
Shape Representation and Classification
Using the Poisson Equation

Lena Gorelick, Meirav Galun, Eitan Sharon, Member, IEEE Computer Society,

Ronen Basri, Member, IEEE Computer Society, and Achi Brandt

Abstract—We present a novel approach that allows us to reliably compute many useful properties of a silhouette. Our approach

assigns, for every internal point of the silhouette, a value reflecting the mean time required for a random walk beginning at the point to

hit the boundaries. This function can be computed by solving Poisson’s equation, with the silhouette contours providing boundary

conditions. We show how this function can be used to reliably extract various shape properties including part structure and rough

skeleton, local orientation and aspect ratio of different parts, and convex and concave sections of the boundaries. In addition to this, we

discuss properties of the solution and show how to efficiently compute this solution using multigrid algorithms. We demonstrate the

utility of the extracted properties by using them for shape classification and retrieval.

Index Terms—Computer vision, shape, Poisson equation, silhouette classification.

Ç

1 INTRODUCTION

SILHOUETTE contours contain detailed information about
the shape of objects. In many cases, it is possible, given a

silhouette, to determine the parts that compose a shape,
identify their local orientation and rough aspect ratio, and
detect convex and concave sections of the boundaries.
When a silhouette is sufficiently detailed, people can readily
identify the object or judge its similarity to other shapes (see
examples in Fig. 1).

Computer vision systems may use similar information to
classify objects. Silhouettes may be available to these
systems as a result of segmentation. Simple thresholding
can be applied in applications involving fairly isolated
objects, such as objects placed on a conveyer belt or
characters in a document. More sophisticated algorithms
may be used, with a certain degree of success, to segment
objects in cluttered scenes. In either case, properties of
silhouettes extracted automatically and reliably provide
(possibly in conjunction with additional properties such as
color and texture) a powerful cue for recognition.

In this paper, we present a novel approach that allows us
to reliably compute many useful properties of a silhouette.
We consider a silhouette surrounded by a simple, closed
contour. Based on the notion of random walks, we compute
a function that assigns, for every internal point in the
silhouette, a value reflecting the mean time required for a
random walk beginning at the point to hit the boundaries.
This function can be formalized as a partial differential

equation, called the Poisson equation, with the silhouette
contours providing boundary conditions. We then show
how we can use the solution to the Poisson equation to
reliably extract various properties of a shape including its
part structure and rough skeleton, local orientation and
aspect ratio of different parts, and convex and concave
sections of the boundaries. In addition to this, we discuss
properties of the solution and show how to efficiently
compute this solution using multigrid algorithms. We
demonstrate the utility of the extracted properties by using
them for shape classification and retrieval. A preliminary
version of this paper appeared in [26].

The paper is divided as follows: We discuss related work
in Section 2. Section 3 introduces the Poisson equation and
its properties. Section 4 describes how the solution can be
used to extract various properties of a silhouette. Efficient
multigrid solutions to the Poisson equation are discussed in
Section 5. Section 6 introduces the classification algorithm
we used in our experiments. Finally, Section 7 demonstrates
the utility of the properties extracted with the Poisson
equation through some applications.

2 RELATED WORK

The computer vision literature contains numerous exam-
ples for the use of properties extracted from silhouettes.

Many early theories [6], [39] alongside more recent
developments in digital imaging and computer vision, e.g.,
[44], [49], rely on part-based representations for object
detection and recognition. Such methods first define a set of
basic parameterized primitives (e.g., generalized cylinders
[39], superquadrics [44],geons [6]).Anobject is thendescribed
by a collection of such primitives along with their relative
spatial arrangement. Instances of these objects are identified
in an image by fitting part models to regions in the image.

Perhaps the best known shape descriptor is the Medial
Axis Transform, defined by Blum in the 1960s [8] as the loci
of centers of bitangent circles that fit entirely within the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006 1991

. L. Gorelick, M. Galun, R. Basri, and A. Brandt are with the Department of
Computer Science and Applied Mathematics, The Weizmann Institute of
Science, PO Box 26, Rehovot 76100, Israel. E-mail: {lena.gorelick,
meirav.galun, ronen.basri, achi.brandt}@weizmann.ac.il.

. E. Sharon is with the Division of Applied Mathematics, Brown University,
182 George Street, Providence, RI 02912. E-mail: eitans@dam.brown.edu.

Manuscript received 9 Aug. 2005; revised 3 Apr. 2006; accepted 11 Apr. 2006;
published online 12 Oct. 2006.
Recommended for acceptance by B.S. Manjunath.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0429-0805.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

silhouette (forming a skeleton structure). The Medial Axis
Transform can be computed by first solving the Eikonal
equation kruk2 ¼ 1 (resulting in a function u that assigns to
each internal pixel of a silhouette a value reflecting its
minimum distance to the boundary contour) and then
finding the ridges of the solution u. The Medial Axis
Transform opened the way to the advent of skeleton-based
representations. For example, studies such as [46], [50]
utilize shock-graphs structures (medial axis, endowed with
geometric and dynamic information at the points of
discontinuities) to determine shape category. A similarity
between two shapes is then produced by comparing their
shock graph topology and attributes.

Another approach is to represent shape using a finite set of
“features” or by embedding the shapes in an abstract space of
shapes. A measure of dissimilarity (distance) can then be
defined as the Euclidian distance between their features or
more generally as the length of the shortest path (geodesics)
connecting the shapes in their space. Common features
include global properties, e.g., Fourier descriptors [37],
geometric shape moments [20], Zernike moments [56],
Angular Radial Transform [30], [19], [9], and boundary curve
descriptors via Helmholtz PDE [57]. Local features may
include local tangents, curvature, shape contexts [5], “Curva-
ture Scale Space” [40], and other, “qualitative” descriptions of
shape boundaries such as “Order Structure” [14]. In this case,
computing the distance between shapes involves finding
point-wise correspondences between the shapes’ contours.
These correspondences are often found by applying optimi-
zation techniques, particularly dynamic programming (e.g.,
[4], [23], [47]) or the fast marching method [22]. Various
abstract shape spaces are proposed based, e.g., on conformal
maps [48], harmonic embedding [17], or suitable parameter-
ization of closed curves [31].

Another popular approach is to represent a shape as a
geometric constellation of appearance templates (e.g., image
fragments in [10], [54], “tags” in [2], and small patches in [1],
[21], [35]).

Random walks are used in various vision applications
including perceptual grouping and segmentation [3], [24],
[38], [42], [55]. For example, in [42], [55], couplings between
two edge elements are determined using a random walk
process where the probability that a particle leaving an edge
element reaches a certain location and orientation attenuates
with the distance and curvature along its path. These coupling
values are then used to extract smooth curves in images.

Finally, the Poisson equation is used in various computer
vision applications. In [52], [36], [32], low-level vision
problems such as optical flow, surface reconstruction, and
shape from shading are formulated using variational
principles whose Euler-Lagrange solutions take the form
of a Poisson equation providing a necessary condition for a
minimum. In [45], a generic interpolation machinery based
on Poisson equations is introduced as a result of a similar

variational formulation. This machinery is used in a variety
of seamless image editing tools such as importation of
source image regions into a destination regions, modifying
the appearance of the selected regions, and many others.

In this paper, we present a new shape descriptor that is
based on the notion of random walks and can be formulated
as the solution to the Poisson equation. We use the solution
to extract many useful properties of a shape, which are then
integrated using shape moments to represent a shape as a
set of global features.

3 THE POISSON EQUATION

Consider a silhouette S embedded in a grid with mesh size h
surrounded by a simple, closed contour @S. A sensible
approach to inferring properties of the silhouette is to assign
to every internal point a value that depends on the relative
position of that point within the silhouette. One popular
example is the distance transform, which assigns to every
point within the silhouette a value reflecting its minimal
distance to the boundary contour. An alternative approach is
to place a set of particles at the point and let them move in a
random walk until they hit the contour. Then, we can measure
various statistics of this random walk, such as the mean time
required for a particle to hit the boundaries. LetUðx; yÞdenote
this particular measure. Then, Uðx; yÞ can be computed
recursively as follows: At the boundary of S, i.e., ðx; yÞ 2 @S,
Uðx; yÞ ¼ 0. At every point ðx; yÞ inside S, Uðx; yÞ is equal to
the average value of its immediate four neighbors plus a
constant (representing the amount of time required to get to
an immediate neighbor), i.e.,

Uðx; yÞ ¼ 1þ 1

4

�
Uðxþ h; yÞ þ Uðx� h; yÞ

þ Uðx; yþ hÞ þ Uðx; y� hÞ
�
:

ð1Þ

We set this constant to one time unit. Note that (1) is a
discrete form approximation of the Poisson equation

�Uðx; yÞ ¼ � 4

h2
; ð2Þ

with �U ¼ Uxx þ Uyy denoting the Laplacian of U and 4=h2

denoting the overall scaling. For convenience, we set 4=h2 ¼ 1
(intuitively, meaning one spatial unit per one time unit,
where one spatial unit measures the distance to an immediate
neighbor) and, therefore, solve

�Uðx; yÞ ¼ �1; ð3Þ

with ðx; yÞ 2 S, subject to Dirichlet boundary conditions
Uðx; yÞ ¼ 0 at the bounding contour @S.

