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Abstract
Silhouettes contain rich information about the shape of ob-
jects that can be used for recognition and classification. We
present a novel approach that allows us to reliably com-
pute many useful properties of a silhouette. Our approach
assigns for every internal point of the silhouette a value re-
flecting the mean time required for a random walk begin-
ning at the point to hit the boundaries. This function can
be computed by solving Poisson’s equation, with the silhou-
ette contours providing boundary conditions. We show how
this function can be used to reliably extract various shape
properties including part structure and rough skeleton, lo-
cal orientation and aspect ratio of different parts, and con-
vex and concave sections of the boundaries. In addition to
this we discuss properties of the solution and show how to
efficiently compute this solution using multigrid algorithms.
We demonstrate the utility of the extracted properties by us-
ing them for shape classification.

1. Introduction
Silhouette contours contain detailed information about the
shape of objects. In many cases it is possible given a sil-
houette to determine the parts that compose a shape, iden-
tify their local orientation and rough aspect ratio, and detect
convex and concave sections of the boundaries. When a sil-
houette is sufficiently detailed people can readily identify
the object, or judge its similarity to other shapes (see exam-
ples in Fig. 1).
Computer vision systems may use similar information to

classify objects. Silhouettes may be available to these sys-
tems as a result of segmentation. Simple thresholding can
be applied in applications involving fairly isolated objects,
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Figure 1: A collection of silhouettes.

such as objects placed on a conveyer belt or characters in
a document. More sophisticated algorithms may be used,
with certain degree of success, to segment objects in clut-
tered scenes. In either case, properties of silhouettes ex-
tracted automatically and reliably provide (possibly in con-
junction with additional properties such as color and tex-
ture) a powerful cue for recognition.
In this paper we present a novel approach that allows us

to reliably compute many useful properties of a silhouette.
We consider a silhouette surrounded by a simple, closed
contour. Based on the notion of random walks, we compute
a function that assigns, for every internal point in the sil-
houette, a value reflecting the mean time required for a ran-
dom walk beginning at the point to hit the boundaries. This
function can be formalized as a partial differential equa-
tion, called the Poisson equation, with the silhouette con-
tours providing boundary conditions. We then show how
we can use the solution to the Poisson equation to reliably
extract various properties of a shape including its part struc-
ture and rough skeleton, local orientation and aspect ratio
of different parts, and convex and concave sections of the
boundaries. In addition to this we discuss properties of the
solution and show how to efficiently compute this solution
using multigrid algorithms. We demonstrate the utility of
the extracted properties by using them for shape classifica-
tion.
The computer vision literature contains numerus exam-

ples for the use of properties extracted from silhouettes.
Various studies utilize parts and skeleton structures to de-
termine shape category [4, 20, 17]. Local properties are
used for registration and recognition, as well as similar-
ity judgement [1, 9, 21]. In addition, various categoriza-
tion methods use “qualitative descriptions” of shape bound-
aries [3, 6]. Random walks are used in various vision



applications including perceptual grouping and segmenta-
tion [2, 10, 18, 24]. Finally, the Poisson equation is used
in various applications such as optical flow and shape from
shading [13, 16, 22].
The paper is divided as follows. Section 2 introduces

the Poisson equation and its properties. Efficient multigrid
solutions are discussed in Section 3. Section 4 describes
how the solution can be used to extract various properties
of a silhouette. Finally, Section 5 demonstrates the utility
of these properties through some applications.

2. The Poisson Equation
Consider a silhouette S surrounded by a simple, closed con-
tour. A sensible approach to inferring properties of the sil-
houette is to assign to every internal point a value that de-
pends on the relative position of that point within the silhou-
ette. One popular example is the distance transform, which
assigns to every point within the silhouette a value reflecting
its minimal distance to the boundary contour, and which can
be computed by solving the Eikonal equation (k∇uk2 = 1).
An alternative approach is to place a set of particles at the
point and let them move in a random walk until they hit
the contour. Then we can measure various statistics of this
random walk, such as the mean time required for a parti-
cle to hit the boundaries. This particular measure can be
computed by solving a Poisson equation of the form:

∆U(x, y) = −1, (1)

with (x, y) ∈ S, where the Laplacian of U is defined as
∆U = Uxx + Uyy, subject to the boundary conditions
U(x, y) = 0 at the bounding contour ∂S. The connection
to random walk is evident by noticing that, according to the
Poisson equation, the value at every point is a constant plus
the average value of its neighbors.
Fig. 2 shows the solution to the Poisson equation ob-

tained for the silhouettes in Fig. 1. The level sets of U rep-
resent smoother versions of the bounding contour with the
external protrusions (the limbs, head, and tail) disappearing
already at relatively low values of U . This is different from
the distance transform, which smoothes the shape near con-
cavities while introducing discontinuities near convex sec-
tions of the contour. Also unlike the distance transform in
which every value is determined by a single contour point
(the nearest), the values assigned by the Poisson equation
take into account many points on the boundaries and so they
reflect more global properties of the silhouette. Below we
exploit these properties of the Poisson solution to character-
ize a silhouette using measures constructed with derivatives
of the solution.
Poisson’s equation arises in gravitation and electrostat-

ics. Here we only mention a few of its relevant properties.
The solution to the Poisson equation exists and is unique for

Figure 2: Solutions to the Poisson equation for the silhouettes in Fig. 1.

Figure 3: Noisy boundary (left) and two level sets of low values (right).

any closed region with boundary conditions given by any in-
tegrable function. Uniqueness is shown by noticing that the
solution to the related homogeneous equation ∆Uh = 0
(called the Laplace equation) with zero boundary condi-
tions is identically zero. Moreover, the values of U along
any closed curve within S determine the values of U inside
the region bounded by this curve, but they are insufficient
to uniquely determine the values of U outside the curve.
For silhouettes described by conics the Poisson equation

takes a particularly simple form. Consider a silhouette com-
posed of the points (x, y) satisfying

P (x, y) = ax2 + by2 + cxy + dx+ ey + f ≤ 0. (2)

Then, it can be readily verified that the solution is given by

U(x, y) = − P (x, y)

2(a+ b)
. (3)

In this case the level sets of U simply contain a nested col-
lection of scaled versions of the boundaries, where the value
of U increases quadratically as we approach the center.
For silhouettes described by more complicated equa-

tions the level sets of U represent smoother versions of the
bounding curve (as is shown in Fig. 3). To see this, consider
a line on which U oscillates (e.g., as a result of a ragged
bounding contour). As we proceed toward the inside of the
region the oscillation will attenuate at an exponential rate.
We can illustrate this “interior regularity” property (com-
mon to all smooth elliptic equations [7, 5]) by solving (1)
within the infinite band 0 ≤ y ≤ L with boundary con-
ditions U(x, 0) = eix/λ and U(x,L) = 0. The solution is
given byU = e−y/λeix/λ+0.5y(L−y). Consider the value
of U along a line parallel to the x-axis (constant y). The left
term oscillates with the same wavelength as on the lower
boundary, but with a decaying amplitude (e−y/λ), whereas
the right term is constant. The faster the oscillation (smaller
λ) the faster the decay of its amplitude. Note that due to the
linearity of the Poisson equation this analysis also applies
to oscillations expressed as superpositions of frequencies.
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3. Multigrid Solutions
Numerical solutions to the Poisson Equation can be ob-
tained using successive Jacobi or Gauss-Seidel relaxations,
but their convergence rate is slow. It requires O(n2) com-
puter operations to reach an adequate solution for a silhou-
ette region with n pixels. This slowness is a result of the fact
that after several relaxation sweeps the obtained approxima-
tion has a smooth error, which can only be slightly reduced
by each relaxation sweep. Such a smooth error can how-
ever be approximated on a coarser grid. This in fact is what
multigrid algorithms do.
A multigrid solver consists of several relaxation passes,

