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Abstract
We introduce a fast, multiscale algorithm for image

segmentation. Our algorithm uses modern numeric
techniques to �nd an approximate solution to normal-
ized cut measures in time that is linear in the size of
the image with only a few dozen operations per pixel.
In just one pass the algorithm provides a complete hi-
erarchical decomposition of the image into segments.
The algorithm detects the segments by applying a pro-
cess of recursive coarsening in which the same mini-
mization problem is represented with fewer and fewer
variables producing an irregular pyramid. During this
coarsening process we may compute additional inter-
nal statistics of the emerging segments and use these
statistics to facilitate the segmentation process. Once
the pyramid is completed it is scanned from the top
down to associate pixels close to the boundaries of seg-
ments with the appropriate segment. The algorithm is
inspired by algebraic multigrid (AMG) solvers of min-
imization problems of heat or electric networks. We
demonstrate the algorithm by applying it to real im-
ages.

1 Introduction
Image segmentation is a process of grouping to-

gether neighboring pixels whose properties (e.g., in-
tensity values) are coherent. The resulting regions
may indicate the presence of objects or parts of ob-
jects, and may be veri�ed (or modi�ed) later follow-
ing a top-down analysis of the image and recognition.
It is important to construct algorithms for segmenta-
tion that are e�cient and that can faithfully extract
regions of di�erent sizes from an image. In this paper
we introduce a fast graph algorithm for segmentation
that �nds an approximate solution to normalized cut
measures and whose runtime is linear in the size of
the image. In just one pass the algorithm provides a
complete hierarchical decomposition of the image into
segments.

A large class of graph algorithms have been adapted
to deal with the segmentation problem. These algo-
rithms typically construct a graph in which the nodes
represent the pixels in the image and arcs represent
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a�nities (\couplings") between nearby pixels. The
image is segmented by minimizing a cost associated
with cutting the graph into subgraphs. In the simpler
version, the cost is the sum of the a�nities across the
cut [20]. Other versions normalize this cost by dividing
it by the overall area of the segments [6] or by a mea-
sure derived from the a�nities between nodes within
the segments [17, 13, 19]. Normalizing the cost of a
cut prevents over-segmentation of the image. Polyno-
mial methods for �nding a globally optimal solution
when the cost is normalized exist when the graph is
planar, but the runtime complexity of these methods is
O(N2 logN), where N denotes the number of pixels in
the image (see [14, 6]). When the graph is non-planar
the problem of �nding a globally optimal solution is
NP-hard. Therefore, approximation methods are em-
ployed. The most common of these uses spectral tech-
niques to �nd an approximate solution. These spectral
methods are analogous to �nding the principal modes
of certain physical systems. With these methods, and
exploiting the sparseness of the graph, a cut can be
found in O(N3=2) [17].

Below we introduce a fast algorithm for segmenta-
tion. Our algorithm too �nds an approximate solu-
tion to a normalized cut problem, but it does so in
time that is linear in the number of pixels in the im-
age with only a few dozen operations per pixel. Since
a typical image may contain several hundreds of thou-
sands of pixels, the factor

p
N gained may be quite

signi�cant. The algorithm is based on representing
the same minimization problem at di�erent scales, en-
abling fast extraction of the segments that minimize
the optimization criterion. Because of its multiscale
nature, the algorithm provides a full hierarchical de-
composition of the image into segments in just one
pass. In addition, it allows us to modify the optimiza-
tion criterion with scale so that we can incorporate
higher order statistics of the segments when their size
is su�ciently large to allow reliable extraction of such
statistics. Our algorithm relates to the same physical
systems whose modes are found by the spectral meth-
ods, but uses modern numeric techniques that provide
a fast and accurate solution to these problems. The
results of running our algorithm on a variety of images
are at least comparable to the results obtained by the
spectral methods.