Fig. 2 shows the solution to the Poisson equation obtained
for the silhouettes in Fig. 1. High values ofU are attained in the
central part of the shape, whereas the external protrusions
(the limbs, head, and tail) disappear at relatively low values of
U . The level sets of U represent smoother versions of the
bounding contour. This is different from the distance trans-
form, which smoothes the shape near concavities while
introducing discontinuities near convex sections of the
contour (see Fig. 3). Also, unlike the distance transform in
which every value is determined by a single contour point
(the nearest), the values assigned by the Poisson equation take
into account many points on the boundaries and, so, they
reflect more global properties of the silhouette. Below, we

1992 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

Fig. 1. A collection of silhouettes.

exploit these properties of the Poisson solution to characterize
a silhouette using measures constructed with derivatives of
the solution. In addition, we will explain (in Section 5) that the
solution to the Poisson equation can be calculated much faster
than the distance transform.

Poisson’s equation arises in gravitation and electro-
statics. Here, we only mention a few of its relevant
properties. The solution to the Poisson equation exists and
is unique for any closed region with boundary conditions
given by any integrable function. Uniqueness is shown by
noticing that the solution to the related homogeneous
equation �U ¼ 0 (called the Laplace equation) with zero
boundary conditions is identically zero. More generally, the
values of U along any closed curve within S determine the
values of U inside the region bounded by this curve, but
they are insufficient to uniquely determine the values of U
outside the curve.

For silhouettes described by conics, the Poisson equation
takes a particularly simple form. Consider a silhouette
composed of the points ðx; yÞ satisfying

P ðx; yÞ ¼ ax2 þ by2 þ cxyþ dxþ eyþ f � 0: ð4Þ

Then, the solution is given by

Uðx; yÞ ¼ � P ðx; yÞ
2ðaþ bÞ : ð5Þ

Note that the solution is unique and can be readily verified:

Uxx þ Uyy ¼ �
Pxx þ Pyy
2ðaþ bÞ ¼ �

2aþ 2b

2ðaþ bÞ ¼ �1:

In this case, the level sets of U simply contain a nested
collection of scaled versions of the boundaries, where the
value of U increases quadratically as we approach the
center (see Figs. 4 and 5).

For example, for a canonical ellipse with axes ð~a; ~bÞ
given by

x2

~a2
þ y

2

~b2
< 1; ð6Þ

it follows from (5) that

U ¼ ~a2 ~b2

2ð~a2 þ ~b2Þ
x2

~a2
þ y

2

~b2
� 1

� �
;

Ux ¼
�x~b2

ð~a2 þ ~b2Þ
; Uy ¼

�y~a2

ð~a2 þ ~b2Þ
;

Uxx ¼
�~b2

ð~a2 þ ~b2Þ
; Uyy ¼

�~a2

ð~a2 þ ~b2Þ
:

ð7Þ

GORELICK ET AL.: SHAPE REPRESENTATION AND CLASSIFICATION USING THE POISSON EQUATION 1993

Fig. 2. Solutions to the Poisson equation for the silhouettes in Fig. 1.

Fig. 3. (a) The level sets of the solution to the Poisson equation for the
silhouette of an elephant. (b) The level sets of the distance transform for
the same silhouette.

Fig. 4. (a) U computed for a circle and (b) the gradient of U.

Fig. 5. (a) U computed for an ellipse and (b) the gradient of U.

The gradient of U increases from the origin towards the
boundaries of the ellipse, reaching higher values at the
upper and lower boundaries than at the left and right
boundaries (assuming ~a > ~b see Fig. 5). The values of the
second derivatives of U are constant inside the ellipse, as
can be seen from the (7). In general, for elongated objects,
the function U has low second derivative in the direction of
the length and a high second derivative in the direction of
the width. In the case of a circle, the gradient increases
quadratically from the origin toward the boundaries in all
the directions (see Fig. 5). The second derivatives of U have
the constant value of �1=2 at every internal point.

For silhouettes described by more complicated equa-
tions, the level sets of U represent smoother versions of the
bounding curve (as is shown in Fig. 6). To see this, consider
a line on which U oscillates (e.g., as a result of a ragged
bounding contour). As we proceed toward the inside of the
region, the oscillation will attenuate at an exponential rate.
We can illustrate this “interior regularity” property (com-
mon to all smooth elliptic equations [11], [16]) by solving (3)
within the infinite band 0 � y � L with boundary condi-
tions Uðx; 0Þ ¼ eix=� and Uðx; LÞ ¼ 0. The solution is given
by U ¼ e�y=�eix=� þ 0:5yðL� yÞ. Consider the value of U
along a line parallel to the x-axis (constant y). The left term

oscillates with the same wavelength as on the lower
boundary, but with a decaying amplitude (e�y=�), whereas
the right term is constant. The faster the oscillation (smaller
�), the faster the decay of its amplitude. Note that, due to
the linearity of the Poisson equation, this analysis also
applies to oscillations expressed as superpositions of
frequencies. The interior regularity of the discrete version
to Poisson equation (3) has also been proven [11].

4 EXTRACTING SILHOUETTE PROPERTIES

We can use the Poisson equation to extract a wide variety of
useful properties of a silhouette. In this section, we provide
a few examples. We begin by showing how the Poisson
equation can be used to segment a silhouette into parts.
Next, we show how we can identify corners at various
resolution scales and derive a skeleton structure. Finally, we
show how we can locally judge the orientation and rough
aspect ratio of portions of the silhouette.

4.1 Hierarchical Shape Representation

Complex shapes can often be naturally described as a
collection of parts. In particular, many common objects can
undergo articulated motion in which every part moves
rigidly while stretching or rotating with respect to the other
parts of the object. For these reasons, a number of recognition
schemes were proposed that rely on part representations
(e.g., [6], [39], [46]). In this section, we show how we can use
the Poisson equation to divide a shape into parts.

We will focus on shapes composed of a central part (e.g.,
the torso of an animal) to which exterior parts are connected
(e.g., the head, limbs, and tail). In such a case, the highest
values of U are obtained within the central part. Using an
appropriate threshold, we can identify the central part (see
Fig. 7). However, in this case, we obtain a smooth version of
the central part and lose the portions of the central part that
are near the boundaries since those portions yield low
values of U .

1994 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

Fig. 6. (a) Noisy boundary and (b) a few level sets of low values.

Fig. 7. From left to right: log � computed for several silhouettes, central blobs extracted using 55 highest percentiles of U, and exterior parts
extracted using uniform thresholds (78 and 66 low percentiles of log �).

We can include the portions of the central part that fall
near the boundaries by noticing that these portions must
have a high gradient. In order to identify the central part
and the exterior parts of a given shape, we therefore define

�ðx; yÞ ¼ Uðx; yÞ þ rUðx; yÞk k2: ð8Þ

� has several interesting properties. First, it is constant on a
disc (� ¼ r2=4 on a disc of radius r). On other shapes, �
generally has a saddle point exactly where U is maximum.
This can be easily shown by first rotating the coordinate
system such that Uxy ¼ 0 at the point of maximum (causing
�xy to vanish as well) and then using the second derivative
test discriminant as follows: Let p be the local maximum of
U . Let U� be the directional derivative of U in the direction �
and denote the direction perpendicular to � by �?. Then, to
satisfy the requirement U��?ðpÞ ¼ 0, � must satisfy the
following relation:

tan 2� ¼ UxyðpÞ
1þ 2UxxðpÞ

: ð9Þ

The solution exists unless Uxx ¼ Uyy ¼ �1=2 (in which case
the local domain has a shape of a disc where � is a
constant).

