to their distinctiveness. The saliency is reflected by
an energy measure Γi that describes the segment’s dissimi-
larity to its surrounding, divided by its internal homogene-
ity. Uniform segments that contrast with their surrounding
(e.g. a uniform black segment on a white background) will
be highly salient, and will therefore have very low energy
Γi, whereas any segments against similar background will
have low saliency and high energy Γi.

Top-down segmentation

The top-down segmentation approaches rely on acquired
class-specific information, and can only be applied to im-
ages from a specific class. These include deformable tem-
plates [9], active shape models (ASM) [10] and active con-
tours (snakes) [11]. A recent top-down, class-specific seg-
mentation approach [3] (also applied in this work) deals
with the high variability of shape and appearance within a
specific class by using image fragments (or patches). These
fragments are used as shape primitives for the class. Seg-
mentation is obtained by covering the image with a subset
of these fragments, followed by the use of this cover to de-
lineate the figure boundaries. The approach can be divided
into two stages – training and segmenting. In the train-
ing stage, a set of informative image fragments (fragment
set) is constructed from training data to capture the possible
variations in the shape and appearance of common object
parts within a given class. The figure-ground segmentation
of each fragment is then learned automatically [4], or can
be given manually, and used for the segmentation stage. A
set of classifying fragments (i.e., fragments that are highly
likely to be detected in class images compared with non-
class images) are derived from the fragment set. These are
used in the segmentation stage to classify a novel input im-
age as well as to detect the approximate location and scaling
of the corresponding objects [12, 13, 14, 15].

The entire fragment set also provides an over-complete
representation of the class. For instance, for the class of
horses, the set contains a large repertoire of fragments rep-
resenting different options for the appearance and shape of
the legs, tail, body, neck and head. Consequently, in a given
class image, detected fragments are overlapping, and to-
gether they are likely to completely cover the entire object.
The same image area can be covered by a few alternative
fragments (e.g. different horse heads, legs etc.). The frag-
ments are also free to move with respect to each other as
long as they preserve consistency, allowing variety in shape.
Each covering fragment applies its figure-ground segmen-
tation (also termed figure-ground labeling) to vote for the
classification of the pixels it covers. The overall voting de-
fines a figure-ground segmentation map T (x, y) of the im-
age, which classifies each pixel in the image as figure or
background. The map can be given in either a determin-
istic form (a pixel can be either figure, T (x, y) = 1, or
background, T (x, y) = −1) or a probabilistic form (fig-
ure with likelihood T (x, y) and background with likelihood
1 − T (x, y)). An overview of the approach is illustrated in
Fig. 2.

3. Combining Top-down & Bottom-up
In this section we describe in detail how the bottom-up and
top-down processes are integrated into a combined segmen-

2



(a) (b) (c) (d) (e)

Figure 2: Overview of the top-down approach. (a.) Input image. Fragments stored in memory (b) are used to detect and cover the object
(c).(d.) The figure-ground labeling of the covering fragments is used to label the image pixels as figure (blue region) or background. (e.)
The boundary defined by the figure-ground segmentation (red contour).

(a) (b) (c)

Figure 3: The bottom-up segmentation tree. (a.) Input image.
(b.) Bottom-up segmentation of (a) at multiple scales. (c.) Seg-
mentation tree. The bottom-up segments are organized in a tree
structure. (The colors of the segments in (b) match those of the
corresponding nodes in (c).)

tation scheme. The final goal is to construct a classification
map C(x, y) that makes the best possible compromise be-
tween a top-down requirement and a bottom-up constraint.
The top-down requirement is to make C as close as possible
to the initial top-down classification map T . The bottom-up
constraint requires C to match the image structure, so that
pixels within homogenous image regions, as defined by the
bottom-up process, are likely be segmented together into ei-
ther the figure or background part of the image. We deduce
from the hierarchical graph constructed by [5] a segmen-
tation tree (See Fig. 3). We also use the energy measure
Γi provided by this bottom-up algorithm. This measure is
modified by a monotonic function to obtain another mea-
sure of saliency h(Γi), such that hi ∈ [0, 1) and hi → 1 as
the segment Si becomes more and more salient.

The combined segmentation algorithm proceeds by as-
signing each segment in the segmentation tree to either “fig-
ure” or “background,” as indicated by the segment’s cor-
responding label si = +1/ − 1. A configuration vector
s̄ represents the labeling si of all the segments in the seg-
mentation tree and the configuration space Ω is defined as
Ω = {−1, +1}N where N is the number of segments. Each
configuration vector s̄ defines a figure-ground classification
at all levels of the segmentation tree. A segment Si at a
given level classifies its pixels by the corresponding label
si. The label of a segment si can be different from the label

s−i of its parent, and therefore the labeling at a finer level
can change and overrule coarser level labeling. The classi-
fication map C(s̄) is therefore determined by the labeling
at the finest level of the tree, but, as explained below, the
labeling at all levels is important to define the quality, or
cost, of a proposed segmentation. In this manner, uniform
regions created by the bottom-up process can be split into
figure and background parts by smaller segments, and the
final segmentation can reach pixel and even sub-pixel accu-
racy.