Our algorithm proceeds as follows. Given an im-
age, we �rst construct a graph so that every pixel is



a node in the graph and neighboring pixels are con-
nected by an arc. A weight is associated with the arc
re
ecting the likelihood that the corresponding pix-
els are separated by an edge. To �nd the minimal
cuts in the graph we recursively coarsen the graph
using a weighted aggregation procedure in which we
repeatedly select smaller sets of representative pixels
(blocks). These representative pixels do not have to lie
on a regular grid, giving rise to an irregular pyramid.
The purpose of these coarsening steps is to produce
smaller and smaller graphs that faithfully represent
the same minimization problem. In the course of this
process segments that are distinct from their environ-
ment emerge and they are detected at their appropri-
ate size scale. After constructing the entire pyramid
we scan the pyramid from the top down performing
relaxation sweeps to associate each pixel with the ap-
propriate segment.

In the simple version of our algorithm the couplings
between block pixels at a coarse level are computed di-
rectly from the couplings between �ner level pixels. In
a variation of this algorithm we modify the couplings
between block pixels to re
ect certain global statistics
of each block. These statistics can be computed re-
cursively throughout the coarsening process and may
include the average intensity level of the blocks, the
position of their center, their principal orientation,
their area, texture measurements, etc. This enables
us, for example, to identify large segments even if the
intensity levels separating them vary gradually.

Our algorithm is inspired by Algebraic Multigrid
(AMG) solvers applied to physical systems of heat
or electric networks. By analogy the graph produced
from the image to be segmented can be thought of
as such a network, where the couplings between the
intensity levels of neighboring pixels are treated as
conductivity measures. A common problem is to �nd
the optimal state of such a network given a set of
constraints, which physically represent a set of heat
sources or input currents. AMG solvers provide a fast,
multiscale way to solve such optimization problems.
For our purposes we do not need to minimize the en-
ergy for any particular set of constraints. Instead, it
will be su�cient to borrow from the AMG solver its
weighted aggregation (or interpolation) rules, which
are independent of the particular constraints. While
doing so we solve a problem of a di�erent nature than
that traditionally solved by AMG.

Pyramidal structures have been used in many
algorithms for segmentation (see reviews in [7, 9,
11]). However, methods that use regular pyramids
(e.g., [10]) have di�culties in extracting regions of ir-
regular structures. Methods that construct irregular
pyramids (e.g., [1, 5, 12, 18]) are strongly a�ected by
local decisions. Fuzzy C-means clustering algorithms
(e.g., [4]) avoid such premature decisions, but they
involve a slow iterative process. Also related are algo-
rithms motivated by physical processes (e.g., [8, 15]).

The paper is divided as follows. Section 2 formu-
lates the segmentation problem and describes the prin-
ciples of our method. Section 3 describes the algo-
rithm. Section 4 discusses how more global properties
of segments can be incorporated in the algorithm. Sec-

tion 5 discusses the computational complexity of the
algorithm. Finally, Section 6 provides experimental
results.

2 Motivation and Formulation
In this section we cast the segmentation problem

as a graph clustering problem (Sec. 2.1). Then, we
describe the coarsening process (Sec. 2.2). Finally, we
interpret this as an aggregation process (Sec. 2.3).

2.1 Problem De�nition
Given an image 
 that contains N = n � n pixels

we construct a graph in which each node represents
a pixel and every two nodes representing neighboring
pixels are connected by an arc. In our implementa-
tion we connected each node to the four neighbors of
the respective pixel, producing a planar graph. (Note
that the method we present can be applied also to
non-planar graphs. In fact, the graphs obtained fol-
lowing the coarsening steps are non-planar.) Below
we denote a pixel by an index i 2 f1; 2; :::; Ng and its
intensity by gi. To every arc connecting two neighbor-
ing pixels i and j we assign a positive \coupling" value
aij , re
ecting the degree to which they tend to belong
to the same segment. For example, aij could be a de-
creasing function of jgi � gj j. In our implementation
we used local responses to edge �lters to determine
the couplings between elements (see Section 3).

To detect the segments, we associate with the graph
a state vector u = (u1; u2; :::; uN ), where ui 2 IR
is a state variable associated with pixel i. We de-
�ne a segment S(m) as a collection of pixels, S(m) =
fim1 ; im2 ; :::; imnm

g and associate with it a state vec-

tor u(m) = (u
(m)
1 ; u

(m)
2 ; :::; u

(m)
N ), in which

u
(m)
i =

�
1 if i 2 Sm
0 if i =2 Sm : (1)

In practice, we allow the state variables to take non
binary values. In particular, we expect that pixels
near fuzzy sections of the boundaries of a segment may

have intermediate values 0 < u
(m)
i < 1 re
ecting their

relative tendency to belong to either the segment or
its complement.

