
Segmentation and Boundary Detection Using Multiscale Intensity Measurements

Eitan Sharon, Achi Brandt�, Ronen Basriy

Dept. of Computer Science and Applied Math
The Weizmann Inst. of Science

Rehovot, 76100, Israel

Abstract
Image segmentation is difficult because objects may dif-

fer from their background by any of a variety of properties
that can be observed in some, but often not all scales. A
further complication is that coarse measurements, applied
to the image for detecting these properties, often average
over properties of neighboring segments, making it diffi-
cult to separate the segments and to reliably detect their
boundaries. Below we present a method for segmentation
that generates and combines multiscale measurements of in-
tensity contrast, texture differences, and boundary integrity.
The method is based on our former algorithm SWA, which
efficiently detects segments that optimize a normalized-cut-
like measure by recursively coarsening a graph reflecting
similarities between intensities of neighboring pixels. In
this process aggregates of pixels of increasing size are grad-
ually collected to form segments. We intervene in this pro-
cess by computing properties of the aggregates and modi-
fying the graph to reflect these coarse scale measurements.
This allows us to detect regions that differ by fine as well
as coarse properties, and to accurately locate their bound-
aries. Furthermore, by combining intensity differences with
measures of boundary integrity across neighboring aggre-
gates we can detect regions separated by weak, yet consis-
tent edges.

1 Introduction
Image segmentation methods divide the image into re-

gions of coherent properties in an attempt to identify objects
and their parts without the use of a model of the objects. In
spite of many thoughtful attempts, finding a method that
can produce satisfactory segments in a large variety of nat-
ural images has remained difficult. In part, this may be due
to the complexity of images. Regions of interest may differ
from surrounding regions by any of a variety of properties,
and these differences can be observed in some, but often not
in all scales. In this paper we take a step toward a better seg-

�Research supported in part by the Carl F. Gauss Minerva Center for
Scientific Computation at the Weizmann Institute of Science.

yResearch was supported in part by the Minerva Grant, by the Israeli
Ministry of Science, Grant No. 2104, and by the European Commission
Project IST-2000-26001 VIBES.

mentation algorithm. Our method is based on the segmen-
tation algorithm presented in [22]. It uses the multiscale
structure built by this algorithm to measure and incorpo-
rate various properties such as intensity contrast, isotropic
texture, and boundary integrity. This results in an efficient
algorithm that detects useful segments in a large variety of
natural images. We demonstrate the quality of our segmen-
tations by comparing them to segmentations obtained with
other state-of-the-art algorithms [23, 22].

Segments that differ by coarse scale properties introduce
a specific difficulty to the segmentation process. Since ini-
tially we do not know the division of the image into seg-
ments, any coarse measurement must rely on an arbitrar-
ily chosen set of pixels (“support”) that may often include
pixels from two or more segments, particularly near the
boundaries of segments. This may lead to significant over-
smoothing of the measured properties and to blurring the
contrast between segments, inevitably leading to inaccura-
cies in the segmentation process. On the other hand, since
segments often differ only by coarse scale properties, such
segments cannot be detected unless coarse measurements
are made.

Our method attempts to solve this “chicken and egg
problem.” It does so by building a pyramid structure over
the image. The structure of the pyramid is determined by
the content of the image. As the pyramid is constructed
from bottom to top, segment fragments of increasing size
are detected. These fragments are used as a support area
for measuring coarse scale properties. The new properties
are then used to further influence the construction of larger
fragments (and eventually whole segments). By measuring
properties over fragments we avoid the over-smoothing of
coarse measurements (as can be seen in Figure 1), and so
segments that differ in coarse scale properties usually stand
out. Our experiments demonstrate a considerable improve-
ment over existing approaches. The process is very effi-
cient. The runtime complexity of the algorithm is linear in
the size of the image. Our implementation (whose run-
time may still be significantly reduced) applied to an image
of 200� 200 pixels takes about 5 seconds on a Pentium III
laptop.