followed by averaging the residual equations (the equations
for the current, smooth error function), to represent them on
a coarser grid (where the distance between neighboring grid
points is twice the fine-grid distance, i.e., twice the pixel
size). The approximate solution to the resulting coarse grid
equations is interpolated to the fine grid, yielding a good ap-
proximation for the smooth error, which can thus be used to
correct the previous, erroneous solution. This combination
of several relaxation sweeps followed by a correction from
a coarser grid is called a multigrid cycle. One such cycle
typically reduces the error by an order of magnitude. The
coarse equations in this cycle are themselves approximately
solved by a similar cycle, i.e., several relaxation sweeps (on
the coarse-grid equations) followed by a correction from a
still coarser grid (with meshsize four times the pixel size);
and so recursively, until, at a very coarse grid, the equa-
tions are solved directly. (For recent multigrid textbooks
see [23]).
Since the computational work at the increasingly coarser

levels diminishes geometrically, the overall cost of a multi-
grid cycle is only a fraction more than the cost of the sev-
eral fine-grid relaxation sweeps. Several such cycles are
enough to produce a very accurate solution, so the total cost
of the multigrid solver is just O(n). In fact, for all the ap-
plications described below, which largely require qualitative
features rather than precise numerical values, only a crude
accuracy is needed. This can be achieved by applying just
one, simplified cycle, which employs very naive boundary
conditions at the coarse levels (placing the boundary at the
nearest coarse grid points, instead of modifying the nearby
coarse equations to account for the fine, pixel-level location
of the boundary). We observed no qualitative difference in
the measured features between this one-cycle solver and a
fully accurate, several-cycle solver. This plain solver costs
less than two dozens operations per silhouette pixel.
The interior regularity property described in Sec. 2 im-

plies that at a distance r from the boundary a grid with
meshsize h = O(r) suffices to preserve the discretization
error. This property can be utilized to further improve the
complexity of the multigrid algorithm above. The modi-
fied version will exploit non-uniform grids with meshsize

dependent on the distance r from the boundary. The com-
plexity of such a solver is linear in the number of contour
points, while its accuracy is unchanged.
Finally, the solution obtained may be noisy near the

boundaries due to discretization. To reduce this noise
we may apply as a post-processing stage a few relaxation
sweeps enforcing Uxx + Uyy = −1 inside the silhouette
and Uxx+Uyy = 0 outside the silhouette. This will smooth
U near the boundaries and hardly affect more inner points.

4. Extracting Silhouette Properties
We can use the Poisson equation to extract a wide variety of
useful properties of a silhouette. In this section we provide a
few examples. We begin by showing how the Poisson equa-
tion can be used to segment a silhouette into parts. Next,
we show how we can identify corners at various resolution
scales and derive a skeleton structure. Finally, we show how
we can locally judge the orientation and rough aspect ratio
of portions of the silhouette.

4.1. Hierarchical shape representation
Complex shapes can often be naturally described as a col-
lection of parts. In particular, many common objects can un-
dergo articulated motion in which every part moves rigidly
while stretching or rotating with respect to the other parts
of the object. For these reasons a number of recognition
schemes were proposed that rely on part representations
(e.g., [4, 20, 17]). In this section we show how we can use
the Poisson equation to divide a shape into parts.
We will focus on shapes composed of a central part (e.g,

the torso of an animal) to which exterior parts are connected
(e.g., the head, limbs, and tail). In such a case the highest
values of U are obtained within the central part. Using an
appropriate threshold we can identify the central part (see
Figure 4). However, in this case we obtain a smooth version
of the central part and lose the portions of the central part
that are near the boundaries since those portions yield low
values of U .
We can include the portions of the central part that fall

near the boundaries by noticing that these portions must
have a high gradient. Define

Φ = U + Ux
2 + Uy

2. (4)

Φ has several interesting properties. First it is constant on a
disc (Φ = r2/4 on a disc of radius r). On other shapes it has
a saddle point exactly where U is maximum. For example,
on an ellipse we obtain a saddle point at the center with low
values along the major axis and high values along the mi-
nor axis. In more complex shapes there may be additional
saddle points at minor parts, indicating the hierarchy of the
parts. The highest values of Φ are obtained near concavi-
ties. This follows the fact that U grows faster with distance
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Figure 4: From left to right: log(Φ) computed for several silhouettes,
central blobs extracted using 55 highest percentiles ofU , and exterior parts
extracted using uniform thresholds (78 and 66 low percentiles of logΦ).