We define a cost function that evaluates the classifica-
tion map defined by each configuration vector, with the aim
of obtaining an optimal compromise between top-down and
bottom-up penalty terms. The top-down term penalizes con-
figuration vectors that result in classifications far away (in
terms of Euclidean distance) from the initial top-down ap-
proximation. The bottom-up term penalizes configuration
vectors that separate homogenous image regions into figure
and background parts. The full cost function is defined in
such a manner that its global minimum can be computed
efficiently, using only a single bottom-up pass of the seg-
mentation tree followed by a single top down pass. The
cost function P : Ω → � is defined as follows:

P (s̄) =
∑

i

pi(si, s
−
i ) (1)

The overall cost P (s̄) is expressed as the sum of local
cost for segment Si to classify its pixels by si given that
its father classified its pixels by s−i . Each local cost term
contains a top-down ti and bottom-up bi parts:

pi(si, s
−
i ) = ti(si) + bi(si, s

−
i ) (2)

The distance between the final classification C(s̄) and
the top-down classification T depends only on the labeling
of the terminal segments of the tree (they determine the final
classification). Therefore, the top-down term ti is defined as
follows:

ti(si) =
{ ∑

(x,y)∈Si
(si − T (x, y))2 if Si is a leaf

0 otherwise
(3)

The overall contribution of the top-down terms
∑

i ti is the
Euclidean distance ||C(s̄) − T ||2.
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The bottom-up part is determined by the segmentation
tree. A segment is expected to have the same label as its
parent if it is a low-salience segment, but can have its own
independent label if it is a high-salience segment. The cost
function therefore penalizes a segment if its label is differ-
ent from its parent’s label, unless it is a salient segment.
The saliency itself is supplied as a part of the bottom-up
segmentation. Specifically, the bottom-up term bi(si, s

−
i ) is

defined as follows:

bi(si, s
−
i ) = λ|Si|(1 − hi)(si − s−i )2 (4)

λ is a predetermined constant that controls the tradeoff be-
tween the top-down and the bottom-up terms (in our exper-
iments we used λ = 4), |Si| denotes the size of the segment
(the number of its pixels), and hi is the segment’s saliency.

The parent S−
r of the root segment is undefined and so

are s−r and some of the terms in (1),(2). We define S−
r = φ

and s−r = sr so all the terms involving the root segment
become well defined.

3.1. Minimizing the cost function
We find the global minimum of the cost function (1) us-
ing the sum-product algorithm. The sum-product algorithm
is a generalization of a number of well-known algorithms
including Pearl’s belief propagation, Forward/backward al-
gorithm, Viterbi algorithm and the Kalman filter. We de-
scribe below the application of the algorithm to the segmen-
tation tree. A full description of the general algorithm can
be found in [16].

Let f(x1, . . . , xn) be a function of n variables, that can
be expressed as the sum of more local functions: f =∑

i fi(x̄i) where x̄i is a subset of (x1, . . . , xn). We seek
a configuration of the variables that will minimize f , that
is, minx1,...,xn f(x1, . . . , xn). It turns out that if the de-
composition of f forms a so-called “factor tree,” then the
minimization can be found efficiently by a simple message-
passing scheme that requires only two messages between
neighboring nodes in the tree.

In our case, the decomposition in (1) forms such a factor
tree, which is the segmentation tree. In this tree, the local
cost pi (2) defines a weighted edge between a segment Si

and its parent S−
i . The global function f is the summation

of all these costs as defined by (1).
The computation proceeds by sending messages between

neighboring nodes in the tree. This computation is com-
posed of a bottom-up and a top-down phase. During the
bottom-up phase, each node sends a message to its parent,
and during the top-down phase each node receives a mes-
sage from its parent. The computation terminates for all
nodes when each node has sent to and received one mes-
sage from its parent. The messages from a node containing
variable s consists of two values, one for s = −1, the other

for s = +1. We denote the bottom-up messages going from
s to its parent s− by m↑

s(s). Similarly m↓
sj

(s) denotes the
top-down messages going from s to one of its descendents
sj . Again, the message consists of two values for s = −1
and s = +1. The node s and its neighbors are shown in
Fig. 4 for the bottom-up and top-down messages.