Our method uses the segmentation by weighted aggre-



gation (SWA) due to [22] as a framework for the process.
This algorithm uses techniques from algebraic multigrid to
find the segments in the image. Like other recent segmen-
tation algorithms [26, 23, 8, 25] the method optimizes a
global measure, a normalized-cut type function, to evalu-
ate the saliency of a segment. To optimize the measure, the
algorithm builds an irregular pyramid structure over the im-
age. The pyramids maintains fuzzy relations between nodes
in successive levels. These fuzzy relations allow the algo-
rithm to avoid local decisions and detect segments based on
a global saliency measure.

Pyramids constructed over the image have been used for
solving many problems in computer vision (e.g., [3, 6, 24]).
Typically, the image is sampled at various scales and a
bank of filters is applied to each sampling. Segmen-
tation is generally obtained by going down the pyramid
and performing split operations. Subsequent merge oper-
ations are applied to reduce the effect of over-segmentation
(e.g., [12, 17, 1, 2, 19]). Over-smoothing introduces a seri-
ous challenge to these methods. A different kind of pyramid
structure is built by agglomerative processes (see [9, 7]).
These processes, however, are subject to local, premature
decisions.

Other approaches that attempt to reduce the problem of
over-smoothing include the use of directional smoothing
operators for multiscale edge detection [10, 14]. These op-
erators are local and require an additional process for in-
ferring global segments. Also of relevance are methods for
smoothing using unisotropic diffusion [4, 18, 20]. These
methods avoid over-smoothing, but typically involve a slow,
iterative process that is usually performed in a single scale.

In Section 2 we briefly review the SWA algorithm. Later,
in Section 3 we describe how to involve integral measures
over a segment in the segmentation process. We demon-
strate this with two measures, the average intensity of a seg-
ment and its variance across scale. In Section 4 we discuss
how to introduce and use boundaries in the segmentation
process. Finally, we show experiments in Section 5.

2 Overview of the SWA Algorithm
[22] introduced an efficient multiscale algorithm for im-

age segmentation. In this algorithm a 4-connected graph
G = (V;E;W ) is constructed from the image, where each
node vi 2 V represents a pixel, every edge eij 2 E con-
nects a pair of neighboring pixels, and a weight w ij is as-
sociated with each edge reflecting the contrast in the corre-
sponding location in the image. The algorithm detects the
segments by finding the cuts that approximately minimize
a normalized-cut-like measure. This is achieved through a
recursive process of weighted aggregation, which induces a
pyramid structure over the image. This pyramid structure
is used in this paper to define geometric support for coarse
scale measurements, which are then used to facilitate the

segmentation process.
In this section we briefly describe the SWA algorithm.

We note that we make two slight modifications relative to
its original implementation. First, we change the normal-
ization term in the optimization measure. We normalize the
cost of a cut by the sum of the internal weights of a segment
rather than by its area. Thus, our measure is related to that
used in [23]. Secondly, we initialize the graph with weights
that directly reflect the intensity difference between neigh-
boring pixels, rather than using the “edgeness measure” de-
fined in [22]. Specifically, we use wij = e��jIi�Ij j, where
Ii and Ij denote the intensities in two neighboring pixels i
and j, and � > 0 is some constant.

The SWA algorithm proceeds as follows. With every
segment S = fs1; s2; :::; smg � V we associate a state
vector u = (u1; u2; :::; un) (n = kV k), where

ui =

�
1 if i 2 S
0 if i =2 S:

(1)

The cut associated with S is defined to be

E(S) =
X
i6=j

wij (ui � uj)
2
; (2)

and the internal weights are defined by

N(S) =
X

wijuiuj : (3)

The segments that yield small (and locally minimal) values
for the functional

�(S) = E(S)=N�(S); (4)

for some predetermined constant � > 0, and whose volume
is less than half the size of the image, are considered salient.

The objective of the algorithm is to find the salient seg-
ments. To this end a fast transformation for coarsening
the graph was introduced. This transformation produces a
coarser graph with about half the number of nodes (vari-
ables), and such that salient segments in the coarse graph
can be used to compute salient segments in the fine graph
using local processing only. This coarsening process is re-
peated recursively to produce a full pyramid structure. The
salient segments emerge in this process as they are repre-
sented by single nodes at some level in the pyramid. The
support of each segment can then be deduced by projecting
the state vector of the segment to the finest level. This seg-
mentation process is run in time that is linear in the number
of pixels in the image.

