IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO. 10, OCTOBER 2000 1
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Abstract—The detection of smooth curves in images and their completion over gaps are two important problems in perceptual
grouping. In this study, we examine the notion of completion energy of curve elements, showing, and exploiting its intrinsic
dependence on length and width scales. We introduce a fast method for computing the most likely completion between two elements,
by developing novel analytic approximations and a fast numerical procedure for computing the curve of least energy. We then use our
newly developed energies to find the most likely completions in images through a generalized summation of induction fields. This is
done through multiscale procedures, i.e., separate processing at different scales with some interscale interactions. Such procedures
allow the summation of all induction fields to be done in a total of only O(Vlog N) operations, where N is the number of pixels in the
image. More important, such procedures yield a more realistic dependence of the induction field on the length and width scales: The
field of a long element is very different from the sum of the fields of its composing short segments.

Index Terms—Curve completion, curve saliency, least-energy curve, perceptual grouping, elastica curve, scale, induction field,

completion field, fast summation, multiscale.

1 INTRODUCTION

THE smooth completion of fragmented curve segments is
a skill of the human visual system that has been
demonstrated through many compelling examples. Due to
this skill, people often are able to perceive the boundaries of
objects even when sufficient contrast is lacking or in the
presence of occlusions. A number of computational studies
have addressed the problem of curve completion in an
attempt to both provide a computational theory of the
problem and as part of a process of extracting the smooth
curves from images. These studies commonly obtain two or
more edge elements (also referred to as edgels) and find
either the most likely completions that connect the elements
or the smoothest curves traveling through them. The
methods proposed for this problem generally require
massive computations and their results strongly depend
on the energy function used to evaluate the curves in the
image. In addition, these methods ignore the size of the
edge elements, and consequently, often give inconsistent
(and undesired) results at different scales (see, e.g., [1]). It is
therefore important to develop methods which simplify the
computation involved in these methods while providing
results competitive with the existing approaches. Below, we
present such a method that directly relates to a number of
recent studies of completion and curve salience [13], [30],
[5], [10], [17], [32] (see also [23], [35], [2], [9], [26], [36], [20],
[18], [11], [12], [24]). Along with simplifying the computa-
tions proposed in these studies, our method also takes into
account the size of edge elements, allowing for a proper
computation of completion and saliency at different scales.
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A number of studies have addressed the problem of
determining the smoothest completion between pairs of
edge elements [29], [23], [2], [13], [30], [5]. These studies
seek to define a functional that, given two edge elements
defined by their location and orientation in the image,
selects the smoothest curve that connects the two as its
minimizing curve. The most common functional is based on
the notion of elastica, that is, minimizing the total squared
curvature of the curve [13]. Scale invariant variations of this
functional were introduced in [30], [5]. While the definition
of scale-invariant elastica is intuitive, there exists no simple
analytic expression to calculate its shape or its energy, and
existing numerical computations are orders-of-magnitude
too expensive, as will be shown below.

In the first part of this paper, we revisit the problem of
determining the smoothest completion between pairs of
edges and introduce two new analytic approximations to
the curve of least energy. These approximations are
obtained by assuming that the deviation of the two input
edgels from the straight line connecting them is relatively
small. This assumption is valid in most of the examples
used to demonstrate perceptual completions in humans and
monkeys [14], [16], [8], [15], [34]. We show that under this
simplifying assumption, the Hermite spline (see, e.g., [19])
provides a good approximation to the curve of least energy
and a very good approximation to the least energy itself.
We further develop a second expression which directly
involves the angles formed by the edgels and the straight
line connecting them. The second expression is shown to
give extremely accurate approximations to the curve of least
energy even when the input edgels deviate significantly
from the line connecting them. We then introduce a new,
fast numerical method to compute the curve of least energy
and show that our analytic approximations are obtained at
early stages of this numerical computation.

Several recent studies view the problems of curve
completion and salience as follows: Given M edge elements,
the space of all curves connecting pairs of elements is
examined in an attempt to determine which of these
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completions is most likely using smoothness and length
considerations. For this purpose [10], [32], [27], define an
affinity measure between two edge elements that grows
with the likelihood of these elements being connected by a
curve. By fixing one of the elements and allowing the other
element to vary over the entire image, an induction field,
representing the affinity values induced by the fixed
element on the rest of the image, is obtained. The system
finds the most likely completions for the M elements by
applying a process that includes a summation of the
induction fields for all M elements.

In the second part of this paper, we use our newly
developed completion energies to define an affinity
measure that encourages smoothness and penalizes for
gap length. We then use the induction fields defined by this
affinity measure to solve the problem of finding the most
likely completions for M elements. Since in practice, edge
elements are never dimensionless because they are usually
obtained by applying filters of a certain width w and length
[ to the image, we adjust our affinity measure to take these
parameters into account. We do so by relating the scale of
these filters to the range of curvature radii that they detect
and by determining the orientational resolution required for
representing properly all significantly different edge ele-
ments of every scale. Finally, we show that, due to the
smoothness and decay properties of our affinity measure, it
can be implemented in all significantly different (I, w)
scales, using multigrid methods, and run efficiently in time
complexity O(Nlog N), where N is the number of pixels in
the image.

Several existing studies acknowledge the importance of
scale in curve detection and perceptual grouping (e.g., [36],
[6]). These studies apply filters of different size to the image to
determine the local properties of the measured curves (such
as thelocal curvature), but they do not incorporate scale in the
global stage of connecting the edgels to form curves. In
contrast, we introduce a method for completion and curve
extraction that incorporates scale in all stages of the
computation. We apply filters of different lengths and widths
to the image to detect edgels of different size and curvature.
We then use these edgels to complete over gaps according to
the size of the edgels. The long and thin elements are allowed
to reach farther within a fairly specific orientation, while the
short and fat elements are allowed to reach closer within a
wide range of orientations. Moreover, none of the mentioned
studies provide a comprehensive completion process in all
different scales in a total complexity which is practically
linear. (O(Nlog N), where N is the number of pixels in the
image.) It should also be pointed out that some of the
psychophysical studies of curve detection and perceptual
grouping indicate (even if indirectly) a dependence of curve
completion on scale (see [21], [22]).

The paper is divided as follows: In Section 2, we review
the notion of elastica and its scale invariant variation. Next,
we introduce two novel analytic approximations to the
curve of least energy and a fast numerical method to
compute the curve of least energy. In Section 3, we use these
approximations to construct an affinity measure, taking into
account the length and width of the edge filters applied to
the image. We then discuss a multiscale (multigrid) method
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Fig. 1. The planar relation between two edge elements, (P, ¥;) and
(P, ¥3). This relation is governed by ®, € (-1,%), ®; € (-3,5), and
r, where ®; and ®, are measured from the line P, P,, defined by
$; =¥, and &, = —¥,. Note the more general relation between ®;

and V; in Fig. 4.

for fast summation of induction fields. Experimental results
are shown in Section 4.

2 ELAsTICA

In Section 2.1, we review the notion of elastica and its scale
invariant variation. In Section 2.2, we introduce the two
analytic approximations to the curve of least energy.
Finally, in Section 2.3, we develop a fast numerical method
to compute the curve of least energy and compare it to our
analytic approximations.