Denote by ð�x; �yÞ, the new coordinate system after the
rotation of the original coordinate system by the angle � and
let �p be the new coordinates of p. After the rotation
U�x�yð�pÞ ¼ 0, and since �p is a local maximum, it holds that
U�xð�pÞ ¼ U�yð�pÞ ¼ 0 and, thus, ��x�yð�pÞ ¼ 0. Moreover, ��x�xð�pÞ ¼
U�x�xð�pÞð1þ 2U�x�xð�pÞÞ and ��y��yð��pÞ ¼ U�y�yð�pÞð1þ 2U�y�yð�pÞÞ. U sa-
tisfies the Poisson equation and, thus, U�x�xð�pÞ ¼ �1� U�y�yð�pÞ.
Since �p is a local maximum of U and since after the rotation
U�x�yð�pÞ ¼ 0, U�x�xð�pÞ � U�y�yð�pÞ > 0. Thus, ��x�xð�pÞ � ��y�yð�pÞ < 0,
��x�x ð�pÞ � ��y�yð�pÞ � ��x�yð�pÞ2 < 0 and �p is a saddle point. (If
U�x�xð�pÞ ¼ 0 or U�y�yð�pÞ ¼ 0, higher order derivative test must
be used.)

For example, on an ellipse, we obtain a saddle point at
the center with low values along the major axis and high
values along the minor axis. In more complex shapes, there
may be additional saddle points at minor parts, indicating
the hierarchy of the parts. The highest values of � are
obtained near concavities. This follows the fact that U grows
faster with distance from concavities than from convexities
and, so, the gradient magnitude is higher.

By simply thresholding �, we can divide a shape into
parts. Fig. 7 shows a few examples. Note that, by changing
the threshold, we can also extract very small parts, such as
the ear or a horseshoe.

4.2 Identifying Corners

For every point inside the silhouette, we can evaluate the
curvature of the level set passing through this point using [43]

� ¼ �r � rU
krUk

� �
: ð10Þ

High level values of � mark locations where level sets are
significantly curved. Since the level sets of U are smooth
versions of the bounding contour, this measure can be used,
for example, to detect corners at different scales.

Negative values of � identify all shape concavities, as is
shown in Fig. 8. High negative values are obtained near
local, sharp concavities (e.g., the horse’s neck), and some-
what lower values in an extended area are obtained for
large-scale concavities (e.g., the horse back). High positive
values of � will reveal all convexities, along with ridge
(skeleton-like) locations. It is therefore preferable to detect
convex corners using low values of �, see Fig. 9.

4.3 Skeleton

To further emphasize the skeleton of a shape, we may use a
scale-invariant version of � defined as:

~� ¼ � U ��
krUk : ð11Þ

This measure emphasizes the skeletal structure, while
attenuating the response for corners near the boundaries
since, near the boundaries, U is small, while, near ridge
location, krUk is small. The skeleton obtained using the
Poisson equation is similar, but not identical to the skeleton
commonly obtained with the brushfire algorithm [8]. Fig. 10
shows rough skeletons computed with ~�.

4.4 Local Orientation and Aspect Ratio

The Poisson equation can also be used to estimate the local
orientation and dimension of a shape. One example in
which this may be useful is character recognition (OCR).
Characters often can be described as a collection of

GORELICK ET AL.: SHAPE REPRESENTATION AND CLASSIFICATION USING THE POISSON EQUATION 1995

Fig. 8. Detecting concavities in different shapes using �. The figure highlights log j�j for all silhouette points with negative �.

Fig. 9. Detecting convex sections in different shapes using low values of �. The figure shows logð1=�Þ for all silhouette points. Notice that convex

points are highlighted.

elongated, narrow strokes, most often with no noticeable
central part. The lack of a central part makes the method
discussed in Section 4.1 above inappropriate for characters.
We thus need a different procedure that can identify the
parts that compose a character. Furthermore, it is important
that this method will be applicable for very thin (pixel-
wide) as well as thick characters.

A natural way to divide a character into parts is to
identify the local orientation of the part and divide the
character into sections of different orientation. This can be
done simply by looking at the second derivatives of U . In a
narrow elongated section of a shape, the level sets of U are
largely parallel to the orientation of that section. The second
derivative of U along a level set is generally very small,
while the second derivative at the perpendicular direction
must complement it to -1 and, so, it must be much larger (in
absolute value). We may therefore identify the local
orientation at each pixel by detecting the orientation � in
which U�� is small.

Figs. 11 and 12 show a schematic representation of
local orientation for sets of thick and thin handwritten
numerals. In the case of pixel-wide characters, we may
use the smoothing postprocessing described in Section 5,
although the detection of orientation also seems to work
well without this smoothing. Note that the detection of
orientation can be applied everywhere within the shape
and, so, it is fairly insensitive to small perturbations of

the contour. In Section 7, we show an example of using
such detection in a numeral recognition task.

We can further generalize the analysis above to arbitrary
shapes by constructing measures that locally estimate the
second order moments of a shape near any given point.
Consider a shape defined by a second order polynomial
P ðx; yÞ < 0, as in (4). As we mentioned in Section 3, every
level set of U is simply a scaled version of P ðx; yÞ (5). If we
now consider the Hessian matrix of U , we obtain at any
given point exactly the same matrix, namely,

Hðx; yÞ ¼ � 1

aþ b
a c=2
c=2 b

� �
: ð12Þ

This matrix is in fact the second moment matrix of the entire
shape, scaled by a constant. The eigenvectors and eigenva-
lues of H, then will reveal the orientation of the shape, its
aspect ratio, and will indicate whether the shape is elliptic
or hyperbolic.

For more general shapes, the Hessian will vary con-
tinuously from one point to the next, but we can treat it as
providing a measure of moments of shape felt locally by the
point. Figs. 13 and 14 show a few examples. In these figures,
�minðx; yÞ and �maxðx; yÞ denote the eigenvalues of the
Hessian matrix s.t. j�minðx; yÞj � j�maxðx; yÞj and �ðx; yÞ
denotes the orientation of the leading eigenvector.

5 MULTIGRID SOLUTIONS

The Poisson equation with Dirichlet boundary conditions
can be discretized on a grid with mesh size h as a set of
linear equations:

Lhuh ¼ fh; ð13Þ

where Lh is an appropriate discretization of the negative
Laplace operator (��),

1996 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

Fig. 11. A schematic representation of the second derivatives for handwritten numerals: Each pixel is assigned a color according to the direction in
which the derivative at this pixel is minimal (indicating that the pixel lies in a part that is elongated in this direction), i.e., green for the vertical direction,
blue for horizontal, brown and orange for the two diagonals.

Fig. 12. A schematic representation of the second derivatives (similar to
the previous figure) for pixel-wide numerals.

Fig. 10. Rough skeletons computed with ~�. To obtain narrow skeletons we used a threshold, and repeated the computation of ~� on the obtained

region.

Lhuði; jÞ � 1

h2
ð4ui;j � uiþ1;j � ui�1;j � ui;jþ1 � ui;j�1Þ: ð14Þ

Numerical solutions to the Poisson equation can be obtained

using successive Jacobi or Gauss-Seidel relaxations, but their

convergence rate is slow. It requires Oðn2Þ computer

operations to reach an adequate solution for a silhouette

region with n pixels. This slowness is a result of the fact that,

after several relaxation sweeps, the obtained approximation

has a smooth error, which can only be slightly reduced by

each relaxation sweep. Such a smooth error can, however, be

approximated on a coarser grid. This in fact is what multigrid

algorithms do.
A multigrid solver consists of several relaxation passes,

followed by averaging the residual equations (the equations

for the current, smooth error function) to represent them on

a coarser grid with mesh size twice the fine-grid mesh size.

The approximate solution to the resulting coarse grid

equations yields a good approximation for the smooth

error. The coarse-grid approximation is then interpolated

back to the fine-grid and used to correct the previous,

erroneous solution. This combination of several relaxation

sweeps followed by a correction from a coarser grid is

called a multigrid cycle. One such cycle typically reduces the

error by an order of magnitude. The coarse equations in this

cycle are themselves approximately solved by a similar

cycle, i.e., several relaxation sweeps (on the coarse-grid

equations) followed by a correction from a still coarser grid

(with mesh size four times the finest-grid mesh size) and so

on recursively until, at a very coarse grid, the equations are

solved directly. The overall complexity of this multigrid

algorithm is OðnÞ. The formal algorithm is described in the

Appendix. (See analysis and more details in, e.g., [12]. For
recent multigrid textbooks, see [13], [53].)