Next, we de�ne an energy functional to rank the
segments. Consider �rst the functional

E(u) =
X
<i;j>

aij(ui � uj)
2 ; (2)

where the sum is over all pairs of adjacent pixels i and
j. Clearly, for an ideal segment (with only binary state
variables) E(u(m)) sums the coupling values along the
boundaries of S(m). With such a cost function small
segments (and similarly very large ones) are often en-
couraged. To avoid such preference we can modify this
energy as follows:

�(u) = E(u)=V �(u) ; (3)

where V (u) denotes the \volume" of the respective
segment, V (u) =

P
i ui, and � is some predetermined



parameter. Thus, for example, V (u(m)) will measure
the area in pixels of S(m). To avoid selecting very large
segments we consider only segments whose total vol-
ume is less than half of the entire image. This is equiv-
alent to de�ning the volume as minfV (u); N�V (u)g.
Alternatively, we can replace the volume by the prod-
uct V (u)(N � V (u)). This and similar modi�cations
of �(u) can too be incorporated in our fast algorithm.

Note that setting � = 0:5 will eliminate size prefer-
ence since �(u(m)) in this case is roughly the average of
the couplings along the boundary of S(m). (E(u(m)) is
the sum of the couplings along the boundary of S(m),

and
p
V (u(m)) is roughly proportional to the perime-

ter of S(m).) In contrast, setting � > 0:5 will create
preference for large segments. In our implementation
we used � = 1, which is equivalent to the so called \av-
erage" or \normalized" cut measures (e.g., [6, 16, 17]).

Finally, the volume of u can be generalized by re-
placing V (u) by

V�(u) =

NX
i=1

�iui ;

NX
i=1

�i = N ; (4)

where �i is a \mass" assigned to the pixel i. This will
become important in coarser steps when nodes may
draw their mass from sets of pixels of di�erent size.
Also, in the �nest scale we may assign lower volumes
to pixels at \less interesting" or \less reliable" parts
of the image, e.g., along its margins.

2.2 Problem Coarsening

We now present a method for the recursive step by
step coarsening of the segmentation problem. In each
coarsening step a new, approximately equivalent seg-
mentation problem will be de�ned, reducing the num-
ber of state variables to a fraction (typically between
1/4 and 1/2) of the former number. We construct the
coarser problems such that each of the coarse vari-
able will represent several �ne variables with di�erent
weights, and every �ne variable will be represented by
several coarse variables with di�erent weights. The
low-energy con�gurations of the coarse problem will
re
ect the low-energy con�gurations of the �ne prob-
lem.

Below we describe the �rst coarsening step. The
state variables in the coarser problem can be thought
of as the values (ideally 0 or 1) of a diluted set of pixels,
i.e., a subset C of the original set of pixels. The values
ui associated with the rest of the pixels (i =2 C) will
be determined from the coarse state variables using
pre-assigned dependence rules. These rules will de�ne
�(u) as a functional of the smaller set of variables, i.e.,
�c(fuigi2C). We shall select C and the dependence
rules so that the detection of segments with small �c

(in the coarser problem) would lead to segments with
small � (in the �ne problem).

Generally, for any chosen subset of indices

C
def
= fckgKk=1 � f1; 2; :::; Ng ;

denote uck as Uk, we will choose dependence rules of
the form of a weighted interpolation rule:

ui =

KX
k=1

wikUk ; (5)

where wik � 0,
PK

k=1 wik = 1, and for i = ck 2 C,
wik = 1. We will consider only local interpolation
rules, i.e., wik = 0 for all pixels ck not in the neighbor-
hood of pixel i. The values of wik will be determined
by the coupling values only, and will not depend on
the values of the state variables (see below).