The coarsening procedure proceeds recursively as fol-
lows. We begin with G[0] = G. (The superscript denotes
the level of scale.) Given a graph G [s�1], a set of coarse
representative nodes C � V [s�1] = f1; 2; :::; ng is cho-
sen, so that every node in V [s�1]nC is strongly connected



to C. A node is considered strongly connected to C if the
sum of its weights to nodes in C is a significant propor-
tion of its weights to nodes outside C. (Similar to coarsen-
ing criteria in many other fields: see [5].) Assume, without
loss of generality, that C = f1; 2; :::; Ng. A coarser state
vector u[s] = (u

[s]
1 ; u

[s]
2 ; :::; u

[s]
N ) is now associated with C,

so that u[s]k denotes the state of the node k. Because the
original graph is local, and because every node is strongly
connected to C, there exists a sparse interpolation matrix
P [s�1;s], with

P
k p

[s�1;s]
ik = 1 for every i, that satisfies the

following condition. Given u [s] for any salient segment S,
the state vector u[s�1] associated with that segment is ap-
proximated well by the inter-scale interpolation

u[s�1] �= P [s�1;s]u[s]: (5)

fp
[s�1;s]
ik gNk=1 are chosen to be proportional to fw [s�1]

ik gNk=1
for any i =2 C, and p[s�1;s]

ii = 1 for i 2 C.
Every node k 2 C can be thought of as representing

an aggregate of pixels. For s = 1, for example, a pixel i
belongs to the k’th aggregate with weight p [0;1]ik . Hence, we
obtain a decomposition of the image into aggregates. Note
that by the definition of P [s�1;s] aggregates will generally
not include pixels from both sides of a sharp transition in the
intensity. In the absence of such a sharp transition a pixel i
will typically belong to several surrounding aggregates with
weights proportional to its coupling to the representative of
each aggregate.

Equation (5) is used to generate a coarse graph G [s] =
(V [s]; E[s];W [s]), which is associated with the state vec-
tor u[s], where V [s] corresponds to the set of aggregates
(1; 2; :::; N), and the weights in W [s] are given by the
”weighted aggregation” relation

w
[s]
kl =

X
i 6=j

p
[s�1;s]
ik w

[s�1]
ij p

[s�1;s]
jl + Ækl

X
i

p
[s�1]
ik w

[s�1]
ii ;

(6)
where Ækl is the Kronecker delta. (The second term in
this expression influences only the computation of the in-
ternal weight of an aggregate, and its role is to recursively
accumulate those weights.) Finally, we define an edge
e
[s]
kl 2 E[s] if and only if k 6= l and w [s]

kl 6= 0.
We can now seek to partition the coarse graph G [s] ac-

cording to relations like (1)-(4) applied to the coarse state
vector u[s], except that the internal weight (3) should now
take into account also the internal weights of the aggregates;
so that wkk is generally not zero, and its value can be com-
puted recursively using (6). [22] showed that salient seg-
ments of G[s] approximate salient segments of G via the
relations in (5).

At the end of this process a full pyramid has been con-
structed. Every salient segment appears as an aggregate
in some level of the pyramid. We therefore evaluate the

saliency of every node, and then apply a top-down pro-
cess to determine the location in the image of the salient
ones. This is achieved for every segment by interpolating
u[s] from the level at which the segment was detected down-
ward to the finest, pixel level using (5). Sharpening sweeps
are applied after interpolation at each level to determine the
boundaries of the segment more accurately (similar to the
process in Section 4.1 below).

3 Aggregate Properties
Our objective now is to use the pyramidal structure cre-

ated by the SWA algorithm in order to define the support
regions for coarse measurements and to use these measure-
ments to affect the constructed pyramid. There are two ver-
sions to this algorithm. In one version the coarse measure-
ments affect only the construction of yet coarser levels in
the pyramid. In the second version we also use the coarse
measurements to affect lower levels of the pyramid. We de-
fer the discussion of such top-down processing to Section 4.
Without top-down processing the algorithm proceeds as fol-
lows. At each step we construct a new level in the pyramid
according to the process described in Section 2. For every
node in this new level we then compute properties of the
aggregate it represents. Finally, for every edge in this graph
we update the weights to account for the properties mea-
sured in this level. This will affect the construction of the
pyramid in the next levels.