Figure 5: Detecting concavities in different shapes using Ψ. The figure
highlights log |Ψ| for all silhouette points with negativeΨ.

from concavities than from convexities, and so the gradient
magnitude is higher.
By simply thresholding Φ we can divide a shape into

parts. Fig. 4 shows a few examples. Note that by changing
the threshold we can extract also very small parts, such as
the ear or a horseshoe.

4.2. Identifying corners
For every point inside the silhouette we can evaluate the
curvature of the level set passing through this point using

Ψ = −∇ ·
µ ∇U
k∇Uk

¶
(5)

[19]. High level values of Ψ mark locations where level
sets are significantly curved. Since the level sets of U are
smooth versions of the bounding contour this measure can
be used, for example, to detect corners at different scales.
Negative values of Ψ identify all shape concavities, as is

shown in Fig. 5. High negative values are obtained near lo-
cal, sharp concavities (e.g., the horse’s neck), and somewhat
lower values in an extended area are obtained for large-scale
concavities (e.g., the horseback). High positive values of Ψ
will reveal all convexities, along with ridge (skeleton-like)
locations. It is therefore preferable to detect convex corners
using low values of Φ, see Fig. 6.

Figure 6: Detecting convex sections in different shapes using low values
of Φ. The figure shows log(1/Φ) for all silhouette points. Notice that
convex points are highlighted.

Figure 7: Rough skeletons computed with Ψ̃. To obtain narrow skele-
tons we used a threshold, and repeated the computation of Ψ̃ on the ob-
tained region.

4.3. Skeleton
To further emphasize the skeleton of a shape we may use a
scale-invariant version of Ψ defined as:

Ψ̃ = − U ·Ψ
k∇Uk . (6)

This measure emphasizes the skeletal structure, while at-
tenuating the response for corners near the boundaries since
near the boundaries U is small, while near ridge location
k∇Uk is small. The skeleton obtained using the Poisson
equation is similar, but not identical to the skeleton obtained
with the brushfire algorithm. Fig. 7 shows rough skeletons
computed with Ψ̃.

4.4. Local orientation and aspect ratio
The Poisson equation can be used also to estimate the lo-
cal orientation and dimension of a shape. One example in
which this may be useful is character recognition (OCR).
Characters often can be described as a collection of elon-
gated, narrow strokes, most often with no noticeable central
part. The lack of a central part makes the method discussed
in Section 4.1 above inappropriate for characters. We thus
need a different procedure that can identify the parts that
compose a character. Furthermore, it is important that this
method will be applicable for very thin (pixel-wide) as well
as thick characters.
A natural way to divide a character into parts is to iden-

tify the local orientation of the part and divide the character
into sections of different orientation. This can be done sim-
ply by looking at the second derivatives of U . In a narrow
elongated section of a shape the level sets of U are largely
parallel to the orientation of that section. The second deriva-
tive of U along a level set is generally very small, while the
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Figure 8: A schematic representation of the second derivatives for hand-
written numerals: each pixel is assigned a color according to the direction
in which the derivative at this pixel is minimal (indicating that the pixel
lies in a part that is elongated in this direction), i.e. green for the vertical
direction, blue for horizontal, brown and orange for the two diagonals.

Figure 9: A schematic representation of the second derivatives (similar
to the previous figure) for pixel-wide numerals.

second derivative at the perpendicular direction must com-
plement it to -1, and so it must be much larger (in absolute
value). We may therefore identify the local orientation at
each pixel by detecting the orientation θ in which Uθθ is
small.
Figures 8 and 9 show a schematic representation of local

orientation for sets of thick and thin hand written numer-
als. In the case of pixel-wide characters we may use the
smoothing post-processing described in Section 3, although
the detection of orientation seems to work well also without
this smoothing. Note that the detection of orientation can
be applied everywhere within the shape, and so it is fairly
insensitive to small perturbations of the contour. In Sec-
tion 5 below we show an example of using such detection
in a numeral recognition task. One can also build on this
orientation measure other useful processes and recognition
tools. In particular, we may segment each numeral to its
constituent strokes by identifying sections in which orienta-
tion changes smoothly. Each stroke can then be character-
ized by various properties, such as its location and several
moments of its orientation as function of arclength. These
ideas can also be applied to identifying directions of skele-
ton parts.
We can further generalize the analysis above to arbitrary

shapes by constructing measures that estimate locally the
second order moments of a shape near any given point.
Consider a shape defined by a second order polynomial
P (x, y) < 0, as in (2). As we mentioned in Section 2,
every level set of U is simply a scaled version of P (x, y)
(3). If we now consider the Hessian matrix of U we obtain