2.1 Scale-Invariant Elastica

Consider two edge elements e, e; positioned at P, P, € R?
with directed orientations ¥; and W¥,, respectively, mea-
sured from the right-hand side of the x-axis. In Sections 2.1,
2.2, and 2.3, the line P, P, passing through P, and P, can be
assumed to coincide with the x-axis without any loss of
generality. Below, we shall confine ourselves to the case that
Uy, ¥y € (—3,%). Denote by r =[P — Pi|, we may con-
veniently assume that P = (0,0) and P, = (r,0). This is
illustrated in Fig. 1. Let Cj> denote the set of all smooth
curves through e; and e;. Denote such a curve by its
orientation representation ¥(s), where 0 < s <L is the
arclength along the curve. That is, z(s) = [; cos(¥(8))ds and
y(s) = [ sin(¥(8))ds. Also, denote the curvature of the
curve at s by k(s) = d¥(s)/ds.

The most common functional used to determine the
smoothest curve traveling through P and P, with
respective orientations ¥, and ¥, is the elastica functional.
Namely, the smoothest curve through e; and ey is the curve
U (s) which minimizes the functional

L
rel(\p)déf/o K2 (s)ds. (1)

Elastica was already introduced by Euler. It was first
applied to completion by Ullman [29] and its properties
were further investigated by Horn [13].

One of the problems with the classical elastica model is
that it changes its behavior with a uniform scaling of the
image. In fact, according to this model, if we increase r, the
distance between the two input elements, the energy of the
curve connecting them proportionately decreases. This can
be easily seen by rescaling s, that is setting § = as, where
0 < a € R, and letting ¥(3) = ¥(3/a), so that
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L/ ac 3\ 2
T (¥) = /0 (d;z‘;)) ds =~ T (W), 2)

This is somewhat counterintuitive since psychophysical
and neurobiological evidence suggests that the affinity
between a pair of straight elements drops rapidly with the
distance between them [15]. Also, the classical elastica does
not yield circular arcs to complete cocircular elements. To
solve these problems, Weiss [30], [5] proposed to modify the
elastica model to make it scale invariant. His functional is
defined as:

Do (0)2 L /0 ! K2(s)ds. (3)

We believe that a proper adjustment of the completion
energy to scale must take into account not only the length of
the curve (or equivalently, the distance between the input
elements), but also the dimensions of the input edge
elements. Both the elastica functional and its scale invariant
version assume that the input elements have no dimen-
sions. In practice, however, edge elements are frequently
obtained by convolving the image with filters of some
specified width and length. A proper adjustment of the
completion energy as a result of scaling the distance
between the elements should also consider whether a
corresponding scaling in the width and length of the
elements has taken place. Below, we first develop useful
approximations to the scale invariant functional. (These
approximations can also be used with slight modifications
to the classical elastica measure.) Later, in Section 3, we use
the scale invariant Elastica measure I';,, to construct an
affinity measure between elements that penalizes for the
distance between elements and their deviation from
collinearity and cocircularity according to the dimensions
of the elements.

2.2 Analytic Simplification of T';,,,

Although the definition of both the classical and the scale
invariant elastica functionals is fairly intuitive, there is no
simple closed-form expression that specifies the energy or
the curve shape obtained with these functionals. In this
section, we introduce two simple, closed-form approx-
imations to these functionals. Our approximations are
valid when the sum of angles |®;|+ |®s| is relatively
small. This assumption represents the intuition that, in
most psychophysical demonstrations, gap completion is
perceived when the orientations of the curve portions to
be completed are nearly collinear. With this assumption,
we may also restrict for now the range of applicable
orientations to ¥y, ¥, € (—3,7).

Since the curve of least energy is supposed to be very
smooth, it is reasonable to assume that within the chosen
range of ¥, Uy the smoothest curve will not wind much.
Consequently, it can be described as a function y = f(z), as
in Fig. 1. Expressing the curvature in terms of x and y, we
obtain that

i = LKQ s)as = TL X
r,,,l,(qf)_LA (5)d _L/O e

For small |®,| + |®;|, we have that, due to the smooth-
ness of the minimizing curve, both f’ and f” are of the order

of magnitude of max {|t|, |[t2|}, where t; =tan®;, i =1,2.
Therefore, we get that L ~ r and that the variation of f
becomes unimportant for the comparison of I';,,(¥) over
different curves ¥ € C|, that are relevant for the minimiza-
tion. Thus, for small |®] + |®5],

Fmr(\ll) = T/ (f,/)2d.f. (5)
0
Hence,
Emvdéf min T, (¥) ~ 7 min T(f//)de. (6)
Vel Vel Jo

The minimizing curve is the appropriate cubic Hermite
spline (see Appendix A)

1 t
) = ate =) (30 - - 2). )
T T
where ¢; = tan ®; and ¢y = tan ®,, so that

By =~ 4(83 + 65 — tits). (8)

Evidently, this simple approximation to E;,, is scale-
independent. This leads us to define the scale-invariant
spline completion energy as:

By (@1, )2 a(82 + 12 — t11). (9)

Although the spline energy provides a good approxima-
tion to the scale invariant elastica measure for small values
of |®1] + |Py|, the measure diverges for large values. An
alternative approximation to E;,, can be constructed by
noticing that for such small values tan®; ~ ®; and
tan @9 ~ ®,. Thus, we may define:

def

By (®1, @)= 4(®F + 03 — &, Dy). (10)

Eung is also derived directly from FE;,, as is shown in
Section 2.3.

We refer to this functional as the scale-invariant angular
completion energy. Unlike E,,, this measure does not
diverge for large values of |®q]|+ |®y|. In fact, when
¢, = &, = /2, we obtain E,,;, = Ej,, = n°. In Section 2.3,
we show that this angular energy is obtained in an early
stage of the numeric computation of E;,, and that it
provides extremely accurate approximations to the scale
invariant least energy functional even for relatively large
values of |®;| + |®s|. In fact, particularly good approxima-
tions are obtained for small |U; + Uy, i.e., for the range of
nearly cocircular elements. Using the numeric computation,
we can also derive the smoothest curve according to E,,:

(11)

The angular completion energy can be generalized as
follows:

U(s) = 3(0; + Uy)s? — (40 + 20y)s + ;.

Egang(®1, ®2) = a(®} + ®3) + b(®1 — D5)?, (12)

where (10) is identical to (12) with a = b = 2. That is, the
angular completion energy is made of an equal sum of two
penalties. One is for the squared difference between ®; and
®, and the other is for the growth in each of them. This



4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 10, OCTOBER 2000

suggests a possible generalization of E,,, to other weights
a>0and b > 0.

In defining the curve of least energy and its approxima-
tions, we seek the smoothest completion between two given
edge elements. An interesting variation of this problem is
the following: Given a single edge element e; = (P, ®),
and given a location in the image P, suppose we pass the
smoothest curve from e; through P,, what orientation
would this curve take at P»? This question is relevant, for
instance, in studies, such as [10], [32], which compare, given
an edge element, several different candidate elements for
completion.

Consider the angular completion energy (10). Notice first
that when a scale invariant energy is used the answer will
not depend on the position of P, but only on the orientation
®,. According to E,,,, the minimal energy is obtained when
the orientation of the element at P, is given by ®; = %(Ih. (A
similar result is also approximately true for the spline, the
scale-invariant elastica and the classical elastica energies.)
For the generalized angular completion energy (12), the
preferred orientation is ®; = %;®;. The energy field
induced by one edge element, therefore, does not prefer
circular completions (®; = ®,). A circular completion can
be preferred if we modify the angular energy to be:

def

Eeire(®1, ®y) Z a®? + b(®; — By)?,

for which, if we fix ®;, the lowest energy is obtained
when &, = ;. This energy, however, is nonsymmetric for
®; and P,.