Certain useful properties of regions are expressed
through integrals over the regions. Such are, for example,
statistics over the regions. Such properties are also easy to
handle with our algorithm, since they can be computed re-
cursively with the construction of the pyramid. With such
measurements the overall linear complexity of the segmen-
tation process is maintained. Below we give examples of
two such measures. The first measure is the average in-
tensity of the regions. The average intensity allows us to
segment regions whose boundaries are characterized by a
gradual transition of the intensity level. This measure was
also used in [22]. The second, more elaborate measure is
the variances of regions. We collect the variance of regions
in every scale and compare the set of variances obtained
for neighboring aggregates. This allows us to account for
isotropic textures characterized by their second order statis-
tics. As we shall see in the experiments, this already al-
lows us to handle pictures that include textured segments.
The full future treatment of texture will require additional
measurements that are sensitive to directional texture and
perhaps to higher order statistics of segments.

Below we describe the two measurements and their use
in the segmentation process. We begin with some notation.
The matrix

P [t;s] =

s�1Y
q=t

P [q;q+1] (7)



describes the interpolation relations between a scale t and a
scale s, 0 � t < s. Thus, p[t;s]ik measures the degree that the
aggregate i of scale t belongs to the aggregate k of scale s.

Suppose Q[t]
l is an integral of a function over the aggre-

gate l at scale t. Then, we can recursively compute the inte-
gral of that function over an aggregate k in any scale s > t
by

Q
[t;s]
k =

X
l

p
[t;s]
lk Q

[t]
l : (8)

Using (7) we can compute this integral level by level by
setting t = s � 1 in (8). The average of Q [t;s]

k over the
aggregate k can also be computed by

�Q
[t;s]
k = Q

[t;s]
k =p

[t;s]
k ; (9)

where p[t;s]k =
P

l p
[t;s]
lk , the volume of the aggregate k at

scale s given in units of aggregates at scale t, can also be
computed recursively. In particular, p [0;s]k is the volume of
the aggregate k at scale s in pixels.

3.1 Multiscale Average Intensity
Measuring the average intensity of a region is useful for

detecting regions whose intensity falls off gradually near the
boundary, or when the boundary is noisy. Let � [s]

k denote the
average intensity of the aggregate k at scale s. We can use
(8-9) to compute recursively � [s]

k starting with Q[0]
i = Ii.

In the construction of a new level s the weights w [s]
kl are

generated according to (6) using the fine-scale weights. We
modify w

[s]
kl to account also for intensity contrast between

the aggregates k and l by multiplying it by e��sj�
[s]

k
��

[s]

l
j.

�s is a parameter that can be tuned to prefer certain scales
over others, say, according to prior knowledge of the im-
age. In our implementation we set �s � e� for some fixede� > 0. As a result of this modification, the subsequent con-
struction of the coarser levels of the pyramid is affected by
the contrast at level s and at all finer scales. This enables us
to detect significant intensity transitions seen at any level of
scale.

3.2 Multiscale Intensity Variance
The variance of image patches is a common statistical

measure used to measure texture [11]. Variance is useful in
characterizing isotropic surface elements. Additional statis-
tics are often used to characterize more elaborate textures.
In our implementation we used the average variances at all
finer scales to relate between aggregates. Other statistics
can be incorporated in a similar way.