The bottom-up message from node s to its parent s− is
computed locally from the messages arriving from its de-
scendents s+, and is given by:

m↑
s(x) = (5)

k∑
i=1

min[pi(−1, x) + m↑
si

(−1), pi(+1, x) + m↑
si

(+1)]

This formula defines a recursive computation for the
bottom-up messages. Once a node s receives all the mes-
sages coming from its descendents, it produces an outgoing
message to its parent. The recursive computation of these
messages starts at the leaf nodes lacking descendents, and
propagates all the way up to the root.

The top-down message m↓
sj

(x) arriving to sj from its
parent s is also computed locally, using the neighbors of s
(its parent s− and all its descendents s+, except for sj):

m↓
sj

(x) = (6)∑
i�=j

min[pi(−1, x) + m↑
si

(−1), pi(+1, x) + m↑
si

(+1)]

+ min [ps(x,−1) + m↓
s(−1), ps(x, +1) + m↓

s(+1)]

After all the bottom-up messages are sent, a recursive
computation of the top-down messages can start at the root
and propagate towards the leaves. Once the message pass-
ing is complete, we combine at each node the message to
and from the parent in the following way:

ms(−1) = m↑
s(−1) + minx[ps(−1, x) + m↓

s(x)]
ms(+1) = m↑

s(+1) + minx[ps(+1, x) + m↓
s(x)]

(7)

It can be shown that ms(−1) = min f(s1, . . . , s =
−1, . . . , sn) (that is, the minimum of f when variable s is
held at −1), and similarly ms(+1) = min f(s1, . . . , s =
+1, . . . , sn). The minimal of these two values is the se-
lected label of node s in the configuration s̄ minimizing f .
This is also used in deriving a confidence map as explained
in the next section. For additional details of this message
passing algorithm and its properties see [16].

3.2. Confidence map
The combined segmentation scheme is also used to derive
a confidence map that serves to indicate regions in C(x, y)
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Bottom-up message m↑
s Top-down message m↓

sj

Figure 4: Messages to and from a node s. Each message sent
from a node to one of its neighbors is computed locally using all
the messages coming from the other neighbors.

where segmentation is uncertain. Changing the classifica-
tion of low confidence regions will not affect the cost func-
tion significantly, while such a change in high confidence
region will increase the cost function significantly. The cer-
tainty or confidence in a region’s classification is therefore
expressed using the difference between the minimal cost
when the region is classified as figure versus the minimal
cost of its classification as background. A large difference
(normalized by the segment’s size) between the two values
indicates high confidence, and a small difference indicates
low confidence. The confidence rs, for a region defined by
a segment s in the segmentation tree, is given by:

rs =
|ms(+1) − ms(−1)|

|S| (8)

These two terms ms(+1), ms(−1) are given for every
segment, without any additional computational cost, by the
sum-product algorithm (7). In the results below we con-
structed the confidence map using the confidence of the ter-
minal segments.

Two different sources can contribute to such segmenta-
tion uncertainty. The first, which may be termed bottom-
up uncertainty, arises in regions where there is no salient
bottom-up segment matching the top-down classification
map T (x, y). The second uncertainty, top-down uncer-
tainty, arises in regions where the top-down classification
is ambiguous. These are usually regions where the object
shape is highly variable (such as the tail or the legs re-
gion in the class of horses). In these regions, overlapping
fragments may be inconsistent with each other, resulting in
inconsistent and therefore ambiguous classification of the
pixels they are covering. The source for the low confidence,
bottom-up vs. top-down uncertainty, can be determined au-
tomatically, and be used for selecting appropriate additional
processing to improve the final segmentation.

4. Results
The top-down process briefly described in Sec. 2 was
trained for the class of horse images (side views) using
340 horse images (class) and 430 non-horse images (non-
class). A set of 425 informative fragments was extracted
in the training stage from 54 class images. The bottom-up
segmentation used is robust to different image properties.
Therefore, in all our experiments we used identical parame-
ters (weighting various image-based measurements, such as
textural properties) for all images.

We tested 200 novel horse images, randomly chosen
from various sites on the web (average image size is
190x245 pixels, object area ranges between 2722 to 17918
with average of 11447 pixels). These images are highly
challenging – they include horses in different positions
(running, standing, eating etc.) with different textures
(e.g. zebra-like horses) on highly cluttered different back-
grounds. The average distance (in pixel units) between a
given segmentation contour and a benchmark contour (pro-
duced manually) was used to evaluate the figure-ground
segmentation by the bottom-up method (17 pixels) 1, the
top-down method (5.21 pixels) and the combination method
(1.68 pixels). The average distance was further reduced
(to 1.3 pixels) by removing from the average all contour
points having a confidence measure less than 0.1 (5% of the
points). The resulting confidence map efficiently separated
regions of high and low consistency. The algorithm and
benchmark consistently classified 95% of the pixels having
high confidence (> 0.1) and 66% of the pixels having low
confidence (≤ 0.1). The combined scheme improved the
top-down contour by over 67% on average. This improve-
ment was even larger in object parts with highly variable
shape.