Finally, we note that the new approximations at small
angles can also be used to approximate the classical elastica
energy, since

def . 1 1
Eﬁl - \II/IGHC?Z Ffl(\ll) = ;EHTLg]((p17 CI)Q) ~ ; Espln(q)lv (1)2)

(13)
2.3 Computation of £,

Next, we introduce a fast numeric method to compute E;,,.
We use the scale-invariance property of I';,, (as in [5]) in
order to reformulate the minimization problem. That is,
every curve U corresponds to a rescaled version of it, \Tl,
which satisfies L = 1 and Fm,l,(\fl) = T (¥). We can see this
by setting (scaling) §=s/L and defining \TJ(E)[};f\I!(Lg).
Then, the minimization problem takes the form:

1 ~
min ( / (T (5))%d5) s
0 0 (14)

/‘1 sin(¥(3))ds = 0, T(0) = ¥, V(1) = T,
0

Denoting the extremal curve found by \Tlmm(é), set
L=7/(f cos(¥,in(3))d3), so that [ cos(¥yin(s/L))ds = 7.
Thus, \I/m,-”(s)lé \T/,,”-,L(s /L) will be the “minimal curve.” In
fact, to calculate £j,,, it is not necessary to calculate L, since
E;, = F,;m,.(\flm,;n). Now, (14) can be transformed by the Euler-
Lagrange equations (see, e.g., [7]) into an ODE problem. That
is, a necessary condition for \T}(g) to be an extremal curve is

that it should satisfy for some A:

TABLE 1
Comparison Table for the Various E;,,(®1, ®,) Approximations

Accur. | Simps. | Trapz. | Angul. | Splin.
®; | 3 | meth. | meth. | meth. | meth. | meth.

0 0 0 0 0 0 0
01| 0 .00039 | .00039 | .00023 | .00040 | .00040
.01 | .00040 | .00040 | .00040 | .00040 | .00040
.02 | .0011 .0011 .0010 .0012 .0012
.03 | .0027 .0027 .0021 .0028 .0028
1 0 .0399 .0399 .0233 .0400 .0403
.1 .0399 .0400 .0400 .0400 .0403
2 1199 1198 .1033 .1200 1233
3 .2793 2792 2133 .2800 .2989
3 0 .3590 3588 .2100 .3600 3828
3 3599 .3600 .3600 .3600 3828
6 | 1.0725 | 1.0718 | .9300 | 1.0800 | 1.4084
.9 | 2.4660 | 2.4600 | 1.9200 | 2.5200 | 5.1735
.5 0 .9928 .9909 .5833 | 1.0000 | 1.1938
.5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.1938
1.0 | 2.9425 | 2.9379 | 2.5833 | 3.0000 | 7.4926
1.5 | 6.5819 | 6.5570 | 5.3333 | 7.0000 | 765.77
1 0 | 3.8851 | 3.8597 | 2.3333 | 4.0000 | 9.7021
1 3.9999 | 4.0000 | 4.0000 | 4.0000 | 9.7021

®, and ®, are given in radians.
20" = Acos ¥ s.t.
- - (15)

/1 sin(U(5))ds =0, U(0) =T, (1) =U,.
0

Considering the very nature of the original minimization
problem, and also by repeatedly differentiating both sides
of the ODE equation, it can be shown that its solution must
be very smooth. Hence, we can well approximate the
solution by a polynomial of the form

U,(s) = (1= )W) + s¥y + 5(1 — ) Z ars®,
k=0

(16)

where n is small. (By comparison, the discretization of the
same problem presented in [5] is far less efficient since it does
not exploit the infinite smoothness of the solution on the full
interval (0,1). As a result, the accuracy in [5] is only second
order, while here it is “oo-order,” i.e., the error decreases
exponentially in the number of discrete variables n+ 2 (i.e.,
A, ao, . . ., ap from (15) and (16)).) Fixing n, as well as two other
integers n and p, we will build the following system of

n + 2 equations for the n + 2 unknowns ag, a1, . . ., a,, and A
~, (t+1 ~ [(i1+1
v s + Acos W, s =0, (0<i<n)
n+2 n+2

collocating the ODE, and

n .
Z w;sin ¥, (1,) =0,
. 7l
3=0

where w; (0 < j < @) are the weights of a p-order numerical
integration. Generally, we increase n gradually and increase
n and p as functions of n in such a way that the
discretization error will not be governed by the discretiza-
tion error of the integration. The nonlinear system of
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TABLE 2
Comparison Table for the Values of the Ratios “322) L
Where &, = k®, for £ =0,1,2,3, and
E Stands for the Various E;,, Approximations

Accur. | Simps. | Trapz. | Angul. | Splin.
®, | &5 | meth. meth. | meth. meth. | meth.
01| 0 | 266.66 | 266.66 | 200.14 200 199.98

.01 200 200 200 200 199.98

.02 | 218.18 | 218.18 | 206.70 200 66.648

.03 | 207.40 | 207.40 | 203.19 200 114.35

1 0 | 20.037 | 20.035 | 20.030 20 20.069
.1 | 20.050 20 20 20 20.069

22 | 19.985 | 19.999 | 20.006 20 7.1266

.3 | 19.955 | 19.949 | 20.003 20 12.741

3 0 | 6.6507 | 6.6455 | 6.6667 | 6.6667 | 7.0836
.3 | 6.6685 | 6.6667 | 6.6667 | 6.6667 | 7.0836

.6 | 6.6209 | 6.6163 | 6.6667 | 6.6667 | 3.9182

.9 | 6.5207 | 6.5084 | 6.6667 | 6.6667 | 9.8004

5 0 | 3.9713 | 3.9643 | 4.0002 | 4.0000 | 4.7544
.5 | 4.0000 | 4.0000 | 4.0000 | 4.0000 | 4.7544

1 | 3.9216 | 3.9180 | 4.0000 | 4.0000 | 5.9946

1.5 | 3.7444 | 3.7479 | 4.0000 | 4.0000 | 84.718

1 0 | 1.9406 | 1.9300 | 2.0000 | 2.0000 | 4.3991
1 | 2.0001 | 2.0000 | 2.0000 | 2.0000 | 4.3991

®, and ®, are given in radians.

n + 2 equations is solved by Newton iterations (also called
Newton-Raphson; see, e.g. [19].) We start the Newton
iterations from a solution previously obtained for a system
with a lower n. Actually, only one Newton iteration is
needed for each value of n if n is not incremented too fast.
In this way, convergence is extremely fast. At each step, in
just several dozen computer operations, the error in solving
the differential equation can be squared. In fact, due to the
smoothness of the solution for the ODE, already for the
simple (n = 0,7 = 2)-system and the Simpson integration
rule (p =3), a very good approximation to the accurate
solution \f/(s), A, and also to E;,, = fol (\I/’ (5))2(15 is obtained,
as can be seen in Table 1. The good approximations
obtained already for small values of (n,n) suggest that
Ein, can be well-approximated by simple analytic expres-
sions, as indeed we see next.