To compute the variance of an aggregate we accumulate
the average squared intensity of any aggregate k at any scale

s. Denote this by I2
[s]

k . This too is done recursively starting
with Q[0]

i = I2i . The variance of an aggregate k at a scale s

is then given by � [s]k = I2
[s]

k � (�
[s]
k )2:

By itself, the variance of an aggregate measured with
respect to its pixels provides only little information about
texture. Additional information characterizing the texture
in an aggregate can be obtained by measuring the average
variance of its sub aggregates. Denote by ��

[t;s]
k the averages

of � [t]l over all the sub-aggregates of k of scale t (t < s),

we can compute ��
[t;s]
k recursively, beginning at scale t by

setting Q
[t]
l = �

[t]
l in (8). The multiscale variance associ-

ated with an aggregate k in scale s, then, is described by the
vector ~� [s]k = (��

[1;s]
k ; ��

[2;s]
k ; :::; ��

[s�1;s]
k ; �

[s]
k ):

In the construction of a level s in the pyramid we use
the multiscale variance vector to modify the weights in the
graph G[s]. For every pair of connected nodes k and l in

V [s] we multiply w[s]
kl by e��sD

[s]

kl , where D[s]
kl is the Maha-

lanobis distance between ~� [s]k and ~� [s]l , which can be set so
as to prefer certain scales over others. In general, we per-
form these modifications only from a certain scale T and
up. This enables us to accumulate aggregates of sufficient
size that contain rich textures.

The multiscale variance of an aggregate can detect
isotropic texture. To account for non-isotropic texture we
may aggregate recursively the covariance matrix of each ag-
gregate, and use it to infer its principle axis indicating its
direction and oblongness. By computing statistics of the di-
rection and oblongness of sub aggregates at every finer scale
we can obtain a multiscale description of the texture pattern
in the aggregate. We expect to include such measurements
in future implementations of our algorithm.

4 Boundaries
Smooth continuation of boundaries is a strong cue that

often indicates the presence of a single object on one side of
the boundary. In this section we show how we can use this
cue to facilitate the segmentation process (for other methods
see, e.g., [13]). The process proceeds as follows. During the
construction of the pyramid, for every aggregate we identify
sharp (as opposed to blurry) sections of its boundary. We
then compare every two neighboring aggregates and deter-
mine whether they can be connected with a smooth curve. If
a clear smooth continuation is found we increase the weight
between the aggregates. Consequently, such two aggregates
are more likely to be merged in the next level of the pyramid
even when there is variation in their intensities.

Identifying the boundaries of an aggregate requires top-
down processing of the pyramid. At each level of the
pyramid, for every aggregate in that level, we determine
the sharp sections of its boundary by looking at its sub-
aggregates several levels down the pyramid. In general,
we will go down a constant number of levels keeping the
resolution of the boundaries proportional to the size of the
aggregate. This will somewhat increase the total runtime
of the algorithm, but the asymptotic complexity will remain



linear. (We may alternatively determine the boundaries of
an aggregate at the finest, pixel level. This will increase the
asymptotic complexity to O(n logn).) The effort is worth
the extra cost, since boundary cues can help avoiding the
over-fragmentation of images, which is a common problem
in many segmentation algorithms.

The fact that we only consider boundary completion be-
tween neighboring aggregates allows us to consider only
candidates that are likely to produce segment boundaries
and cuts down the combinatorics that stalls perceptual
grouping algorithms. This has two important consequences.
First, it keeps the overall complexity of the segmentation
process low. Secondly, it eliminates candidates that may
produce smooth continuations, but otherwise are inconsis-
tent with the segments in the image. This simplifies the
decisions made by the segmentation process and generally
leads to more accurate segmentation. We should note how-
ever that our boundary process is intended to facilitate the
segmentation process and not to deal with pictures that con-
tain long subjective contours as most perceptual grouping
algorithms do.

Before we turn to explaining the details of how we use
boundaries in the segmentation process we explain one, im-
portant step in the extraction of boundaries. This is a top-
down step whose purpose is to make the boundaries of an
aggregate in the pyramid sharper.