Figure 5 shows some examples. In some regions, the
top-down process may produce a figure-ground approxima-
tion that does not follow the image discontinuities, and may
also miss or produce erroneous figure regions (especially
in highly variable regions such as the horse legs and tail).
Salient bottom-up segments can correct these errors and de-
lineate precise region boundaries (e.g. 1, 6). In other re-
gions, the bottom-up segmentation may be insufficient in
detecting the figure-ground contour, and the top-down pro-
cess completes the missing information (e.g. the horse head
in 4). Even the combined process cannot always compen-
sate, however, for cases where the top-down completely
misses a part of the object (e.g. horse legs in 3). The
confidence map may be helpful in identifying such cases,
since it effectively identifies image regions where additional

1The figure-ground segmentation constructed by the bottom-up seg-
mentation was restricted to segments taken from one level below the coars-
est level (with an average of 3.4 segments). The resulting bottom-up seg-
ments were then labeled manually as figure or background to maximize
their consistency with the benchmark.
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bottom-up and top-down information is needed. For ex-
ample, parts of the horse legs and part of its head (in 3)
are classified as background. However, as indicated by the
confidence map, changing the classification of these parts
would not significantly change the cost function.

5. Conclusion
The main advantage of our approach is the ability to use top-
down information to group together segments belonging to
the object despite image-based dissimilarity, and to break
apart homogenous segments that contain both figure and
background regions. The scheme can be used to combine
other top-down and bottom-up processes, providing these
are able to produce a hierarchical segmentation tree and an
initial classification map, as defined in sections 2,3. For ex-
ample, a rough manual approximation for the figure-ground
segmentation of an image can be used by the algorithm to
provide a new version of intelligent scissors [17].

The combined segmentation takes into account salient
segments at multiple scales. Salient segments may de-
tect image discontinuities that appear at one resolution
but disappear at coarser resolutions (and vice versa). By
using the entire segmentation tree, all image discontinu-
ities at all scales are taken into account, to provide a fi-
nal figure-ground segmentation. This segmentation pro-
vides an optimal compromise between the image content
(bottom-up constraint) and the model (top-down require-
ment). This compromise is found through the minimization
of a cost function defined over all possible segmentations.
The global minimum of this cost function is deduced in only
two passes of the segmentation tree.

The bottom-up and top-down components of the compu-
tation are also efficient: the bottom-up process provides the
segmentation tree in complexity linear in image size, and
the top-down process provides the initial classification map
in complexity linear in the image size (low resolution in this
case) and the number of fragments.

The results show that the combination successfully uses
the relative merits of the two complementary approaches
and significantly improves the figure-ground segmentation
results within a learned class of images. The algorithm also
provides a reliable confidence map indicating the regions of
residual ambiguity, with no additional computational cost.
In the future it will be of interest to examine the additional
application of specialized processing to improve the seg-
mentation of difficult, highly variable regions detected by
this confidence map.
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Example 1

Example 2

Example 3

(a) (b) (c) (d) (e)

Figure 5: The first row in each example shows the input image and bottom-up segments at four scales (from fine to coarse). The segments
are represented by different colors with their boundaries marked by a black contour. The second row shows: (a.) The initial classification
map T (x, y) (b.) The figure-ground contour derived from (a) superimposed on a low resolution version of the image (which constitutes
the input to the top-down process). (c.) Final figure-ground segmentation C(x, y) as constructed by the algorithm. (d.) The figure-ground
contour derived from (c) superimposed on the input image. (e.) Confidence in the final classification. Blue/Red represents figure/ground
classification and brightness represents classification confidence.
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Example 4

Example 5

Example 6

(a) (b) (c) (d) (e)

Figure 6: The first row in each example shows the input image and bottom-up segments at four scales (from fine to coarse). The segments
are represented by different colors with their boundaries marked by a black contour. The second row shows: (a.) The initial classification
map T (x, y) (b.) The figure-ground contour derived from (a) superimposed on a low resolution version of the image (which constitutes
the input to the top-down process). (c.) Final figure-ground segmentation C(x, y) as constructed by the algorithm. (d.) The figure-ground
contour derived from (c) superimposed on the input image. (e.) Confidence in the final classification. Blue/Red represents figure/ground
classification and brightness represents classification confidence.
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