In fact, for all the applications described below, which
largely require qualitative features rather than precise
numerical values, a crude accuracy suffices. This can be
achieved by applying just one, simplified cycle, which
employs very naive boundary conditions at the coarse levels
(placing the boundary at the nearest coarse grid points
instead of modifying the nearby coarse equations to account
for the fine, pixel-level location of the boundary). We
observed no qualitative difference in the measured features
between this one-cycle solver and a fully accurate, several-
cycle solver. This plain solver costs less than two dozen
operations per silhouette pixel.

Moreover, the interior regularity property described in
Section 3 implies that at a distance r from the boundary a
grid with mesh size h ¼ OðrÞ suffices to preserve the
discretization error. This property can be utilized to further
improve the complexity of the multigrid algorithm above.
At each level with mesh size hk, the modified version will
conduct each step of the algorithm only at a neighborhood
of the boundary whose thickness is OðhkÞ. The complexity
of such a solver is therefore linear in the number of contour
points, while its accuracy is unchanged.

Finally, the solution obtained may be noisy near the
boundaries due to discretization. To reduce this noise, we
may apply as a postprocessing stage a few relaxation sweeps
enforcing Uxx þ Uyy ¼ �1 inside the silhouette and Uxx þ
Uyy ¼ 0 outside the silhouette without explicitly enforcing
the Dirichlet boundary conditions on the boundary. This will
smooth U near the boundaries (Uðx; yÞ will not necessarily
be zero on ðx; yÞ 2 @S) and hardly affect more inner points.

GORELICK ET AL.: SHAPE REPRESENTATION AND CLASSIFICATION USING THE POISSON EQUATION 1997

Fig. 13. A schematic representation of orientations computed via the Hessian matrix for several shapes. The turquoise color represents vertical regions

(j�j � �
4), yellow for horizontal (j�j < �

4), and brown for isotropic sections
ffi
j�min=�maxj

p
� 2

3). It can be seen that pairs of similar shapes give rise to

similar orientation measures, but notice the thumb (left figure), which changes its orientation from near horizontal (top) to near vertical (bottom).

Fig. 14. Elliptic (brown) and hyperbolic (yellow) sections computed with the Hessian matrix for several shapes (sign of �min � �max).

6 CLASSIFICATION WITH DECISION TREES

To demonstrate the utility of the shape properties extracted
with the Poisson equation, we used them in shape
classification experiments. In this section, we describe the
classification algorithm used. Experimental results with
these methods are presented later, in Section 7.

Our algorithm is based on a decision trees framework.
The classifier is trained on a set of labeled shapes, each
represented by a high-dimensional vector of features (as
described in Section 7). It is natural to assume that some
features are more prominent in some classes of shapes than
the others and, thus, use different combinations of features
at different steps of the classification algorithm. Therefore,
decision trees were our first choice.

6.1 Training the Classifier

Given the training set, we recursively build a binary decision
tree. At every node of the tree, the training data is split into
two subsets (left and right sons). Since the data is high-
dimensional, we split the data in a lower dimension by
projecting all the data onto a line. Projection onto an arbitrary
line will usually produce a confused mixture of samples from
all of the classes. Thus, we will seek an orientation (linear
combination of features) for which the projected samples are
well separated [18], where by “well separated” we mean that
each class is concentrated on some compact range of the line
(ideally, different ranges for different classes), and it is
possible to divide the set of classes into two subsets of classes
such that the mixture between the classes in each subset is
reduced drastically after the separation. Each of the two
subsets of classes can, in turn, be split by repeating the same
procedure.

To find the optimal discriminant direction w, we define a
score SðwÞ as the ratio between the average width of the
projected classes’ clouds and the total projected width:

SðwÞ ¼
~�2
avg

~�2
¼ wTAw

wTBw
; ð15Þ

where A denotes the within-class scatter and B denotes the
total scatter of the data points. We then look for a direction
that minimizes this score. This definition is equivalent to the
definition of the multiclass Fisher linear discriminant [18]. It
can be shown that the vector w that minimizes S must
satisfy the generalized eigenvalue problem

Aw ¼ �Bw: ð16Þ

We choose the eigenvector corresponding to the minimal
eigenvalue (i.e., minimal ratio between the average within-
class scatter and a total scatter) to be the discriminant. This
is in contrast to the standard multiclass Fisher approach
where the first k eigenvectors (with k denoting the number
of classes) are used to reduce the dimensionality of the data.

Once the optimal direction w is found, we seek a
threshold t along w such that, after splitting the data using
this threshold, the mixture is maximally reduced in both
sons of the current node.

We evaluate the data mixture at a node of the tree
using the entropy function as a measure of impurity.
Suppose we are given k classes c0; . . . ck�1 and their
respective observed frequencies fp0; p1; . . . pk�1g, where

pq ¼ P ðx 2 cqÞ; q 2 0; 1; . . . ; k� 1, and
Pk�1

q¼0 pq ¼ 1. Then,
the impurity of the data at a certain node v is defined as

iðvÞ ¼ �
Xk�1

q¼0

P ðx 2 cqjvÞ logP ðx 2 cqjvÞ: ð17Þ

Given a splitting threshold t on w and denote the fraction
of data points at v that goes to vl and vr by PlðtÞ and PrðtÞ,
respectively (PlðtÞ þ PrðtÞ ¼ 1), then the quality of the split
is defined as the decrease in impurity

4iðv; tÞ ¼ iðvÞ � PlðtÞiðvlÞ � PrðtÞiðvrÞ; ð18Þ

where iðvlÞ and iðvrÞ are calculated with respect to t. We are
looking for the threshold t� such that4iðv; t�Þ is maximized,
i.e., t� ¼ arg maxt4iðv; tÞ.

While the eigenvector corresponding to the smallest
eigenvalue minimizes (15), the difference between the
impurity decrease obtained for directions corresponding to
the few smallest eigenvalues might be negligible. Moreover,
the impurity decrease depends on both the direction w and
the threshold t. Thus, at every node, we compute the maximal
impurity decrease for the best three eigenvectors (i.e.,
corresponding to the three smallest eigenvalues) and choose
the best pair of direction w� and threshold t� along it. The
remaining two eigenvectors are stored along the branches of
the tree for a possible future use in nodes where only few data
points remain and overfitting might occur.

To avoid overfitting at the leaves level of a decision tree, we
stop splitting whenever the sum of elements in the two
biggest classes at the node is smaller than the number of
features used. Then, we try to separate the data using one of
the stored directions that were calculated when there were
still enough statistics. Among these directions, we again
choose the pair of direction and threshold to maximize
impurity decrease.

6.1.1 Complexity Analysis

In the remainder of this section, we analyze the time
complexity of the construction of a single decision tree. We
denote the number of data points by n and the number of
features d.

Consider first the number of operations needed at a node
with nv data points. To formulate the generalized eigenva-
lue problem in (16), we need to construct the within class
scatter A and the total class scatter B matrices, which takes
Oðnv � d2Þ operations. Then, naive Cholesky factorization
approach for solving the generalized eigenvalue problem
takes Oðd3Þ operations.

Given a candidate orientation (eigenvector) w, finding
the threshold t that maximizes 4iðv; tÞ in (18) can be done
by an exhaustive search over the nv thresholds taken at
nv locations of the data points projected onto w. First, we
sort the data points along w (which takes Oðnv lognvÞ
operations) and then go over the sorted points. It takes
OðnvÞ to compute the impurity decrease for the first
threshold and Oð1Þ to compute the impurity decrease for
each of the next thresholds (assigning each data point below
or above the threshold, given the previous assignment).

There are three eigenvectors that are considered for each
eigenvalue problem. Unused eigenvectors are accumulated
from level to level of a tree for a possible use at lower levels

1998 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

when there are not enough statistics. Thus, the number of
operations that are needed to find the best pair of
orientation w and threshold t at the current node is at most

3i � nv lognv; ð19Þ

where i is the depth of the current node.