4.1 Top-Down Sharpening

Every time we construct a new level in the pyramid
we also perform a process of top-down sharpening of the
boundaries of aggregates. In this process we readjust the
weights two levels down and then update the higher levels
according to these adjustments. The reason for this process
is as follows. Recall that every level of the pyramid is con-
structed by choosing representative nodes from the previous
levels. Thus, every aggregate in a level s is identified with
a single sub-aggregate in the preceding level s � 1. This
sub-aggregate belongs to the coarser aggregate with inter-
polation weight 1 (see (5)). By recursion, this means that
the aggregate of level s is identified with a single pixel in
the image. As we coarsen the pyramid, this may introduce
a bias since pixels in the aggregate that are far from the
representative pixels may be weakly related to the aggre-
gate merely because of their distance from the representa-
tive pixel. To remedy this, a top-down sharpening procedure
is performed in which for every aggregate we identify nodes
in the lower levels that clearly belong to the aggregate. We
then increase the interpolation weight for such nodes con-
siderably. This results in extending the number of pixels
that are fully identified with the segment, and as a conse-
quence in restricting the fuzzy transitions to the boundaries
of a segment.

The process of sharpening is performed as follows. Con-

sider an aggregate k at scale s. We can associate the ag-
gregate with the state vector u[s] by assigning 1 at its k’th
position and 0 elsewhere. Eq. (5) tells us how each node of
scale s � 1 depends on k. Considering the obtained state
vector u[s�1], we will define a modified vector ~u[s�1] by

~u
[s�1]
i =

8<
:

1 if ui > 1� Æ2
ui if Æ1 � ui � 1� Æ2
0 if ui < Æ1 :

(10)

for some choice of 0 � Æ1; Æ2 � 1 (we use Æ1 = Æ2 = 0:2).
We can repeat this process recursively using ~u [s�1] until we
reach some scale t (typically we use t = s � 2). Once we
reach t we look at the obtained state vector ~u [t]. For every
pair of nodes i and j at scale t for which ~u

[t]
i = ~u

[t]
j = 1 we

double the weight between the nodes. This will make those
nodes belong to the aggregate much more strongly than the
rest of the nodes. We repeat this process for every aggregate
at scale s obtaining a new weight matrix W [t].

Using the new weight matrix W [t], we rebuild the pyra-
mid from levels t+1 and up. This in effect will modify the
interpolation matrices and the weights at the coarser lev-
els. As a result we obtain a sharper distinction between the
aggregates, where coarse level measurements affect our in-
terpretation of the image in finer scales.

A similar mechanism was used in [22] as a postprocess-
ing stage to determine the boundaries of salient segments
in the image. Here we apply this procedure throughout the
bottom-up pyramid construction. As a consequence coarse
measurements influence the detection of segments already
at fine scales.

4.2 Incorporating boundaries
We next turn to explaining how we let boundaries fa-

cilitate the segmentation process. Given an aggregate k at
scale s (denoted by S), we begin again with the character-
istic state vector u[s] by assigning 1 to u[s] at the k’th po-
sition and 0 elsewhere. We repeat the process described in
Section 4.1 a constant number of levels l down the pyramid
to obtain the corresponding state vector ~u [s�l]. Since every
variable u[s�l]i is associated with a pixel in the image (cf.
Section 4.1), this vector tells us which of the corresponding
pixels belong to S and by what degree. Hence, we have a
(non-uniform) sampling of image pixels ~u [s�l], with their
degree of belonging to S. The scale s � l determines the
density of the sampling. The lower this scale is (larger l),
the smaller are the corresponding aggregates and, hence, the
denser are the corresponding pixels in the image. We treat
the state vector as an image, with values assigned only to
the pixels ~u[s�l]. Pixels with high values in ~u[s�l] belong
to S, whereas pixels with low value belong outside S. We
then seek sharp boundaries in this image, at the resolution
imposed by the density of the pixels ~u [s�l], by looking for
sharp transitions in the values of these pixels.



To locate the boundaries we measure for each pixel in
~u[s�l] its difference from the average value of its neighbors
(also in ~u[s�l]). We then threshold the resulting values to
obtain edge pixels. We follow this by a process of edge
tracing in which we best fit line segments (in the l2-norm
sense) to the edge pixels. Finally we produce a polygo-
nal approximation of the aggregate boundary. The line seg-
ments obtained in this process are in fact oriented vectors;
we maintain a clockwise orientation by keeping track of the
direction to the inside of the aggregate. The size of the ag-
gregate determines the density of the edge pixels. Note that
the edges obtained may be fragmented; gaps may still be
filled in at a coarser scale. The total complexity of the algo-
rithm remains linear because during the process of bound-
ary extraction we only descent a constant number of levels
and the number of pixels we access falls down exponentially
as we climb higher in the pyramid.