Substituting (5) into (2) we get

Ec(U)
def
= E(u) =

X
k;l

Akl(Uk � Ul)
2 ; (6)

where the couplings Akl between the coarse-level vari-
ables are given by

Akl =
X
i6=j

aij(wjl � wil)(wik � wjk) : (7)

In addition, substituting (5) into (4) we get

V c(U)
def
= V�(u) = V�(U) =

KX
k=1

�kUk ; (8)

where
�k =

X
i

�iwik ; k = 1; :::;K : (9)

Thus, the dependence rules (5) yields

�c(U)
def
= �(u) = Ec(U)= [V c(U)]

�
: (10)

The set C itself will be chosen in such a way that
each pixel i =2 C is strongly coupled to pixels in C. By
this we mean roughly that

X
ck2C

aick � �
X
j

aij ; (11)

where � is a control parameter. (A somewhat weaker
type of requirement emerges in the Appendix.) This
choice will ensure that for any low-energy con�gura-
tions the values of u indeed depend, to a good approx-
imation, on those of the subset U . This choice of C
is common in applying fast, multiscale AMG solvers
(e.g., [3]).

We now discuss the interpolation rule in Eq. (5).
Given a segment Sm, we de�ne U

(m) as

U
(m)
k =

�
1 if ck 2 Sm
0 if ck =2 Sm ; (12)

and de�ne ~u(m) as the con�guration interpolated from
U (m) by using Eq. (5). That is,



~u
(m)
i =

KX
k=1

wikU
(m)
k : (13)

Note that Ec(U (m)) = E(~u(m)), V c(U (m)) = V (~u(m)),
and hence �c(U (m)) = �(~u(m)). A proper interpo-
lation rule should satisfy the condition that for every
Sm, �

c(U (m)) = �(~u(m)) is small if and only if �(u(m))
is small.

One possible interpolation rule could be that a state
variable ~ui for i =2 C would inherit its state from the
coarse state variable Uk to which it is most strongly
attached (in other words, ~ui = Uk such that aik is
maximal). This rule, however, may lead to mistakes
in assigning the correct state to the interpolated vari-
ables due to nearby outliers, which in turn may re-
sult in a noticeable increase in the energy E(~u(m))
associated with the segment. Consequently, the mini-
mization problem with the coarse variables will poorly
approximate the minimization problem with the �ne
variables.

Instead, we will set the interpolation weights as fol-
lows:

wik =
aickPK
l=1 aicl

; 8i =2 C ; ck 2 C : (14)

These settings are commonly used by the AMG mini-
mizer [3]. (For a de�nition of weights that leads to an
even more precise interpolation - see the Appendix.)
With this interpolation rule the state of a variable ~ui,
i =2 C, is determined by several nearby coarse pixels
with pixels coupled more strongly a�ecting its value
more.

It is straightforward to verify that boundary sec-
tions of a segment across which intensity variations are
sharp contribute very little to the energy associated
with the segment, whereas sections of the boundary
across which intensity is varying gradually contribute
most of the energy of the segment. It can be shown
further that when the problem is coarsened the contri-
bution of such sections in general decreases by about
half. Since the volume of a segment is roughly pre-
served when the problem is coarsened, we obtain that
for a segment Sm that is distinct from its surround-
ing �c(U (m)) � �(u(m)) � 0, whereas for a segment
Sm that is not strongly decoupled along its boundaries
�c(U (m)) � 1

2�(u
(m)). Thus, under the weighted in-

terpolation (14), the problem of �nding all segments
Sm for which �(u(m)) is below a certain threshold is
equivalent approximately to the smaller, coarse prob-
lem of �nding all Sm for which �c(U (m)) is below half
the same threshold.

Note that the resulting coarse problem is exactly of
the same form as the original problem, and hence it
can in turn be reduced using the same procedure to
an equivalent, yet coarser problem of the same form.
This recursive coarsening process is terminated when
the number of variables is su�ciently small so that the
problem can be solved directly for the coarsest grid.

There is one case in which a state variable cannot
be approximated accurately by the state variables of
its neighbors. This happens when a salient segment
Sm coincides at some scale with a single pixel i; i.e.,

u
(m)
i = 1 while u

(m)
j = 0 for j 6= i. (This, of course,

would not happen usually at the original, �nest level,
but at coarser levels of the algorithm, where \pixels"
are no longer original image pixels.) Consequently, if
i =2 C then the segment will no longer be represented
at the coarser levels. But it is exactly at this point of
the coarsening process that we can detect that �(u(m))
is small, and hence identify the salient Sm in its nat-
ural size scale (see algorithm in Section 3).