Since we are using weighted impurity decrease criterion

for splitting data at each level, our decision trees are built in an

almost balanced way. (By “balanced” we mean that the

number of the data points at a parent node is roughly double

the amount of the data points at any of its sons.) Hence, for the

simplicity of the analysis, we compute the complexity as if it

was a binary balanced tree. In this case, the number of data

points at every node is nv ¼ n=2i and the final complexity is

then given by:

T ðnÞ ¼
Xlogn

i¼0

2i d2 n

2i
þ d3 þ 3i

n

2i
log

n

2i

h i

¼ Oðd2n lognÞ þOðd3nÞ þOðn log2 nÞ:
ð20Þ

6.2 Classification

To classify an unseen shape by a decision tree, the shape is

“rolled” down the tree until it reaches a leaf. The information

found at the leaf is used to assign a set of probabilities to the

shape being classified. For any class label cq present at the leaf

with observed relative frequency pq, the probability of the

shape in question getting this label is exactly pq. The

complexity of rolling a shape down a single decision tree is

Oðd lognÞ.
In addition, we also use an approach similar to [2] to

improve the classification error of a single decision tree by

resampling the training set several times and building a

Decision Forest. To classify an unseen shape by a decision

forest, the sets of label probabilities resulting from each

decision tree are summed up, examined, and the label with

the highest probability is chosen.

7 EXPERIMENTS AND RESULTS

Below we describe preliminary classification and retrieval

experiments which demonstrate the utility of properties

extracted with the Poisson equation. In these experiments,

we represent a shape by a collection of features derived for

the shape using the Poisson solution (3). The features we

use are weighted moments of the form

mpq ¼
Z 1
�1

Z 1
�1

wðx; yÞxpyqdxdy; ð21Þ

in which, for every feature, we substitute for wðx; yÞ a
different Poisson-based measure. Following is a description
of the features used and the results obtained in each of the
experiments.

7.1 Handwritten Numerals

In the first set of experiments, we learn to classify hand-
written numerals. All numerals were first centered about
their centroid and brought to a uniform scale usingffi
hx2i þ hy2i

p
as the normalization factor. We used two

types of measures as weights in (21). The first measure, L�,
identifies local orientation by detecting the orientation in
which the second derivative of the solution is near zero.
This measure is defined by

L�ðx; yÞ ¼ e��
~U��ðx;yÞj j; ð22Þ

where ~U��ðx; yÞ denotes a three-pixel average of U��ðx; yÞ,
the second derivative of U in one of the four directions
� 2 f0; �=2; �=4;��=4g (we used � ¼ 3). The second mea-
sure, J�1�2

ðx; yÞ, identifies junctions by taking the geometric
mean of two detectors, L�1

ðx; yÞ and L�2
ðx; yÞ, in the six

pairs of orientations ð�1; �2Þ s.t. �1; �2 2 f0; �=2; �=4;��=4g
and �1 < �2. We then computed moments of up to order
pþ q ¼ 5 with each of the 10 measures above (four L� and
six J�1�2

) as weights in (21) resulting in 21 moments per
measure. In addition, we used two global properties, the
aspect ratio of the numeral and the ratio between the
product of the length and width of the shape determined by
PCA and the area of the numeral. All together, this yields a
vector of 212 features for each numeral.

We used these features to train a classifier with multiple
decision trees (see Section 6), each trained on a random
subset of the training set. We then test the algorithm by
applying it to an unseen randomly chosen test set. We
compare our results with those reported in the literature
and with the results obtained using the same classifier
when the features used include ordinary shape moments
(computed as in (21) with wðx; yÞ ¼ �ðx; yÞ, the character-
istic function of the shape).

An overview of the databases used in this set of
experiments is shown in Table 1. For each of the databases,
we report the obtained error rate along with the sizes of
training and test sets and the sizes of the images. The error
rate reported is an average over 20 random experiments,
each performed on a random split of the database into
training and test sets. In each experiment, the algorithm

GORELICK ET AL.: SHAPE REPRESENTATION AND CLASSIFICATION USING THE POISSON EQUATION 1999

TABLE 1
An Overview of the Databases of Handwritten Numerals

For each data set, we provide image size, number of training samples used in our experiments, number of held out test samples, number of samples
used to construct each tree, and classification error rate (mean and standard deviation).

constructed a forest of 50 decision trees, each trained on a
random subset of the training set (the size of the subset is
reported as well). In the following paragraphs, we shortly
summarize and compare the obtained results.

7.1.1 USPS Database

The US Postal Service database (USPS) [28] consists of

9,298 handwritten numerals of size 16� 16 pixels with

intensity values varying between 0 and 2. In order to

extract a silhouette for each digit, we considered only the

pixels with intensity values higher than 0.8. The average

error rate obtained in 20 random experiments was

2:1%	 0:3%, which is comparable to the state-of-the-art

results (1.9 percent) reported on this database in [29].

7.1.2 NIST Special Database 19

The NIST special database 19 is the most comprehensive and

apparently most difficult database available by NIST [27].

We randomly chose 20,000 numerals from the database and

downsampled each numeral to fit in a 64� 64 pixels box.

The average error rate obtained in 20 random experiments

was 1:8%	 0:5%. (At least one of our errors was due to

mislabeling in the database.) For comparison, with ordinary

shape moments of up to order 8 (including the two global

features, yielding 44 features), we obtained an error rate of

4:2%	 0:6%. Further experiments with moments up to all

orders between 4 and 20 (resulting in 27-230 features)

yielded even inferior performance. In addition, our results

favorably compare to the 3:58%	 0:13% reported in [25].

7.1.3 MNIST Database

We then applied the same procedure to numerals from the

MNIST database [33]. The average error rate obtained in

20 random experiments was 2%	 0:3%. Our results are

superior to many of the algorithms tested in the benchmark

[34], including RBF, Neural nets, PCA, and linear classifiers,

but are inferior to the best results published for boosted

LeNet-4 [34] (0.7 percent), shape context [5] (0.63 percent),

virtual SVM [15] (0.56 percent), local context and nonlinear

deformation models [29] (0.43 percent), and convolutional

neural networks [51] (0.4 percent). However, our algorithm is

fast. For example, our nonoptimized Matlab implementation

requires less than 15 minutes of training with 20 K numerals.
Moreover, our method is general and can be applied to

a wide variety of shape types. However, we believe that a
task-driven feature selection procedure and enrichment of
the database with distorted versions of the numerals as in
[15], [51] might help improve our classification results in
the future.

7.2 Natural Silhouettes

The next set of experiments, experiment demonstrates the

utility of the Poisson-based features in classification and

retrieval of general shapes. We collected a database of

silhouettes of natural objects and expanded it with the most

variable classes from [46]. The database contained 490 silhou-

ettes of 12 classes (see Fig. 15). We centered the silhouettes

about their centroid and brought them to a uniform scale

(using
ffi
< x2 > þ < y2 >

p
as the normalization factor) and

then solved the Poisson equation (3). We characterized every

silhouette using two measures. The first measure is analogous

to L� (22). It identifies vertical and horizontal regions of a

shape by detecting points for which the orientation computed

with the Hessian matrix (Section 4.4) is close to either zero or

�=2. This measure is defined by

H�ðx; yÞ ¼ e�	 �� �ðx;yÞj jj j; ð23Þ

where �ðx; yÞ is the principal direction felt locally at ðx; yÞ
(��2 � �ðx; yÞ � �

2) and 	 is a constant (we used 	 ¼ 3). We

evaluated H� at every point with ratio
ffi
j�min=�maxj

p
� 1

2 for

the two orientations � 2 f0; �2g. The second measure K�ðx; yÞ
identifies concave regions as well as elongated convex

sections by emphasizing points with high values of �

(Section 4.1). Denote by �̂ðx; yÞ, the function �ðx; yÞ
centered about its saddle point value (the value at the

point where U is maximal) and normalized so that its

maximal absolute value is 1. We define

K�ðx; yÞ ¼
1

1þ e�
�̂ðx;yÞ
ð24Þ

(we used
 ¼ 4).
We then computed moments up to order 3 as in (21),

substituting, for wðx; yÞ, the two vertical and horizontal
measures H� and the measure K� resulting in 10 moments
per measure and 30 moments in total.

With this database of natural silhouettes, we performed
two types of experiments: shape classification using the
decision trees classifier described in Section 6 and shape
retrieval experiments using the nearest neighbors technique.
We compare our results with results obtained using the same
classification/retrieval methods when the features used
include geometric shape moments (GM) (computed as in
(21) with wðx; yÞ ¼ �ðx; yÞ, the characteristic function of the
shape) and Zernike moments (ZM) (computed as described in
[56]). In the retreival test, we further compare the perfor-
mance of the Poisson-based shape descriptor with that of the
contour-based and region-based shape descriptors adopted

2000 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

Fig. 15. A collection of silhouettes from the database.

by the MPEG-7 International Standards, namely, the curva-
ture scale space descriptor (CSSD) [40], [19] and the Angular
Radial Transform descriptor (ARTD) [30], [19], [9].