After we determine the boundaries of each aggregate in
the level s we examine every two neighboring aggregates
to determine whether their boundaries form a smooth con-
tinuation. To this end we first sort the vectors obtained for
each aggregate according to their orientation. Then, for ev-
ery two aggregates we can quickly identify pairs of vectors
of similar orientation by merging the two lists of sorted vec-
tors. We then match two vectors if they satisfy three condi-
tions: (1) they form a good continuation, (2) the two corre-
sponding aggregates have relatively similar properties (e.g.,
intensity and variance), and (3) no other vector of the same
aggregate forms a better continuation. The last condition
is used to eliminate accidental continuations that appear as
Y-junctions. To evaluate whether two vectors form a good
continuation we use the measure proposed in [21].

If we find a pair of vectors that forms a good continuation
according to this measure we increase the weight between
the two aggregates to become equal to their highest weight
to any other node. This way we encourage the system to
merge the two aggregates in the next level of the pyramid.
One can of course consider to moderate this intervention
in the process to balance differently between boundary in-
tegrity and other properties.

As with the variances (Section 3.2) we apply this process
from some level T and up, so that the aggregates are large
enough to form significantly long boundaries.

The process of boundary completion can be extended
to detect a-modal completions. To this end remote aggre-
gates may be compared and the weights between them be
increased if (1) after completion their boundaries can be
connected smoothly, and (2) they are separated by a salient
(foreground) segment. We refer to this operation as “topo-
logical subtraction of detected foreground segments.”

Figure 1: Top: average intensities of 10 � 10 pixel squares (left) and
their bilinear interpolation (right). Bottom: average intensities of 73 pixel
aggregates (left) and their interpolations (right). Original image is shown
in Figure 2 (top left).

Figure 2: Top: the input image (left). Our algorithm (right). Bottom:
SWA (left). Normalized cuts (right).

5 Experiments
We have implemented our method and tested it on vari-

ous natural images. Due to space limitation we only show a
few examples. To get a sense of the advantages of the new
method we applied two other algorithms to the same im-
ages. We first tested the SWA algorithm of [22] to demon-
strate the improvements achieved by incorporating addi-
tional coarse measurements to the process. This imple-
mentation incorporates only coarse scale average-intensity
measures, in a manner similar to Section 3.1. In addition,
we tested an implementation of the normalized cuts algo-
rithm [16, 23, 15, 13]. This implementation uses a graph in
which every node is connected to nodes up to a radius of 30
pixels. The algorithm combines intensity, texture and con-
tour measurements. In both cases we used original software
written by the authors. Due to the large number of param-



Figure 3: Top: the input image (left). Our algorithm (right). Bottom:
SWA (left). Normalized cuts (right).

Figure 4: Top: the input image (left). Our algorithm (right). Bottom:
SWA (left). Normalized cuts (right).

eters, we were unable to carefully test the methods with a
large variety of settings. We feel however that the results
we obtain in all cases are fairly typical to the performance
that can be obtained with the algorithms.

Figure 1 contrasts the effect of averaging over aggregates
with the effect of “geometric” averaging that ignores the re-
gions in the image. In the middle row the image is tiled with
10 � 10 pixel squares, and each pixel is assigned with the
average intensity of the square to which it belongs (left im-
age). In the bottom row every pixel is assigned with the av-
erage intensity of the aggregate it belongs to (left image). To
construct this image we used aggregates of level 6. All to-
gether there were 414 aggregates of approximately 73 pixels
each. The right images show “reconstructions” of the origi-
nal image through interpolation. Notice that averaging over
squares leads to a blurry image, whereas our method pre-
serves the discontinuities in the image. In particular notice
how with the geometric averaging the horse’s belly blends
smoothly into the grass, whereas with our method it is sep-

Figure 5: Left: the input image. Middle: our algorithm. Right: normal-
ized cuts.