2.3 Hierarchical Aggregation
A natural and useful way to interpret each coars-

ening step is as an aggregation step. In that view we
are choosing small aggregates of pixels, in terms of
which the minimization problem can be reformulated
with a substantially smaller number of variables. That
is, enumerating the aggregates 1,2,...,K, we associate
with the k-th aggregate a \block variable" Uk, and we
derive from the original minimization problem a min-
imization problem in terms of U1,...,UK

1.
The interpolation rule that relates the coarse to the

�ne pixels ((5) and (14)) leads to a process of weighted
aggregation, in which a fractions wik of a pixel i can be
sent into the aggregate k. This fraction may be inter-
preted as the likelihood of the pixel i to belong to the
aggregate k. These likelihoods will then accumulate
and reinforcing each other at each further coarsening
step.

The choice of the coarser aggregates and the na-
ture of this coarsening process is such that strongly
coupled aggregates join together to form yet coarser
aggregates. A set of pixels with strong internal cou-
plings but with weak external couplings is bound to re-
sult at some level of coarsening in one aggregate which
is weakly coupled to all other aggregates of that level.
Such an aggregate will indicate the existence of an
image segment (see Sec. 3).

The \coarse couplings" relations (Eq. (7)) can be
somewhat simpli�ed, yielding a similar coarsening pro-
cess, named Iterated Weighted Aggregation (IWA).
IWA consists of exactly the same steps as the AMG
coarsening, except that the coarse couplings fAklg are
calculated by the simpler formula

Akl =
X
i6=j

wikaijwjl : (15)

It can be shown that (15) in many situations provides
a good approximation to (7). In certain cases the two
processes are identical, e.g., in the case that each pixel
is associated with only two blocks. Moreover, (15) can
be motivated by itself: it states that the coupling be-
tween two blocks is the sum of the couplings between

1The coarse variables in fact do not have to be identi�ed
each with a particular pixel, as in Sec. 2.2. Instead, they can
be identi�ed with weighted averages of pixels. But this gener-
ality does not improve the performance of the algorithm and is
certainly less convenient.



the pixels associated with these blocks weigthed ap-
propriately.

3 The Algorithm
Based on these ideas we have developed a segmen-

tation algorithm that is composed of two stages. In
the �rst stage salient segments are detected and in the
second stage the exact boundaries of the segments are
determined. The rest of this section describes the two
stages.

3.1 Detecting the Salient Segments
Given an image we consider each pixel to be a node

connected to its four immediate neighbors. We then
assign coupling values between each pair of neighbors.
The coupling values aij are set to be aij = exp(��rij),
where � is a global parameter, and rij is an \edgeness"
measure between i and j. Speci�cally, for horizon-
tally spaced neighbors i and j we tested the presence
of an edge in �ve orientations at the angular range
�45� � � � 45� about the vertical direction, each
by di�erentiating two 3 � 1 masks whose centers are
placed on i and j. We then took rij to be the maximal
of the �ve responses.

Next, we coarsen this graph by performing iterated
weighted aggregation. At each step of the coarsening
we �rst select block pixels and then update the cou-
plings between the blocks. Subsequently, we obtain a
pyramidal structure that makes the optimal segments
explicit.
Selecting the block pixels. We �rst order the
nodes (pixels) by the volume they represent. (We
sort the nodes by bucketing to maintain linear run-
time complexity, see Sec. 5.) We select the �rst pixel
to be a block. Then, we scan pixels according to this
order and check their degree of attachment each to the
previously selected blocks. Whenever we encounter a
pixel that is weakly attached to the selected blocks we
add that pixel to the list of blocks.