Table 1 compares the result of applying the numerical
computation of E;,, to several simple approximations, each
of which can be used as the scale-invariant completion
energy. These approximations are:

e The “(n=0,n =2)-system” using the Simpson
(p = 3) integration method is solved numerically,
yielding the “Simpson method” energy. Note that
we can also well-approximate the solution of this
system by the analytic expression ¥(s) presented in
(11), which arises from approximating the system to
its first order assuming small |¥|+ |Ts| (see
Appendix B). The “Simpson method” energy can
be approximated analytically by the energy of U(s),

Fin?,‘(@(s)) = 4(q)‘f + (I)g - q)lq)g) .
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Fig. 2. Completion curves: Elastica in solid line, ¥(s) (11) in dotted
line, and the cubic Hermite spline (7) in dashed line.
(a)®; = 30°,®, = 15°, (b) ®; = 30°, &y = —15°, (c) D1 = 80°, B, = 60°,
and (d) ®;, = 80°, d, = 20°.

Consequently, the “Simpson method” is expected to
yield results similar to Eg,q(®1, ®2).

e The “(n=0,n = 2)-system” using the Trapezoidal
(p = 2) integration method can be solved analytically
for all values of ®; and ®, in (—%,7), yielding the
“Trapezoidal method” energy

Etrpz = (Q)% + CI’%) +§(CI)1 - 4)2)2-
This energy is of the type of (12).

e The angular completion energy FEg,,(®1,®2) is
derived in Section 2.2. This method is referred to
as the “Angular method.”

e The spline completion energy E,(®1,®s) is de-
rived in Section 2.2. This method is referred to as the
“Spline method.”

The results in Table 1 demonstrate that in the range of
angles in which perceptual completions are anticipated,
there is hardly any difference between the four different
approximations and the accurate solution of Ej,,. An even
closer agreement is obtained when derivatives of these
energies are compared (see Table 2).

Fig. 2 illustrates some of the completions obtained using
Ein, and the two analytic approximations E,,, and E,,. It



can be seen that the differences between the three curves is
barely noticeable, exceptin large angles where E,;,, diverges.
Notice especially the close agreement between the curve
obtained with the angular energy (11) and that obtained with
the scale-invariant elastica measure even in large angles and
when the angles deviate significantly from cocircularity.

Note that although the spline curve does not approx-
imate the scale invariant elastica curve for large angles ||
and |®,|, it still produces a reasonable completion for the
elements. In fact, when the two elements deviate from
cocircularity, the elastica accumulates high curvature at one
of its ends, whereas the spline curve continues to roughly
follow the tangent to the two elements at both ends (see, e.g,
Fig. 2c and Fig. 2d). This behavior is desirable especially
when the elements represent long curve segments (see
Section 3.2).

3 INDUCTION FIELD SUMMATION

>Until now, we have considered the problem of finding the
smoothest completion between pairs of edge elements. A
natural generalization of this problem is, given an image
from which M edge elements are extracted, find the most
likely completions connecting pairs of elements in the
image and rank them according to their likelihoods. This
problem has recently been investigated in [10], [32]. In these
studies, affinity measures relating pairs of elements were
defined. The measures encourage proximity and smooth-
ness of completion. Using the affinity measures, the
affinities induced by an element over all other elements in
the image (referred to as the induction field of the element)
are derived. The likelihoods of all possible completions are
then computed simultaneously by a process which includes
summation of the induction fields for all M elements.

An important issue that was overlooked in previous
approaches, however, is the issue of size of the edge
elements. Most studies of curve completion assume that the
edge elements are dimensionless. In practice, however,
edge elements are usually obtained by convolving the
image with filters of certain width and length. A proper
handling of scale must take these parameters into account.
Thus, for example, one may expect that scaling the distance
between two elements would not result in a change in the
affinity of the two elements if the elements themselves are
scaled by the same proportion. Below, we first present the
general type of nonscaled induction underlying previous
works. We then modify that induction to properly account
for the width and length of the edge elements. Using this
induction, the affinity between two long and roughly
collinear elements is stronger than two short elements
separated by the same, or even somewhat smaller gap size.
In addition, the affinity between two fat and short elements
is high only when they are very close to each other, but they
can deviate significantly from colinearity.

Finally, the process of summing the induction fields may
be computationally intensive. Nevertheless, in the third part
of this section, we show that the summation kernel obtained
with our method is very smooth. Thus, the summation of
our induction fields can be speeded up considerably using a
multigrid algorithm. This result also applies to the summa-
tion kernels in [32], [27], [10] and, so, an efficient
implementation of these methods can be obtained with a
similar multigrid algorithm.
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(a) (b)

Fig. 3. Stochastic completion fields (128 x 128 pixels, 36 orienta-
tions) with the induction e=? e 2%, (@) ®; = 30° and &, = 30° and
(b) ®; =30° and @, = —30°. These completions are computed by
multiplying the source and sink fields for two edge elements. The
results closely resemble those obtained in [32].

3.1 Nonscaled Induction

In [17], and later in [32], a model for computing the
likelihoods of curve completions, referred to as Stochastic
Completion Fields, was proposed. According to this model, the
edge elements in the image emit particles which follow the
trajectories of a Brownian motion. It was shown that the most
likely path that a particle may take between a source element
and a sink element is the curve of least energy according to the
Elastica energy function." To compute the stochastic
completion fields, a process of summing affinity measures
was used. Thatis, summing each of the source and sink fields,
separately. In Appendix C, we show by further analyzing the
results in [27], that the affinity measure used for the induction
in [32], [27] is of the general type:

A(eh ez)défefr/rue* m:g/(7’<70)7

where 7y and oy are strictly positive a priori set parameters.
These parameters need to be adjusted properly according to
the dimensions of the two elements (see Section 3.2). Note
that for small values of (|®y|, |®2|): Eang/r =~ E. Hence,

Aley, e) o e/ Ealo,

Another method which uses summation of induction fields
to compute the salience of curves was presented in [10]. In
this method, the affinity between two edge elements which
are cocircular has the form: e e %, where v and § are
strictly positive constants, x is the curvature of the circle
connecting e; and ey, and r is the distance between e; and es.
A reasonable and straightforward definition in that spirit is

Aer, 62)@57 e,

where E,, serves as an approximation for Ej,, according
to (8). Fig. 3 shows an example of computing the “stochastic
completion field,” suggested by Williams and Jacobs in [32],
while replacing their affinity measure with the simple
expression A(ey, ). Tt can be verified by comparing the
fields obtained with our affinity measure with the fields
presented in [32] that the results are very similar although a
much simpler affinity measure was employed.

1. Actually, the path minimizes the energy functional jUL k*(s)ds + AL for
some predetermined constant .
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Fig. 4. The relation between the two straight responses (z1,y:, ;) and
(22, Y2, ¥s). This relation is governed by ®;, ®,, and r. Defining 6 to be
the angle of the oriented line P, P, (going from P, to 1) with the right-
hand side of the z-axis, we define ®; and ®, according to the following
equation § = ¥ + & = Uy — Py

3.2 Induction and Scale

Given an image, an edge element is produced by selecting a
filter of a certain length [ and width w (e.g., rectangular
filters) and convolving the filter with the image at a certain
position and orientation. The result of this convolution is a
scalar value, referred to as the response of the filter. An edge
filter may, for example, measure the contrast along its
primary axis, in which case its response represents the
“edgeness level,” or the likelihood of the relevant subarea of
the image to contain an edge of (I, w) scale. Similarly, a filter
may indicate the existence of fiber-like shapes in the image,
in which case, its response represents the “fiberness level”
of the relevant subarea of the image. Below, we use the term
“straight responses” to refer to the responses obtained by
convolving the image with either an edge or a fiber filter.

Now, consider the edge elements obtained by convol-
ving the image with a filter of some fixed length ! and width
w. Every edge element is now positioned at a certain pixel P
and is oriented in two opposite directed orientations ¥ and
U + 7w, where ¥ is measured from the right-hand side of the
x-axis (see Fig. 4).