7.2.1 Shape Classification

In the classification experiments, we used a random selection

of 396 of the silhouettes for training and the remaining

94 silhouettes for testing. The error rate was averaged over

100 random experiments, each performed on a random split

of the database into training and test sets. Using the same

classification algorithm as with the numerals (constructing

30 trees, each trained with a random selection of 322 silhou-

ettes), we obtained an average error rate of 4:3%	 2%. With

geometric shape moments (GM) of orders up to 6 resulting in

25 features (not including the first three trivial moments), we

obtained 6:2%	 2:5%. Experiments with moments of differ-

ent orders (we tried all orders between 4 and 9, resulting in 12-

30 features) yielded even inferior performance.

We also compared the performance of our Poisson-based

shape descriptors with that of Zernike moments descriptors

(ZMD). Since Zernike moments assume integration over the

range of the unit circle, we applied a slightly different shape

normalization that allows the majority of the shape pixels to

fall within the unit circle. We centered each silhouette about

its centroid and brought it to a uniform scale using

2
ffi
< x2 > þ < y2 >

p
as the normalization factor. Ignoring

the portions of the shape that fell outside the unit circle, we

then computed, for each shape, 36 Zernike moments up to

order 12 (using only their magnitudes and normalizing by the

mass of the shape, as described in [56]). Using the same

classification algorithm with Zernike moments of orders up to

8, resulting in 25 features, we obtained an average error rate of

8:9%	 2:7%. Experiments with Zernike moments of different

orders (we tried all orders between 7 and 12, resulting in 20-

49 features) yielded even inferior performance.

7.2.2 Shape Retrieval

To further test our Poisson-based descriptors, we used them

in a retrieval experiment using the database of natural

silhouettes. Again, we compare the performance of the

Poisson-based shape descriptor with that of geometric

moment descriptors (GMD) and Zernike moment descriptors

(ZMD). In addition, we compare our results to the contour

and region-based shape descriptors adopted by the MPEG-7

International Standards, namely, the curvature scale space

descriptor (CSSD) [40], [19] and Angular Radial Transform

descriptor (ARTD) [30], [19], [9]. In these experiments, the

code for CSSD and ARTD extraction and retrieval

(XMWin6_1) was downloaded from the MPEG7-XM soft-

ware repository [41].

We used the same Poisson-based features (PF) as

described in Section 7.2. Each feature was centered about its

centroid over the entire database of shapes and brought to a

uniform scale. We then gave each feature a weight inversely

proportional to the ratio between its average within class

variation and its between class variation and computed

weighted euclidian distances between every two shapes in
the database. For each shape, the 15 closest shapes were

retrieved and average recall and precision rates were

computed. Precision measures the accuracy of retrieval and

is defined as the ratio of the number of relevant shapes

retrieved to the total number of retrieved shapes. Recall

measures the robustness of the retrieval performance and is

defined as the ratio of the number of relevant shapes retrieved

to the total number of relevant shapes in the database. Fig. 16

shows the examples of the retrieved shapes for randomly

picked query shapes from each class. Erroneous shapes are
shown in gray. Note that the retrieval is mostly accurate with

some confusion mainly between the four legged animals. The

same procedure was also performed with unweighted

geometric moments (GMD) and Zernike moments (ZMD)

descriptors. With the ZMD, we then used both, the weighted

euclidian distance (WED) and the “city block distance” (CBD)

(as described in [56]) to run the same shape retrieval

experiment. The results are summarized in Fig. 17.

For further comparison, we then turned to MPEG-7 shape

descriptors. We used the software provided by MPEG-7 to
extract CSSD and ARTD shape descriptors and to perform

shape retrieval within the same database of natural silhou-

ettes. All the results are summarized in Fig. 17. It can be seen

from the graph that the retrieval performance of the Poisson-

based shape descriptor (PF) is superior to that of the GMD,

ZMD, MPEG-7 CSSD, and ARTD shape descriptors. The

relatively weak performance of MPEG-7 shape descriptors

could possibly be explained by the fact that the source code of

the XM software version is optimized in terms of representa-

tion (4 bit representation) and speed by sacrificing the
accuracy.

8 CONCLUSION

Solutions to the Poisson equation provide rich descriptive

information that can be used to compute useful properties of

shape silhouettes. In this paper, we derived several such

properties and described how to compute them efficiently

using multigrid solvers. Many of the properties we derived

are obtained from the Poisson solution simply by differentia-

tion. Also, we have shown how we can use the solution to

construct a scalar field whose thresholding decomposes an

object into parts.

We demonstrated the utility of the extracted properties in

shape classification and retrieval tasks applied to several

databases of handwritten numerals as well as shapes of

natural objects. Generally, our results favorably compare to

those reported in the literature and to those obtained with

other shapes descriptors (such as MPEG-7 standard shape

descriptors) using the same classification/retrieval methods.

Finally, additional useful processes and recognition tools
can be built based on the properties derived with the

Poisson equation. In particular, based on the local orienta-

tion measure presented in Section 4.4, we may segment

each numeral to its constituent strokes by identifying

sections in which orientation changes smoothly. Each stroke

can then be characterized by various properties, such as its

GORELICK ET AL.: SHAPE REPRESENTATION AND CLASSIFICATION USING THE POISSON EQUATION 2001

location and several moments of its orientation as a function

of arclength. These ideas can also be applied to identifying

directions of skeleton parts. Finally, it is also worth noting

that solutions to the Poisson equation and the properties

extracted from its solution can also be applied with very

little change to objects in higher dimensions. A recent

2002 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

Fig. 17. Average Precision-Recall in shape retrieval experiments on the database of natural silhouettes. Several methods are compared, including

Poisson-based features ðPFÞ, geometric moments descriptor ðGMDÞ, curvature scale space descriptor implemented by MPEG-7

ðMPEG� 7CSSDÞ, angular radial transform descriptor implemented by MPEG-7 ðMPEG� 7ARTDÞ, Zernike moments descriptor and using

city block distance ðZMDCBDÞ, Zernike moments descriptor and using weighted euclidian distance ðZMDWEDÞ.

Fig. 16. Examples of the retrieved shapes for randomly picked query shapes from each class, sorted by ascending distance using the Poisson-based

shape descriptors. The first column is the query shape and the retrieved shapes occupy the rest of the row.

extension to 3D space-time analysis has been applied in the

context of action recognition [7].

APPENDIX

MULTIGRID CYCLE

For a formal description of a multigrid cycle, we use a

sequence of coarser and coarser girds �hk , characterized by

a sequence of mesh sizes hk: �hM ;�hM�1
; . . . �h0

. The coarsest

grid is characterized by the mesh size h0, whereas the finest

grid is characterized by h ¼ hM and 8k; hk�1 ¼ 2hk. To

simplify notation, we replace the index hk by k (for grids,

grid functions, and grid operators) in the following.

As explained above, performing relaxation sweeps on a

grid �k very quickly reduces all high-frequency compo-

nents of the error. So, it can be approximated on a coarser

grid �k�1 with mesh size hk�1 ¼ 2hk. Generally, for any

linear fine-grid equation Lkuk ¼ fk and any approximate

solution ~uk, the error vk ¼ uk � ~uk satisfies the residual

equation Lkvk ¼ rk, where rk ¼ fk � Lk~uk. It can therefore be

approximated by the coarse-grid function vk�1 which

satisfies

Lk�1vk�1 ¼"k�1
k rk; ð25Þ

whereLk�1 is some coarse-grid approximation toLk and "k�1
k

is a fine-to-coarse restriction operator (defined in Fig. 18).

Having obtained an approximate solution ~vk�1, it is used

as a correction to the fine-grid solution. Namely, we replace

~uk by ~uk þ "kk�1~vk�1, where "kk�1 is a coarse-to-fine interpola-

tion operator (Fig. 18).

To efficiently get an approximate solution to the coarse-

grid equation (25), we employ the above solution process

recursively at each scale k. This multiscale algorithm

employs uniform grids at all scales. Given a fine grid, the

coarse grid is obtained by simply taking a subset of every

other point in both directions.