Speci�cally, let C(i�1) denote the set of blocks se-
lected before a pixel i is tested, we check the inequality

max
j2C(i�1)

aij � ~�
X
l

ail ; (16)

where ~� is a parameter (typically ~� � :1). Note
that since generally a node is connected to a small
number of neighbors it must be coupled strongly to
at least one of its neighbors. In case the inequality
is satis�ed we set C(i) = C(i�1), otherwise we set
C(i) = C(i�1)

Sfig. As a result of this process al-
most every pixel i =2 C becomes strongly coupled to
the pixels in C. The few remaining pixels are then
added to C.
Segmentation. We update the couplings between
the blocks using Eq. (15), where the weights wik are
de�ned by (14) (or its generalization described in the
Appendix). In addition, we compute the volume �k of
each block at this level using Eq. (9). Next, we want to
determine if a block represents a salient segment. The
saliency of a segment is given by the ratio between the
sum of its external couplings and its volume. When
we compute the saliency of a block, however, we need

to take into account that every coarsening step dimin-
ishes the external couplings of the segment by about a
half. We can compensate for this reduction by multi-
plying this ratio by 2 to the power of the level number.
Thus, the saliency of a block k becomes

�(Uk) =

P
Akl

��
k

2� ;

where � denotes the scale. Alternatively, we can use
the volume of the block as a measure of scale, in which
case we obtain

�(Uk) =

P
Akl

���

k

;

where 
 can be set between 0.5 to 1 according to the
ratio of pixels that survive each coarsening step (0.25
to 0.5 respectively). In our implementation we simply
compare the blocks of the same scale and detect the
ones whose saliency values are very low. We then allow
these blocks to participate in forming larger blocks to
obtain a hierarchical decomposition of the image into
segments.

3.2 Sharpening Segment Boundaries
During the �rst stage of our algorithm a salient seg-

ment is detected as a single element at some level of
the pyramid. It remains then to determine exactly
which pixels of the original image (at the �nest level)
in fact belong to that segment. One way to determine
which pixels belong to a segment is to compute recur-
sively the degree of attachment of every pixel to each
of the blocks in the pyramid. Unfortunately, the de-
grees of attachment computed this way will often pro-
duce \fuzzy" values between 0 to 1 particularly near
the boundaries of a segment, rendering the decision of
the extent of a segment somewhat arbitrary. To avoid
this fuzziness we scan the pyramid from coarse to �ne
starting at the level in which a segment is detected and
apply relaxation sweeps whose intent is to sharpen the
boundaries of a segment. Below we describe one step
of the algorithm.

Suppose a segment Sm has been detected, and sup-
pose that at a certain level (which we will call now
the \coarse-level") we have already determined which
pixels belong to Sm, we show how to determine at the
next �ner level (called now the \�ne level") which pix-
els belong to Sm. Using the same notation as before,

the coarse level variables, fU (m)
k gKk=1, satisfy (12). Ac-

tually, along the boundaries of Sm some U
(m)
k 's may

assume values between 0 and 1. Our task is to de-
termine which pixels fu(m)

j gNj=1 satisfy (1), but again
allowing only pixels along the boundaries to obtain
intermediate values between 0 and 1. Guided by the
principle of minimizing �(u(m)), a sharpening cycle
consists of the following steps, iteratively changing
~u(m).

We �x two parameters 0 < �1 < �2 < 1 and de�ne

Dx;y to be the set of all pixels i such that x < ~u
(m)
i < y

at the beginning of the cycle. We then modify ~u(m)



by setting ~u
(m)
i = 0 for i 2 D0;�1 , setting ~u

(m)
i = 1 for

i 2 D�2;1, and leaving ~u
(m)
i 2 D�1;�2 unchanged. This

is followed by applying � \Gauss-Seidel relaxation
sweeps" overD�1�2 , where � is another free parameter.
Each such \relaxation sweep" is a sequence of steps
aimed at lowering E(~u(m)). In each sweep we go over
all the pixels inD�1�2 , in any order. For each pixel i we

replace ~u
(m)
i by the new value

P
j aij ~u

(m)
j =(

P
j aij),

which is the value for which E(~u(m)) is lowered the
most. Since the volume V (~u(m)) is only marginally
a�ected also �(~u(m)) is lowered. Since in the begin-
ning of this procedure already only pixels around the
boundaries have fuzzy values (because this procedure
has been applied to the coarser level) this relaxation
procedure converges quickly. Hence, a small number of
sweeps, �, will generally su�ce. In our experiments we
applied two relaxation sweeps in every level with, e.g.,
�1 = 1��2 = :15 in the �rst cycle and �1 = 1��2 = :3
in the second cycle. The �nal ~u(m) is de�ned as the
desired vector u(m).