The number of edge elements required to faithfully
represent the image at this scale depends on [ and w. Thus,
long and thin elements require finer resolution in orienta-
tion than square elements. In fact, the orientational
resolution required to sample significantly different orien-
tations increases linearly with [/w (see [4]). Similarly,
elements of larger size require less spatial resolution than
elements of smaller size. Brandt and Dym ([4]) use these
observations in order to introduce a very efficient computa-
tion (O(Nlog N), where N is the number of pixels in the
image) of all significantly different edge elements.

Given a particular scale determined by the length ! and
width w of edge elements, we would like to compute a
completion field for this scale. Note that only curves within a
relevant range of curvature radii can arouse significant
responses for our [ x w elements. Denote the smallest
curvature radius that will arouse a still significant response
by p = p(l,w). (Larger curvature radii will arouse significant
responses also in larger [/w scales, implying there for a
farther-reaching and more orientation-specific continuation.)

Fig. 5. The relation between [, w, and the curvature radius p.

By Fig. 5, we see that

l .
5 =psina ™ pa

and
2

po
w:p—pcosaz:T.

Consequently, we have
2
(Y
2p p

l?
e
Next, consider a pair of straight responses. Assuming these
elements are roughly cocircular, then, using the relations
defined in Fig. 6, the differential relation

implying that

P

Y +d =Y O,
Q=¥,- ¥,=- ®,- D,

Fig. 6. The turn Q that a moving particle takes in its way between two
straight responses, characterized each by a planar location, and an
orientation. Here, we assume that the two elements are roughly
cocircular, hence, p; = ps.



can be approximated by

-, 2
r pL+p2’

so that

Q~l.
p

Hence, for completion at a particular scale (I,w), it is
reasonable to define for every pair of points P, and P a
scale for the turning angle Q given by r/p(l,w). That is, in
the scale ({,w), we define the completion energy between the
pair of straight responses so as to depend on the scaled
turning angle Qp/r. Since Q2 = ®; + ®,, it is straightforward

to show that
0.5Q < \/ Egng(®1, P2) < Q.

A reasonable definition for the scaled angular energy,
therefore, is a monotonically decreasing function of

g./q>§+q>g—q>lq>2.

Obviously, in any given scale of straight responses, (I, w),
for every ®; and ®,, the induction of P, upon P, should
decrease with an increase of r/p. Hence, we define the field
induced by an element e; of length [ and width w at location
P, and directed orientation ¥; on a similar element e; at
(P2, ) by

G (e1; e2) f(w), (17)

where u; denotes the strength of response at e;, f(u;) is
some appropriate function of this response, and

r
G(ziw)(el; 62) = Fd (;)E (gq/q)% + q)% — (I)lfb2>, (18)

F; and F; (the distance and turning attenuation func-
tions, respectively) are smoothly decreasing dimensionless
functions that should be determined by further considera-
tions and experience. Thus, our summation kernel is a
product of the orientational and the spatial components
involved in completing a curve between e; and e;. As we
shall see below, this definition has many computational
advantages.

Let {u;} denote the set of straight responses for a given
scale (I,w), where each w; is associated with two directed
edges ¢, = (P,V¥;) and ¢ = (P, ¥, +m). The total field
induced at any element e; = (P;,¥;) by all elements
{ei &}, ;, is expressed by

Ujdéf Z(G(l,u:) [ei? e,j] + Gw) [éi; e]-} )f(’lh) (19)
i
The total field induced at ¢; by {e;, &;},; , is given by
ﬁ,jd;f Z(G(l,w) leis&5] + G [eise5]) f ). (20)

i#j
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(a) (b)

Fig. 7. Induction fields (200 x 200 pixels) in different scales using
Fy(€) = e, and Fy(n) = e *"*, where a; = 0.5, 3,=0.5, ay = 128,
and 3, = 1.5. (a) The induction field of one long element: | = 9, w = 1/2,
25 directed orientations. (b) The sum of induction fields of the three
shorter elements composing this long element, each consist of: | = 3,
w=1/2, and 12 directed orientations.

In general, since the responses obtained by convolving
the image with edge filters are bidirectional, we may want
to combine these two fields into one. This can be done in
various ways. The simplest way is to take the sum {v; + v}
as the completion field. Another possibility, involves vector
summation (rather than a scalar summation) as suggested
in [10]. Finally, in the spirit of [32], we may take the product
{v;v;} as the completion field. We used the latter in our
implementation presented in Section 4.

Note that the field of a long straight response should be
very different (farther-reaching and more orientation-
specific) than the sum of the fields of shorter elements
composing it and should strongly depend on its width (see
Fig. 7). This suggests that for a comprehensive completion
process, one must practice a multiscale process, performing
a separate completion within each scale. The scaled induction
field (17) and (18), avoids a fundamental difficulty of
nonscaled fields like [10], [32], [27]. The latter exhibit such a
weak completion for far elements, that it would be
completely masked out by local noise and foreign local
features.

The fact that filters of different lengths respond
differently, depending on the curvature radius of the
measured curve, was noticed also by Zucker et al. [36],
who used this fact to obtain an estimate of the local
curvature at every point. In contrast to this work, we do not
estimate the curvatures locally, but only determine locally
the range of curvatures that is compatible with the size of
the filters. Then, we allow the global process of summation
to detect the smoothest curves whose curvatures are within
this range. The disadvantage of estimating the curvatures
locally is that gaps may severely affect the curvature
estimation. For example, the response of filters of different
lengths when applied to a segment of a dashed, straight line
will be identical to their response if the segment was part of
a curved contour.

3.3 Fast Multigrid Summation of Induction-Fields

3.3.1 Describing and Validating the Multiscale Approach
Let n = n(l, w) be the number of sites (P) and m = m(l,w)
the number of orientations (¥) at each site, that are required
in order to describe all the [ x w straight responses that are
significantly different from each other. It can be shown (see
[4]) that, if [ and w are measured in pixel units, then, for any
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N-pixel picture, n = O(N/(lw)) and m = O(l/w), so the total
number of | x w elements is O(N/w?). Hence, for any
geometric sequence of scales (e.g., [=1,2,4,..., and
w=1,3,9,...), the total number of straight elements is
O(Nlog N). It has been shown (in [4]) that all the responses
at all these elements can be calculated in only O(N log N)
computer operations, using a multiscale algorithm that
constructs longer-element responses from shorter ones.

At any given scale [ x w, it seems that the summations
(19) and (20), summing over ¢ = 1,2,...,nm for each value
of j=1,2,...,nm, would require a total of O(n’m?)
operations (even though some of them can be performed
in parallel, as in [33]). However, using the smoothness
properties of the particular kernel (18), the summation can
be reorganized in a multiscale algorithm that totals only
O(nm) operations (and the number of unparallelizable steps
grows only logarithmically in nm.) To see this, first note
that the functions in (18) would usually take on the typical
form

5
—apn”?