The complete recursive process, known as the multigrid

cycle, is summarized below: The equation on a grid �k is

generally written as

Lkuk ¼ fk; ð26Þ

with Lk denoting an appropriate discretization of the

negative Laplace operator (��),

Lkuði; jÞ � 1

h2
k

ð4ui;j � uiþ1;j � ui�1;j � ui;jþ1 � ui;j�1Þ: ð27Þ

Unless k is the finest level ðk ¼MÞ, uk�1 is always
designed to be the coarse correction to ~uk (the current
approximation on the next finer grid) and, hence,
fk�1 ¼"k�1

k ðfk � Lk~ukÞ, starting with fM � 1. The multi-
grid cycle algorithm for improving a given approximate
solution ~uk to (26) is defined recursively as follows:

~uk MGCðk; ~uk; fkÞ

1. If the given grid consists of a small number of
points—solve the equations directly, e.g., by Gauss
elimination. Otherwise:

2. Perform �1 relaxation sweeps on (26), resulting in a
new approximation �uk.

3. Starting with ~uk�1 ¼ 0, perform 	 successive cycles
of the type

~uk�1 MGC k� 1; ~uk�1; "k�1
k ðfk � Lk�ukÞ

� �
:

4. Calculate ûk ¼ �ukþ "kk�1 ~uk�1.
5. Finally, perform �2 relaxation sweeps on (26),

starting with ûk and yielding the final ~uk. (We used
�1 ¼ �2 ¼ 2 and 	 ¼ 1.)

Since the computational work at the increasingly coarser

levels diminishes geometrically, the overall cost of a

multigrid cycle is only a fraction more than the cost of the

several fine-grid relaxation sweeps. Several such cycles are

enough to produce a very accurate solution, so the total cost

of the multigrid solver is just OðnÞ.

ACKNOWLEDGMENTS

This research was supported in part by the European

Commission Project IST-2002-506766 Aim Shape and by the

Binational Science foundation, Grant No. 2002/254. Ronen

Basri was supported in part by the European Commission

Project IST-2000-26001 VIBES. Achi Brandt was supported

by the Israel Science Foundation grant No. 295/01, GIF

Contract I-718-135.6/2001, and by the Israel Institute of

Technology. The research was conducted at the Moross

Laboratory for Vision and Motor Control at the Weizmann

Institute of Science. The authors thank Yaara Goldschmidt

for providing software for early experiments and Shachar

Weis for his technical support.

REFERENCES

[1] S. Agarwal and D. Roth, “Learning a Sparse Representation for
Object Detection,” Proc. European Conf. Computer Vision, vol. 2,
pp. 113-130, 2002.

[2] Y. Amit and D. Geman, “Shape Quantization and Recognition
with Randomized Trees,” Neural Computation, vol. 9, no. 7,
pp. 1545-1588, 1997.

[3] J. August and S.W. Zucker, “Sketches with Curvature: The Curve
Indicator Random Field and Markov Processes,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp. 387-400,
Apr. 2003.

[4] R. Basri, L. Costa, D. Geiger, and D. Jacobs, “Determining the
Similarity of Deformable Shapes,” Vision Research, vol. 38,
pp. 2365-2385, 1998.

[5] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 24, no. 4, pp. 509-522, Apr. 2002.

GORELICK ET AL.: SHAPE REPRESENTATION AND CLASSIFICATION USING THE POISSON EQUATION 2003

Fig. 18. The restriction (Ik�1
k , top) and bilinear interpolation (Ikk�1, down)

operators in stencil notation. (The stencil entries of the interpolation

operator correspond to weights in a distribution process, therefore, the

brackets are reversed.)

[6] I. Biederman, “Human Image Understanding: Recent Research
and a Theory,” Computer Graphics, Vision, Image Processing, vol. 32,
pp. 29-73, 1985.

[7] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri,
“Actions as Space-Time Shapes,” Proc. IEEE Int’l Conf. Computer
Vision, 2005.

[8] H. Blum, “A Transformation for Extracting New Descriptors of
Shape,” Proc. Symp. Models for the Perception of Speech and Visual
Form, pp. 362-380, 1967.

[9] M. Bober, “MPEG-7 Visual Shape Descriptors,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 1, no. 6, 2001.

[10] E. Borenstein, E. Sharon, and S. Ullman, “Combining Top-Down
and Bottom-Up Segmentation,” Proc. IEEE Workshop Perceptual
Organization in Computer Vision, 2004.

[11] A. Brandt, “Interior Estimates for Second Order Elliptic Differ-
ential (or Finite-Difference) Equations via the Maximum Princi-
ple,” Israel J. Math., vol. 7, pp. 95-121, 1969.

[12] A. Brandt, “Multi-Level Adaptive Solutions to Boundary Value
Problems,” Math. Computation, vol. 31, pp. 333-390, 1977.

[13] W.L. Briggs, V.E. Henson, and S.F. McCormick, A Multigrid
Tutorial, second ed. SIAM, 2000.

[14] S. Carlsson, “Order Structure, Correspondence and Shape Based
Categories,” Proc. Int’l Workshop Shape, Contour and Grouping,
p. 1681, 1999.

[15] D. Decoste and B. Schölkopf, “Training Invariant Support Vector
Machines,” Machine Learning, vol. 46, no. 1-3, pp. 161-190, 2002.

[16] A. Douglis and L. Nirenberg, “Interior Estimates for Elliptic
System of P.D.E,” Comm. Pure Applied Math., vol. 8, pp. 503-538,
1955.

[17] A. Duci, A.J. Yezzi, S.K. Mitter, and S. Soatto, “Shape Representa-
tion via Harmonic Embedding,” Proc. IEEE Int’l Conf. Computer
Vision, pp. 656-662, 2003.

[18] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis,
first ed. Wiley, 1973,

[19] Introduction to MPEG-7: Multimedia Content Description Interface,
B.S. Manjunath, P. Salembier, and T. Sikora, eds. Wiley, 2002.

[20] M. Elad, A. Tal, and S. Ar, “Content Based Retrieval of VRML
Objects—An Iterative and Interactive Approach,” Proc. Sixth
Eurographics Workshop Multimedia, pp. 97-108, 2001.

[21] R. Fergus, P. Perona, and A. Zisserman, “Object Class Recognition
by Unsupervised Scale Invariant Learning,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, vol. 2, pp. 264-274, 2003.

[22] M. Frenkel and R. Basri, “Curve Matching Using the Fast
Matching Method,” Energy Minimization Methods in Computer
Vision and Pattern Recognition, pp. 35-51, 2003.

[23] Y. Gdalyahu and D. Weinshall, “Flexible Syntactic Matching of
Curves and Its Application to Automatic Hierarchical Classifica-
tion of Silhouettes,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 21, no. 12, p. 1999, Dec. 1999.

[24] D. Geiger, K. Kumaran, and L. Parida, “A Computational View of
Visual Organization for Figure/Ground Separation,” Proc. EEE
Conf. Computer Vision and Pattern Recognition, pp. 155-160, 1996.

[25] M. Giudici, F. Queirolo, and M. Valle, “Evaluation of Gradient
Descent Learning Algorithms with Adaptive and Local Rate for
Hand-Written Numerals,” Proc. European Symp. Artificial Neural
Networks, pp. 289-294, 2002.

[26] L. Gorelick, M. Galun, E. Sharon, A. Brandt, and R. Basri, “Shape
Representation and Classification Using the Poisson Equation,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2,
pp. 61-67, 2004.

[27] P. Grother, NIST Special Database 19, Handprinted Forms and
Characters Database, http://www.nist.gov/srd/nistsd19.htm,
1995.

[28] D. Keysers, The USPS Database of Handwritten Digits. http://
www_i6.informatik.rwth_aachen.de/keysers/usps.html, 2004.

[29] D. Keysers, C. Gollan, and H. Ney, “Local Context in Non-Linear
Deformation Models for Handwritten Character Recognition,”
Proc. Int’l Conf. Pattern Recognition, vol. 4, pp. 511-514, 2004.

[30] W.-Y. Kim and Y.-S. Kim, “A New Region-Based Shape
Descriptor,” ISO/IEC MPEG99/M5472, 1999.

[31] E. Klassen, A. Srivastava, W. Mio, and S. Joshi, “Analysis of Planar
Shapes Using Geodesic Paths on Shape Spaces,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 3, Mar. 2004.

[32] S.H. Lai and B.C. Vemuri, “An O(N) Iterative Solution to the
Poisson Equation in Low-Level Vision Problems,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 9-14, 1994.

[33] Y. LeCun, “The MNIST Database of Handwritten Digits,” http://
yann.lecun.com/exdb/mnist/index.html, 1998.

[34] Y. LeCun, L. Botou, L. Jackel, H. Drucker, C. Cortes, J. Denker, I.
Guyon, U. Muller, E. Sackinger, P. Simard, and V. Vapnik,
“Learning Algorithms for Classification: A Comparison on Hand-
written Digit Recognition,” Neural Networks, pp. 261-276, 1995.