Figure 10: A schematic representation of orientations computed via the
Hessian matrix for several shapes. Turquoise color represents vertical re-
gions (|α| ≥ π

4
), yellow for horizontal (|α| < π

4
), and brown for isotropic

sections
p|λmin/λmax| ≥ 2

3
). It can be seen that pairs of similar shapes

give rise to similar orientation measures, but notice the thumb (left figures),
which changes its orientation from near horizontal (top) to near vertical
(bottom).

Figure 11: Elliptic (brown) and hyperbolic (yellow) sections computed
with the Hessian matrix for several shapes (sign of λmin · λmax).

at any given point exactly the same matrix, namely

H(x, y) = − 1

a+ b

µ
a c/2
c/2 b

¶
. (7)

This matrix is in fact the secondmoment matrix of the entire
shape, scaled by a constant. The eigenvectors and eigenval-
ues of H then will reveal the orientation of the shape, its
aspect ratio, and will indicate whether the shape is elliptic
or hyperbolic.
For more general shapes the Hessian will vary contin-

uously from one point to the next, but we can treat it as
providing a measure of moments of shape felt locally by
the point. Figures 10 and 11 show a few examples. In these
figures λmin(x, y) and λmax(x, y) denote the eigenvalues
of the Hessian matrix s.t. |λmin(x, y)| ≤ |λmax(x, y)| and
α(x, y) denotes the orientation of the leading eigenvector.

5. Applications
Below we describe preliminary classification experiments
which demonstrate the utility of properties extracted with
the Poisson equation. In these experiments, we represent a
shape by a collection of features derived for the shape using
the Poisson solution (1). The features we use are weighted
moments of the form

mpq =

Z ∞
−∞

Z ∞
−∞

w(x, y)xpyqdxdy, (8)

in which for every feature we substitute for w(x, y) a dif-
ferent Poisson-based measure (described below). We then
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use these features to train a classifier with multiple decision
trees, each trained on a random subset of the training set.
At each level of a tree we compute a multiclass Fisher dis-
criminant [8] and find along the obtained direction the split
that achieves maximal impurity decrease. We then test the
algorithm by applying it to an unseen randomly chosen test
set. We compare our results with those reported in the lit-
erature and with the results obtained using the same classi-
fier when the features used include ordinary shape moments
(computed as in (8) with w(x, y) = χ(x, y), the character-
istic function of the shape).
Following is a description of the features used and the

results obtained in each of the experiments.

5.1. Hand-Written Numerals
In the first set of experiments we learn to classify hand-
written numerals. We used two types of measures as
weights in (8). The first measure, Lθ, identifies local ori-
entation by detecting the orientation in which the second
derivative of the solution is near zero. This measure is de-
fined by

Lθ(x, y) = e−(β|Ũθθ(x,y)|), (9)

where Ũθθ(x, y) denotes a three-pixel average of Uθθ(x, y),
the second derivative of U in one of the four direc-
tions θ ∈ {0, π/2, π/4,−π/4} (we used β = 3). The
second measure, Jθ1θ2(x, y), identifies junctions by tak-
ing the geometric mean of two detectors, Lθ1(x, y) and
Lθ2(x, y) in the six pairs of orientations (θ1, θ2) s.t.
θ1, θ2 ∈ {0, π/2, π/4,−π/4} and θ1 < θ2. We used these
moments (along with two global properties, the aspect ratio
of the numeral and the ratio between the product of PCA
length and width and the area of the numeral) to construct a
vector of 210 features for each numeral.
We then used a random subset of 20000 numerals for

training. The algorithm constructed 50 decision trees, each
trained by a random collection of 3000 numerals from the
training set. We then tested the algorithm by applying it to
1000 unseen randomly chosen numerals.
We first applied this procedure to numerals from the