Fy&)=e ™" and Fi(n) =e (21)

(as is explained in Section 3.1). For the purpose of the
multiscale algorithm, we call any function F' smooth on scale
s (in some region) if and only if it can (throughout that
region) be interpolated, to any desired accuracy, from its
values on a grid with meshsize s (the accuracy being
increased by increasing the interpolation order). We call
F local on scale s if F is negligibly small outside a disk of
radius O(s). One can then easily see that, as a function of e;
(similarly ey), Fy in (18) is everywhere smooth on any scale s
for which s < O(p), and local on all other scales. Also (cf.
Appendix D), F, is smooth on any scale s, in the region
r > O(s). Consequently, we get that G = F,F; is smooth on
any scale s for which s < O(p), in the region r > O(s), and
local on all other scales.
Due to these smoothness properties of

G = G(ejse5) = G, yi, Vis 5,95, V),

the total contribution to v; (and @;) of all elements far (on
scale s) from P; is a smooth (on scale s) function of
(x;,9;, ¥;). Hence, this contribution needs not be computed
separately for each j, but can be interpolated (g-order
interpolation, with as small an error as desired by using
sufficiently high ¢) from its values on a grid with meshsize
s. For this and similar reasons, multiscale algorithms, which
split the summations into various scales of farness (see
details in [3]), can perform all the summations in merely
O(nm) operations. Indeed, for any scale for which s < O(p),
we can use the smoothness properties of G in order to
aggregate the summation onto a coarser grid (for which
s =0(p)) in a cost of only O(nm) operations. On such a
grid, we can already use the localness of Fy;(£) in order to get
a cost of summation of O(nm) operations.

However, the use of F;(£) which decays this fast (see (21))
is justified only in the case of executing a multiscale
completion process. The reason for this is that a single scale
completion process (as in [32], [10]) must have the following
important property: The total influence of several elements
of this scale that compose a longer element of a certain length
I, should extend to a distance which is at least of the order of

magnitude of /. This total influence is well-approximated by
f:” Fy(€)d¢ (since when considering distant smooth con-
tinuations F; ~ 1,) by which it can be readily shown that in
the case of a single scale completion process Fy should not
decay any faster than F;(§) = 1/£. Nevertheless, for such
choices of the functions, the kernel G still has the property of
“asymptotic smoothness” (see Appendix D). By this, we
mean that any g-order derivative of G with respect to any of
its six arguments decays fast with

1
2 2,

Tij = [(Ii — ;)" + (Yi — ) }

and the higher ¢ is, the faster is the decay. Also, for any
fixed r;; (even the smallest, ie., r;; = O(l),) G is a very
smooth function of ¥; and of V¥;. Thus, even when
practicing such a single scale completion process, using,
e.g., Fy(§) = 1/¢, the summation can still be reorganized in a
multigrid algorithm that totals only O(nm) operations.

3.3.2 The Multiscale Algorithm

Next, we describe the fast multiscale computation of (19)
and (20). Fixing (I, w) scale, consider the elements {e;};"] of
this scale. We focus on the multiscale computation of

ZG €, €

where G = G(,,) and f; = f(u;). It can be shown that there
exists a decomposition of the kernel G such that Vi, j €
{1,2,...,nm}

fL7 ]_1727'”’ TL, (22)

G(ei,ej) = ) +Gzo(e“6])

where G, is smooth and G, is local, both with respect
to a grid with meshsize s, say {E;}., as is explained in
Section 3.3.1.

Concentrating on the sums

v; = ZGsm(emej)f,;, i=1,2,....,nm
i

(23)

57”(617

(24)

using the fact that the kernel Gy, can be interpolated from
the coarse grid points {E;}Y, into the fine grid points

{e;};7] (the accuracy being increased by increasing the
interpolation order), we get that
5 =Y wixV(Ey), j=1,2,...,nm, (25)
k
where
ZGarrL ElyEk Ev k= 1 2 N7 (26)
]
F=>Y aufi 1=1,2,....N (27)

where w;; and w;; are the interpolation coefficients
depending on the grids and the order of interpolation.

Finally, we can correct {2;}}"} into {v;}}"} by

vj:ﬁj—i_ZGlo(elv )f“ - a 7"' (28)

,m.
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[ 0.0625 0 0.0625 |
0125 0 0.125
20125 0 0.125 0125 0 0.125
025 0 025 0125 0 0.125
025 0 025 0125 0 0.125
025 0 025 0125 0 0.125
20125 0 0.125 0125 0 0.125
0125 0 0.125
20.0625 0 0.0625

Fig. 8. The filters used to detect vertical edges of lengths 5 (left) and
9 (right) and width 1. Edges of other directions (total of 16 and 32 for
each length scale, respectively) are obtained in a similar way with proper
interpolations to account for discretization misalignments.

Thus, the problem of computing {v;}"; was “coarsened”
into the similar problem of computing {W};:l (defined in
(26)). The runtime complexity of this coarsening step is
O(nm). This coarsening procedure can be applied recur-
sively until the number of the grid elements obtained is
sufficiently small. Then, using the interpolation relations in
(25), together with the corrections in (28), the original values
{v;};1] can be efficiently recovered up to any required
accuracy (by tuning the interpolation order appropriately).
Since the number of grid points obtained at every
coarsening step is significantly smaller than that of the
finer grid the total runtime complexity for computing
{0} s O(nm).

4 EXPERIMENTS

Figs. 9, 10, and 11 show examples of applying our method
to several 256 x 256 images. To obtain these results, we first
detected edges by using differences of straight intensity
integrals of length 5 or 9 (width 1) in all significantly
different directions (the actual filters used are shown in
Fig. 8). We used all the straight responses to produce a
completion field {v;v;} (as defined by (19) and (20)) using
Fy and F;, as defined by (21). The values set for the free
parameters o, 51, a2, and (3, are specified in the captions.
Since in the definition of the completion field an element
does not induce itself, we show the straight responses
(edges) superimposed on top of the resulting completion
field in order to get a full pictorial presentation of the
completed edges.

Fig. 9 shows the result of applying our method to a Kanizsa
triangle in two differentlength scales. Note that atlength scale
5, the three disks are completed, whereas at length scale 9,
where the induced fields are further reaching and more
orientation specific, the three sides of the triangle are
completed. In fact, the saliency of completion of the three
disks atlength scale 5is substantially weaker than the saliency
of completion of the sides of the triangle at length scale 9.
Fig. 10 shows two vases of the same color that partly occlude
each other. It can be seen that the boundaries of the occluding
vase is completed. Finally, Fig. 11 shows the picture of a
person standing behind a fence. The structure of the fence, as
well as the occluded person, give rise to many gaps. Notice
that many of these gaps are completed with our method.

"
¢ 9

(@)

(d) (9)

Fig. 9. (a) The original image. (b) Straight responses (edges) of length
scale 5 (width 1). (c) Completion field in length scale 5 (width 1).
(d) Superposition of the straight responses (edges) and the completion
field in length scale 5 (width 1). (e) Straight responses (edges) of length
scale 9 (width 1). (f) Completion field in length scale 9 (width 1).
(g) Superposition of the straight responses (edges) and the completion
field in length scale 9 (width 1). Images are of size 256 x 256 pixels. The
parameters used are «; = 0.75, 8, =1, ay = 0.5, and 3, = 2.