4 Modi�ed Coarse Couplings
In the algorithm described above the couplings at

all levels are derived directly from the couplings be-
tween the pixels at the �nest level. However, since
each element at a coarse level represents an aggregate
of pixels we may use information about the emerging
segments that is not directly available at the �nest
level to facilitate the segmentation process. We can
thus measure \observables" at the coarse levels, and
use them to increase or decrease the couplings be-
tween blocks obtained with the original algorithm. An
example for such an observable is the average inten-
sity of a block, which can be used to separate seg-
ments even when the transition between their inten-
sity values is gradual, and so they are di�cult to sep-
arate at the �nest levels. The average intensity Gk
of a block k in the above coarsening step (Sec. 2.2)
is de�ned as Gk =

P
i wikgi=

P
i wik , where gi de-

notes the intensity of pixel i; This observable can be
calculated recursively at all coarser levels. Then, the
couplings Akl computed by (15) may be replaced, e.g.,
by Akl exp(�� jGk �Glj), where � is some predeter-
mined constant.

The number of observables per aggregate can in-
crease at coarser levels. Other possible observables
include the center of mass of a block, its diameter,
principal orientations, texture measures, etc. Using
these observables it is possible to incorporate quite
elaborate criteria into the segmentation process. For
example, strong couplings can be assigned between
two aggregates whose orientations align with the di-
rection of the line connecting their centers of mass (or
when their boundaries co-align), even when these ag-
gregates are separated by a gap and thus do not inherit
any mutual couplings from �ner levels.

5 Computational Complexity
At every coarsening step we select a subset of

the nodes such that the remaining nodes are coupled
strongly to at least one of the nodes. Following this

selection procedure almost no two neighboring nodes
can survive to the next level. Thus, at every level of
scale we obtain about half the nodes from the pre-
vious level. The total number of nodes in all levels,
therefore, is about twice the number of pixels.

During the selection procedure there are two opera-
tions whose naive implementation may result in a non-
linear complexity. First, we need to order the nodes,
say, according to their volumes. This can be done in
linear time by dividing the range of possible volumes
into a �xed number of buckets since it is unnecessary
to sort nodes whose volumes are similar. Furthermore,
in the �rst few levels the nodes usually have similar
volumes, and so we do not apply this ordering. In-
stead, we merely scan the nodes in some arbitrary or-
der. Secondly, for every node we need to �nd its maxi-
mal connection to the selected blocks (Eq. (16)). This
operation can be implemented e�ciently by noticing
that every node need only to consider its neighboring
nodes, typically up to 8 nodes. Finally, computing
the degree of attachment of the pixels to all the block
variables can be done in one pass once the pyramid is
complete.

The number of operations per pixel can be reduced
signi�cantly by replacing the �rst 1-3 coarsening steps
by equivalent geometric coarsening. In these coars-
ening steps the same operations are performed, but
the pixels selected as blocks are determined in ad-
vance to lie along a regular grid of twice the mesh-
size. (This may require adding some of the �ne pixels
to the coarse set to avoid inaccurate interpolations.)
With this modi�cation it is possible to reduce the ex-
ecution time of the algorithm to only several dozen
operations per pixel.

In the following section we show examples of seg-
mentation obtained with our implementation of the
algorithm. The implementation is far from optimized,
and, for example, we did not include geometric coars-
ening to reduce the number of operations per pixels.
Due to wasteful space management, which lead to con-
siderable page swapping, our implementation (written
in C and run on an Intel 400MHz Pentium II proces-
sor) took 60 seconds to segment a 200 � 200 image.
The pyramid produced in this run contained about
73000 nodes (less than twice the number of pixels.)
Segmenting a 100� 100 image took only 12 seconds.