NIST special database 19 [12] (downsampled to fit in a
64×64 pixel box, centered about their centroid and brought
to a uniform scale). The average error rate obtained in 10
random experiments was 1.08% ± 0.19%. (One of our er-
rors was due to mislabeling.) For comparison, with ordinary
shape moments of up to order 12 (including the two global
features, yielding 90 features) we obtained an error rate of
3.7% ± 0.35%. Further experiments with moments up to
all orders between 4 and 20 (resulting in 14-230 features)
yielded worse performance. In addition, our results favor-
ably compare to the 3.58%± 0.13% reported in [11].
We then applied the same procedure to numerals from

the MNIST database [14]. The average error rate obtained

Figure 12: A collection of silhouettes from the database.

in 10 random experiments was 1.5%± 0.18%. For compar-
ison, with shape moments of orders up to 11 (yielding 77
features) we obtained 5.4%± 0.28%. Further experiments
with moments up to any order between 4 and 20 yielded
worse performance. Our results are superior to many of
the algorithms tested in the benchmark [15], including RBF,
Neural nets, PCA, and linear classifiers, but are inferior to
the best results published for boosted LeNet-4 [15] (0.7%)
and for shape context [3] (0.63%). Our algorithm, however,
is significantly faster. For example, our non-optimizedMat-
lab implementation requires less than 15 minutes of training
with 20K numerals.

5.2. Natural Silhouettes
The next experiment demonstrates the utility of our method
for general shapes. We collected a database of silhouettes
of natural objects and expanded it with the most variable
classes from [20]. The database contained 490 silhouettes
of 12 classes (see Fig. 12). We centered the silhouettes
about their centroid and brought them to a uniform scale,
and then solved the Poisson equation (1). We character-
ized every silhouette using two measures. The first measure
is analogous to Lθ (9). It identifies vertical and horizontal
regions of a shape by detecting points for which the orienta-
tion computed with the Hessian matrix (Section 4.4) is close
to either zero or π/2. This measure is defined by

Hθ(x, y) = e−γ|θ−|α(x,y)||, (10)

where α(x, y) is the principal direction felt locally at (x, y)
(−π2 ≤ α(x, y) ≤ π

2 ) and γ is a constant (we used γ = 3).
We evaluatedHθ at every point with ratio

p|λmin/λmax| ≤
1
2 for the two orientations θ ∈ {0, π2 }. The second mea-
sure identifies concave regions as well as elongated convex
sections by emphasizing points with high values of Φ (Sec-
tion 4.1). Denote by Φ̂(x, y) the function Φ(x, y) centered
about its saddle point value (the value at the point where
U is maximal) and normalized so that its maximal absolute
value is 1. We define

KΦ(x, y) =
1

1 + e−δΦ̂(x,y)
(11)
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(we used δ = 4).
In the classification experiment we used a random selec-

tion of 350 of the silhouettes for training and the remaining
140 silhouettes for testing. We then computed moments up
to order 3 as in (8) substituting for w(x, y) the two verti-
cal and horizontal measures Hθ and the measure KΦ. We
used in addition the direction of the principal axis, aspect
ratio, and ratio of axial standard deviations, resulting in 33
features per silhouette. Using the same classification al-
gorithm as with the numerals (constructing 10 trees, each
trained with a random selection of 300 silhouettes), in a 100
random experiments, we obtained an average error rate of
3.8%±1%. For comparison, with shape moments of orders
up to 6 (including the three additional features, resulting in
26 features) we obtained 6.9% ± 1.3%. Experiments with
moments of different orders (we tried all orders between
3 and 7, resulting in 8-34 features) yielded worse perfor-
mance.

6. Conclusion
Solutions to the Poisson equation provide rich descriptive
information that can be used to compute useful properties
of shape silhouettes. In this paper we derived several such
properties, described how to compute them efficiently using
multigrid solvers, and applied them in classification tasks.
We are unaware of any other method that can produce a
scalar field whose thresholding decomposes an object into
parts. Moreover, existing scalar fields (e.g. the distance
transform) do not yield such rich descriptions simply by
differentiation. It is also worth noting that solutions to the
Poisson equation, and the properties extracted from its so-
lution can be applied with very little change also to objects
in higher dimensions.
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