5 CONCLUSION

Important problems in perceptual grouping are the detection
of smooth curves inimages and their completion over gaps. In
this paper, we have simplified the computation involved in
the process of completion, exploiting the smoothness of the
solution to the problem, and have defined affinity measures
for completion that take into a proper account the scale of
edge elements. In particular, we have introduced new,
closed-form approximations for the elastica energy func-
tional, and presented a fast numeric method to compute the
curve of least energy. In this method, the error decreases
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(d) Superposition of the straight responses (edges) and the completion
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Fig. 10. (a) The original image. (b) Straight responses (edges) of length
field in length scale 9 (width 1). Images are of size 256 x 256 pixels. The
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scale 9 (width 1). (c) Completion field in length scale 9 (width 1).
parameters used are oy = 1, 1 =1, ap = 0.5, and 3, = 2.

exponentially with the number of discrete elements. Then, we
have used our approximations to define an affinity measure
which takes into account the width and length of the edge
elements by considering the range of curvatures that can be
detected with corresponding filters of the same scale. Finally,
we have shown that solutions to the problem of finding the
most likely completions in an image can be implemented
using a multigrid algorithm in time that is linear in the
number of discrete edge elements in the image. This last
observation applies also to recent methods for completion
and salience [10], [32]. In the future, we intend to use the
multigrid algorithm to simultaneously detect completions at
different scales in order to combine these completions into a
single saliency map.

It is important to note that our method, like a few other
methods (e.g., [10], [26], [32], [29]), is designed to suggest
possible completions and to rank them according to their
length and smoothness. The problem of determining the best
perceptual completions is complicated and may require
additional, global information (such as symmetry and
familiarity). In addition, perceiving subjective contours
involves decisions on modal and a-modal completions (see
[14], [31], [25]). Our method, therefore, can only be regarded
as a first step in achieving human-performance completions.

APPENDIX A
MiNIMIZATION OVER C,

Below, we compute the minimum of (6). It will be shown,
using calculus of variations (see e.g., [7]), that:

A
. 11\ 2 2 2
de == + 2 — tits),
;?éﬂ/o(g)x -+t —tit)

where t; = tan®; 1 =1,2.

11

()

Fig. 11. (a) The original image. (b) Straight responses (edges) of length
scale 9 (width 1). (c) Completion field in length scale 9 (width 1).
(d) Superposition of the straight responses (edges) and the completion
field in length scale 9 (width 1). Images are of size 256 x 256 pixels. The
parameters used are a; =3, 1 =1, ap =1, and 5, = 2.

Proof. First, assume that there exists a smooth enough
function f for which the minimum is attained. Consider
functions h for which 3¢, g € Ci5 such that h = g — g (i.e.,
“test” functions, satisfying

A necessary condition for f being an extremal function in
C1o over which a functional | assumes its minimum is
that for any such test function h

d
Z(f+th) =0 at t=0,

where t is a real parameter. Since

d
S+ th) =

% (/Or(f” + th”)2dz) =
% ( /0 T((f”)z +oufh + t2(h”)2)dx> -
2 /0 ' f'h'dx + 2t /0 T(h/’)de,

we get from the above necessary condition that
Jo f'h'dz = 0.

Integrating the last equation twice by parts and noting
that both h and &’ vanish on the boundaries, we get that :

0= [ f'W'de=— / W fPde = / hfWde.  (29)
0 0

0

Hence, by the arbitrariness of h, we immediately get
that:
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Therefore, by considering f(0) = f(r) = 0, we get that
the extremal function is nothing else than the cubic
Hermite spline

f(z) = x(z —r)(ax +b),

and by considering also f'(0) =t and f'(r) = —ty, we
solve for a and b and get that

f(z) = 2z — 1) (712 (b — o)z — t?l) .

Consequently,
T ) 4
| r@te =2+ 8- ).

Now, we will show that the above derived f is indeed
the global minimum of the functional J, over C,. Take any
g € C12 and define hdéf g — f.Evidently, this h qualifies as a
test function (h(0) =h(r) =hr'(0) =1'(r) =0). It was
already shown above that

f&ﬂf+mn:/ ﬂMa+t/2mU%L
Note that since ¥ (x) = 0, we have by (29) that
" f/lh// — O
0
and, therefore,

d " n
ST+ h) = t/o 2(h"Yda.

Assuming that [7(h")*dz > 0 (that is,

/O‘T(g// 7 f”)Zd-T > 0)7

we get that J(f +th), as a scalar function of the real
parameter ¢, assume its unique minimum at ¢ = 0 and, in
particular, we have that

J(f) < J(g)-

If, on the other hand, f(;(g” —f )de = 0, then accord-
ing to the boundary conditions, we have that

g(z) = f(x). 0

APPENDIX B

ANALYTIC APPROXIMATION OF THE “SIMPSON
METHOD” SOLUTION

The “(n =0,7n = 2)-system” (see Section 2.3) using the
Simpson integration rule (p = 3) yields for the unknowns
A and ¥ the following two equations

~ (1
—2a0—|—/\cos\110<§) =0

~ ~ /1 ~
sin\I/(,(O)+4sin\I/0<§) +sin¥y(1) = 0,

which by the form of ¥, essentially means that

\\J \\J
—2ay + A cos 1+ 2—&-@ =0
2 4
U, + v
sin\Il1+4sin[ 1;— 2+%}+sin\112 = 0.

Assuming small |¥; + Us| (ie., &1 ~ Dy), approximating
sin(-) using its Taylor expansion around ¥, to a first order,
we get the relation

sin Wy + sin Wy ~ sin (¥ + ¥y) cos ¥y,

which when introduced into the following representation of
the last equation becomes

|:\I/1 + \1/2 a0:| . |: sin \Ill + sin \I/Q

———+—| =arcsin | ———|,
2 4

resulting in

ag ~ —(2+ cosUy)(¥; + Us).

This implies that

o = (24 cosU,) () + Uy))s?
—((8+cosUp)Uy + (14 cosUy)Wy)s + V.

Now, assuming that |¥;] 4 |Us| is small then
ap =~ 73(\111 -+ \IJQ)
Hence, ¥, is well-approximated by

T(s) Y30y + Ty)s? — (4T, + 20y)s + T,

for which it is straightforward to show that

Cino(U(s)) = 4(V2 + U2 + U, Ty).

APPENDIX C

ANALYSIS OF THE AFFINITY MEASURE USED IN [27]

In [27] (following [17] and [32]), two induction fields were
defined, the source field, and the sink field. The source field
represents the probability of a particle to travel from a
source element to all other elements in the image and the
sink field represents the probability of a particle to travel
from any element in the image to a sink element. These
fields are induced by the affinity measure based on the
quantity P(2|1) which represents the probability of the
particle to start at an element e; at time ¢; and arrive at an
element e, at time t,. In fact, to; = to — t;, and the affinity
measure between e; and e; is of the form

Aler, e) = / =1/ P(2|1)dts,
t

where the strictly positive parameter 7, is accounted for the
decay of particles. Each element of the field of likely
completions is obtained by the product of the sum of all
source fields at that element with the sum of all sink fields
at that element.

Thornber and Williams [27] derived an explicit expres-
sion for the summation kernel, P(2|1) (see also [28])
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t%ng)
3 Ttor Qe+ Qy),

—log(P(2]1)) = 2l0g< (30)

where

Qz = Qo2 — 21, T1, Ta, t1),
Qy = Qy(y2 — Y1, 91, %2, t21),

and the strictly positive parameter T are all defined in
[27]. We assume that ||(Z1,91)|| = ||(Z2,92)] =1, so that
& =cosWy, i =sin Wy, 59 =cosWy, and ¢ =sin ¥y (see
Fig. 4).