6 Experiments
The following pictures demonstrate the application

of our algorithm to several real images. Figure 1 shows
an input image (adopted from [17]). At the top most
scale the picture was divided into two segments. At
scale 8 �ve segments stood out, two capturing most of
the bodies of the two players, one captures the hand
of one of the players, and one captures the head of
the other. At scale 7 smaller segments are obtained,
separating some of the body parts of the two play-
ers. Figure 2 was decomposed at level 10 into four
segments, one of which captures the lioness. At level
8 the bottom segment was further decomposed into
three segments, splitting the cub and the stone from
the ground. Figure 3 shows the three segments ob-
tained at scale 10, capturing the skies, the grass, and



(a) (b)

(c) (d)

Figure 1: Segmentation results: (a) The input image. (b)
Segments extracted at scale 11 (the boundaries of the segments
are highlighted with color). (c) Scale 8. (d) Scale 7.

a single segment that includes the cow and the hilly
background. At scale 9 the cow was separated from
the hills, and the grass was split into two segments.
Finally, in Figure 4 at the coarsest scale the grass was
separated from the cows (except for the bright back of
the cow which was decomposed later from the grass).
The three cows were then split (with the rightmost
cow split into two segments). Body parts of the cows
are obtained in the lower scale. Overall, these pic-
tures demonstrate that our algorithm accurately �nds
the relevant regions in the images.

7 Conclusion
We have introduced a fast, multiscale algorithm

for image segmentation. The algorithm uses a pro-
cess of recursive weighted aggregation to detect the
distinctive segments at di�erent scales. It �nds an
approximate solution to normalized cuts measure in
time that is linear in the size of the image with only
a few dozen operations per pixel. Future research di-
rections include the use of various statistics to obtain
segmentation based on richer information, improving
the isotropy of the interpolations to produce smoother
boundaries of segments, and combining the segmen-
tation process with curve completion algorithms and
top-down analysis of the image.

Appendix
The interpolation weights (14) can be improved,

yielding a better approximation of the �ne level min-
imization problem by the coarser representations and
allowing us to represent the coarser problems with
fewer block pixels. Ideally, the interpolation rule (5)
should yield a �ne-level con�guration u that satis�es

(a) (b)

(c)

Figure 2: (a) The input image. (b) Scale 10. (c) Scale 8.

(a) (b)

(c)

Figure 3: (a) The input image. (b) Scale 10. (c) Scale 9.
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(c) (d)

Figure 4: (a) The input image. (b) Scale 10. (c) Scale 9. (d)
Scale 8.

the energy-minimization condition @E(u)=@ui = 0.
Since E is quadratic in u this condition can be written
as

u
(m)
i =

X
j2C

âiju
(m)
j +

X
j =2C

âiju
(m)
j ; (17)

where âij are the normalized couplings, de�ned by
âij = aij=(

P
l ail). Notice that the interpolation rule

(5) considers only the �rst terms in (17). Given any
(non-ideal) interpolation weights fwikg, improved in-
terpolation weights f �wikg are given by

�wik = âick +
X
j =2C

âijwjk : (18)

This same rule can recursively be reused several time,
to create increasingly improved interpolation weights.

A measure of the \de�ciency" di of interpolating to
pixel i with the interpolation weights (14) is de�ned
as the relative part of (17) being ignored by the re-
lation (14), i.e., di =

P
j =2C âij . Similarly, given any

interpolation weights fwikg with de�ciencies fdig, the
improved interpolation weights f �wikg created by (18)
will have the de�ciencies �di =

P
j =2C âijdj . Hence,

with reasonably dense set C, the de�ciencies will be
much reduced with each improvement, so that nor-
mally very few such improvements (if at all) would be
needed. (Such improved interpolation rules are widely
used in AMG, see, e.g., [2].)

With the improved interpolation weights (18), the
coarse-variable selection criterion (11) can be relaxed,
replacing it by the more general criterion di � 1� �.
Condition (16) can similarly be relaxed.

Finally, for computational e�ciency it is desired to
keep the interpolation matrix fwikg as sparse (con-
taining as few non-zero terms) as possible. For this
purpose we replace small weights (wik < �, � being
another algorithm-control parameter; e.g., � = :01) by
zeros, and then renormalize to maintain

P
k wik = 1.
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