[35] B. Leibe, A. Leonardis, and B. Schiele, “Combined Object
Categorization and Segmentation with an Implicit Shape Model,”
Proc. European Conf. Computer Vision ’04 Workshop Statistical
Learning in Computer Vision, pp. 17-32, May 2004.

[36] J. Li and A. Hero, “A Spectral Method for Solving Elliptic
Equations for Surface Reconstruction and 3D Active Contours,”
Proc. IEEE Int’l Conf. Image Processing, vol. III, pp. 1067-1070, 2001.

[37] C. Lin and R. Chellappa, “Classification of Partial 2-D Shapes
Using Fourier Descriptors,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 9, no. 5, pp. 686-690, 1987.

[38] M. Maila and J. Shi, “A Random Walks View of Spectral
Segmentation,” AI and STATISTICS, 2001.

[39] D. Marr and H. K. Nishihara, “Representation and Recognition of
the Spatial Organization of Three-Dimensional Shapes,” Proc.
Royal Soc., London, vol. B200, pp. 269-294, 1978.

[40] K. Mokhtarian and M. Bober, Curvature Scale Space Representation:
Theory, Applications and MPEG-7 Standardisation. Kluwer Academic
(now Springer), 2003.

[41] “The MPEG-7 XM software repository,” http://www.lis.ei.
tum.de/research/bv/topics/mmdb/e_mpeg7.html, 2005.

[42] D. Mumford, Elastica and Computer Vision, Algebraic Geometry and
Its Applications, Chandrajit Bajaj, ed., pp. 491-506. Springer Verlag,
1994.

[43] Geometric Level Set Methods in Imaging, Vision, and Graphics,
S. Osher and N. Paragios, eds. Springer, 2003.

[44] A.P. Pentland, “Recognition by Parts,” Proc. IEEE Int’l Conf.
Computer Vision, pp. 612-620, 1987.

[45] P. Perez, M. Gangnet, and A. Blake, “Poisson Image Editing,”
ACM Trans. Graphics, vol. 22, no. 3, pp. 313-318, 2003.

[46] T.B. Sebastian, P.N. Klein, and B.B. Kimia, “Shock-Based Indexing
into Large Shape Databases,” Proc. European Conf. Computer Vision,
vol. 3, pp. 731-746, 2002.

[47] T.B. Sebastian, P. Klien, and B.B. Kimia, “On Aligning Curves,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 1,
pp. 116-125, Jan. 2003.

[48] E. Sharon and D. Mumford, “2D-Shape Analysis Using Conformal
Mapping,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, vol. 2, pp. 350-357, 2004.

[49] K. Siddiqi and B. Kimia, “Parts of Visual Form: Computational
Aspects,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 17, no. 3, pp. 239-251, Mar. 1995.

[50] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, and S.W. Zucker,
“Shock Graphs and Shape Matching,” Proc. IEEE Int’l Conf.
Computer Vision, p. 222, 1998.

[51] P.Y. Simard, D. Steinkraus, and J. Platt, “Best Practices for
Convolutional Neural Networks Applied to Visual Document
Analysis,” Proc. Int’l Conf. Document Analysis and Recognition,
pp. 958-962, 2003.

[52] T. Simchony, R. Chellappa, and M. Shao, “Direct Analytical
Methods for Solving Poisson Equations in Computer Vision
Problems,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 12, no. 5, pp. 435-446, May 1990.

[53] U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid. Academic
Press, 2001.

[54] S. Ullman, E. Sali, and M. Vidal-Naquet, “A Fragment-Based
Approach to Object Representation and Classification,” Proc.
Fourth Int’l Workshop Visual Form (IWVF4), 2001.

[55] L.R. Williams and D.W. Jacobs, “Stochastic Completion Fields: A
Neural Model of Illusory Contour Shape and Salience,” Neural
Computation, vol. 9, no. 4, pp. 837-858, 1997.

[56] D. Zhang and G. Lu, “Evaluation of MPEG-7 Shape Descriptors
against Other Shape Descriptors,” Multimedia Systems, vol. 9, no. 1,
pp. 15-30, 2003.

[57] M. Zuliani, C.S. Kenney, S. Bhagavathy, and B.S. Manjunath,
“Drums and Curve Descriptors, ” Proc. British Machine Vision
Conf., Sept. 2004.

2004 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

Lena Gorelick received the BSc degree cum
laude in computer science from Bar-Ilan Uni-
versity in 2001 and the MSc degree summa cum
laude in computer science and applied mathe-
matics from the Weizmann Institute of Science
in 2004. She received the Weizmann Institute
Excellence Award for her MSc thesis and is
currently a PhD candidate in the Department of
Computer Science and Applied Mathematics at
the Weizmann Institute of Science. Her current

research interests lie in computer vision, specifically in the area of object
recognition and image segmentation.

Meirav Galun received the BSc degree in
mathematics and computer science from Tel
Aviv University in 1985, where she graduated
summa cum laude. She received the MSc
degree in applied mathematics from the Weiz-
mann Institute of Science in 1992. She received
the PhD degree in applied mathematics from the
Weizmann Institute of Science in 1998, where
she accepted an Excellency Award. She is
currently a staff scientist associated with Pro-

fessors Achi Brandt and Ronen Basri in the Applied Mathematics and
Computer Science Department at the Weizmann Institute of Science.
Her research interests are scientific computation, multiscale methods,
computer vision, medical imaging, and data analysis.

Eitan Sharon received the BSc degree in
mathematics from Tel-Aviv University in 1995,
where he graduated cum laude. He received the
PhD degree in computer science and applied
mathematics from the Weizmann Institute of
Science in 2002. From 2003 to 2004, he was a
visiting research associate at Brown University
in the Division of Applied Mathematics. He then
held a postdoctoral fellowship at the Mathema-
tical Sciences Research Institute in Berkeley in

2005 and consecutive postdoctoral fellowships at both the University of
California, Berkeley and the University of California, Los Angeles during
2005-2006. Starting in October 2005, he held a faculty position in the
Department of Electrical Engineering at the Technion-Israel Institute of
Technology. His research interests include applied mathematics,
scientific computation, and, in particular, computer vision. He is a
member of the IEEE Computer Society.

Ronen Basri received the BSc degree in
mathematics and computer science from Tel
Aviv University in 1985, where he graduated
summa cum laude. He received the PhD degree
in computer science from the Weizmann Insti-
tute of Science in 1990. From 1990 to 1992, he
was a postdoctoral fellow at the Massachusetts
Institute of Technology in the Department of
Brain and Cognitive Science and the Artificial
Intelligence Laboratory under the McDonnell-

Pew and the Rothchild programs. Since then, he has been affiliated with
the Weizmann Institute of Science in the Department of Computer
Science and Applied Mathematics, where he currently holds the position
of associate professor. Between 1999 and 2000, he spent a sabbatical
at the NEC Research Institute in Princeton, New Jersey. His research
has focused on computer vision, especially in the areas of image
segmentation, shape reconstruction, and object recognition. He is a
member of the IEEE Computer Society.

Achi Brandt is a full professor at the Weizmann
Institute of Science, where he served in the past
as head of the Department of Pure Mathematics
(1973-1975), head of the Department of Applied
Mathematics (1978-1982), and director of the
Gauss Center for Scientific Computation (1992-
2003). He is a recipient of the Landau Prize in
Mathematics (1978) and the Rothschild Prize in
Mathematics (1990). Professor Brandt is a
pioneer in research on multiscale computation,

introducing fundamental computational approaches to diverse fields in
mathematics, science, and engineering, including algebraic and partial
differential equations, fluid dynamics, integro-differential equations,
integral transforms, quantum mechanics, statistical mechanics, elemen-
tary particles molecular and macromolecular dynamic, bioinformatics,
global optimizations, graph problems, medical imaging, and multiscale
algorithms for various vision tasks, such as surface reconstruction, edge
and fiber detection and completion, image segmentation, and recogni-
tion processes. He has published more than 150 scientific papers and
organized many international workshops. In 2005, he received the
highest international prize in scientific computation, the SIAM/ACM Prize
in Computational Science and Engineering, cited for “pioneering modern
multilevel methods, from multigrid solvers for partial differential
equations to multiscale techniques for statistical physics” and “for
influencing almost every aspect of contemporary computational science
and engineering.”

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GORELICK ET AL.: SHAPE REPRESENTATION AND CLASSIFICATION USING THE POISSON EQUATION 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