Note that when |®¢] + |®,| is sufficiently small, having
the particle traveling in constant unit speed implies that
P(2|1) assumes its significant value at ty; >~ r, so that the
affinity measure typically behaves as the value of its
integrand at ty; = r. For ty; = r, we can approximate

1
Q.+ Qy~ ——cos@l —cos<I)2+3cos(<I>1 + @),

from which by approximating cos(-) using its Taylor
expansion to a second order, we get

1
Q:I: + Qy = gE(mg((I)la (1)2)

Substituting this in (30) and rearranging it, we get for
top =1 that:

2

3 .
P(2[1) ~ <T;£T> ¢ b (01,22),

(31)

Under the above assumptions, we can evaluate the
affinity measure A(e;, ez) by the value of its integrand at
tor =1, that iS,

1 —r/ Ty \/'?; ? —2FE (DD
Aleren) =/ () et (o)
which practically implies that
A(ehe?) ~ A(el,eg) — 677’/7"067Eum(<1>|,(I)z)/(7‘ao)7 (33)

for some strictly positive a priori set parameters ry and oy.

Note that, due to our analysis in Section 2.2, when we
= (P, V),
according to the above A(ej,ez), the strongest effect at a
position P is in the orientation ®; = %@1. We may change
this preference by using the generalized form of E,, (12)
and set the coefficients a and b to fit the desired preference.
Also, note that when ®; and ®; are held fixed and r is
increased, we see that e~ %

consider the field induced by an element e;

ang/(190) increases within A(e, ).
This property of the induction also arises from the property
of the classical elastica measure I';; (as is explained in
Section 2.1), and has the following intuitive explanation: For
any fixed ®; and ®,, a particle changing its orientation from
®; to ¢, turns less per unit length when r increases.
Finally, we would like to note that although the
stochastic completion fields do not explicitly show a
preference for scale, such a preference nevertheless arises.
By taking the derivative of A(e;,es) with respect to r, we
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can see that when we hold ®; and ®, fixed, the strongest
affinity between two elements is obtained when

70 7o
=/ Eaugy [ — = Q| —
a0 a0

(see Section 3.2 for ).

APPENDIX D
ASYMPTOTIC SMOOTHNESS OF THE KERNEL (G

To show the “asymptotic smoothness” of the kernel
G= G(ei;ej) = G(xi,y,;ﬂllj,:rj,yj,\llj) note first that, due
to its symmetry (G(e;,e;) = G(ej,e;)), we can consider
only derivatives with respect to z;, y;, ¥; and, due to
its translation and rotation invariance, we can fix
(xi,vi, ¥;) conveniently to be (0,0,0).

That is, for the current discussion, we consider

G(z,y,¥) = G(0,0,0,z,y, V)

= Fy(r/p)Fi (P/T\/ T + &F — @1‘1?’2),
where r = /2% + 2, &1 = 6 = arctany/x, Py =

Fa(§) =1/, Fi(n) =

It can be shown that any g-order partial derivative of
G(z,y, V) decays fast with r. For employing the multigrid
fast summation algorithm, it is, however, enough to
consider only pure (not mixed) partial derivatives.

Also, let us focus on 9{G as representing 9/G. Having
G = F,F,, we have for any natural number ¢ that

Uy — 0,

—von?2
e g, By € Ny

q
8 G = ch 5}”Fd q l”Ft)
k=0

and so, we can focus on 0!F, and 9¢F; separately. Let us
first concentrate on 0¢F;. Considering ¢ as defined above
(see also Fig. 4), we have that Fi(z,y, V) = Fy(r,6,¥) and,
therefore,

Furthermore, it is inductively evident that for any order
g, we have the same type of expression for 9¢F; as for ¢ = 1
above, for instance, for ¢ = 2

PF, = (0:0F)0,0 + (9F,) 020+
(00 F) Dy + (0, F) P
(G5F:)(0:6)" +(0p F2) 336+
(82 F3) (8,7)*+ (8, 1) Pr+
2(0,0F1)(027) (0:0).

(34)

Considering the fast decay of 0¢F; with r, ¢ being any
natural number, note first that

Opr = /7,
Fr=1r—a*/rd ...,

and, hence, inductively, 31/, independent of r, such that
|0k k=1 v 0 < k < ¢. Also, note that
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are = —?J/T27
920 =2y /17, ...,

and, thus, it is inductively evident that there exists C;, and
5,1, both independent of r, such that |8J,9\k§ Cq/rk,
VO0<k<g and |06 <C,/r*, V0 <k<q.

Regarding 9} F;, for natural numbers g, setting 3, = 2 (see
the definition of F;(n) above), note that

OpFy = (00, F;)0p®1 + (09, F;) 09 P2 = 09, Fy — 05, F;.
Focusing on 8%2Ft and denoting
g(q)g) = 042,02(‘1)% + @g - @1(1)2),
we have that F, = e 9®)/" and, therefore,
O, Fy = (_gl((P?)/TZ)Fta
08,5 = (~ (@212 + (¢ (@2)/r)) . ...

which by taking into account the fact that 95 g(®,) =0,
Vk > 3, yields inductively that dN,, such that

|08 | < N, /e,

V1< k<g Now, focusing on the more general case of
af;;ll 8]1‘;22172, where k; and ky are natural numbers, and
k = k1 + ko, it is obvious by the same reasoning applied to
04 F; above, that Hﬁq such that ‘8@‘1 8@217,5‘ < ]\7,1/7”"’,
¥ 0 < k < ¢. Regarding d¢F;, note that

8'rF‘t = _2/T39Ft7
O’F, = ((—2/7”3g)2 + 6/7'49)[7}7 ce

and, therefore, inductively, 37, such that |9"F,| < T,/r"*?,
Vv 1 < k < g. Consequently, 37, such that

|67k1652E’ < f/TJHQ7

where k; and ks are natural numbers, and k = k; + k». Thus,
from (34) and the above derived bgunds, we get inductively
that for any natural number ¢, 30, such that

|09F;| < M,/r.

Now, as for 97F; having F,; = p/r, we obviously have
that for any natural number g, EII?,N independent of 7, such
that |0¢F,| < L,/r"*.

As for 9}, G, note that since ¥ = ®, + 6§, we have that

094G = Fydy Fy, = Fydl .

Thus, concluding from all the above, we get that for any
natural number ¢ : 3L,, independent of r, such that

|01G (x,y, V)| < Ly/r",

and

UG, , W)| < Lo/,
and

|8?I,G(:E,y,\11)| < L,/

The fast decay of the derivatives of G with increasing r
ensures that when considering the sum of inductions on an
element e; by all other elements, we can aggregate the many far
away inductions into much fewer inducing representative
elements, with as small an error as desired in the total
summation by employing a sufficiently high g-order aggre-
gation. In addition, when summing the neighboring (w.r.t. r)
inductions on ¢;, one should use the smoothness of G with
respect to V¥, in order to avoid again summing the many
differently oriented inductions, this again by employing a g-
order aggregation of the many differently oriented induc-
tions into fewer representative, controlling the error by the
order of aggregation. In order to use the smoothness of G with
respect to ¥ for g-order aggregation, one should note that the
g-order derivatives of G with respect to ¥ decays fast.

In addition to the g-order aggregation described above,
one should also use for fast summation the fast decay of
G(xi, yi, Vi, x;,y;, ¥;) with respect to any of its six argu-
ments in order to sum all inductions acting upon certain
neighborhoods only into some appropriate representatives
of these neighborhoods, interpolating from these represen-
tative sums the induction acting upon any desired element,
while controlling the error by the order of interpolation.

Employing fast summation of induction fields (see
Section 3.3), all of the above considerations may and should
be exploited within different scales of spatial and angular
farness between elements. For instance, given a scaled
radius of curvature p(l, w), the fast decay of the derivatives
of the kernel G should be considered with respect to the
scaled spatial distance r/p.
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