arated from the grass by a clear edge.
Figures 2-5 show four images of animals in various back-

grounds. The figures show the results of running the three
algorithms on these image. Segmentation results are shown
as color overlays on top of the original gray scale images.
In all four figures our algorithm manages to detect the ani-
mal as a salient region. In Figure 4 in particular the method
manages to separate the tiger from the background although
it does not use any measure of oriented texture. In addi-
tion, the method separates the bush from the water. The
SWA algorithm fails to find the horse in Figure 2, and has
some “bleeding” problems with the tiger. This is probably
because the algorithm does not incorporate a texture mea-
sure in the segmentation process. The normalized cuts algo-
rithm yields significant over-fragmentation of the animals,
and parts of the animals often merge with the background.
This is typical in many existing segmentation algorithms.
Another example is shown in Figures 6. Notice that the vil-
lage, the mountain, and the lake are separated.

We conclude our experiments with two famous examples
of camouflage images. Figure 7 shows a squirrel climbing a
tree. Our algorithm finds the squirrel and its tail as the two
most salient segments. The tree trunk is over-segmented,
possibly due to the lack of use of oriented texture cues. The
normalized cuts algorithm, for comparison, shows signifi-
cant amounts of “bleeding.” Finally, in Figure 8 our algo-
rithm extracts the head and belly of the dalmatian dog, and
most of its body is detected with some “bleeding.” Such a
segmentation can perhaps be used as a precursor for atten-
tion in this particularly challenging image.

The normalized cuts was significantly slower than the
other methods, SWA and ours. Running the normalized cuts
method on a 200 � 200 pixel image using a dual proces-
sor Pentium III 1000MHz took 10-15 minutes. The imple-
mentation of our method applied to an image of the same
size took about 5 seconds on a Pentium III 750MHz laptop.
Running the SWA algorithm took about the same as ours.

6 Conclusions
We have introduced a segmentation algorithm that in-

corporates different properties at different levels of scale.
The algorithm avoids the over-averaging of coarse mea-
surements, which is typical in many multiscale methods,
by measuring properties simultaneously with the segmen-
tation process. For this process it uses the irregular pyramid



Figure 6: Left: the input image. Right: our algorithm.

Figure 7: Left: the input image. Middle: our algorithm. Right: normal-
ized cuts.

Figure 8: Left: the input image. Right: our algorithm.

proposed by [22] to approximate graph-cut algorithms. The
process of building the pyramid is efficient, and the mea-
surement of properties at different scales integrates with the
process with almost no additional cost. We demonstrated
the algorithm by applying it to several natural images and
comparing it to other, state-of-the-art algorithms. Our ex-
periments show that our algorithm achieves dramatic im-
provement in the quality of the segmentation relative to the
tested methods. The algorithm can further be improved by
incorporating additional measures, e.g., of oriented texture.
Moreover, we believe that the multiscale representation of
the image obtained with the pyramid can be used to facili-
tate high level processes such as object recognition.

Acknowledgement
We thank Jianbo Shi and Eran Borenstein for the test images, Lihi

Zelnik-Manor and Chen Brestel for their help with the implementa-
tion, and Doron Tal for the Normalized Cuts software available at
http://www.cs.berkeley.edu/ �doron [16].

References
[1] H. J. Antonisse, “Image Segmentation in Pyramids,” CGIP,

19(4):367–383, 1982.

[2] S. Baronti, A. Casini, F. Lotti, L. Favaro, and V. Roberto, “Variable
pyramid structure for image segmentation,” CVGIP, 49: 346–356,
1990.

[3] G. Bongiovanni, L. Cinque, S. Levialdi and A. Rosenfeld, “Image
Segmentation by a Multiresolution Approach,” PR, 26(12):1845–
1854, 1993.

[4] M. J. Black, G. Sapiro, D. H. Marimont and D. Heeger, “Robust
Anisotropic Diffusion,” IP, 7(3):421–432, 1998.

[5] A. Brandt, Multiscale scientific computation: Review 2001, T. Barth,
R. Haimes and T. Chan (eds.): Multiscale and Multiresolution Meth-
ods, Sprienger-Verlag, 2001.

[6] P. J. Burt and E. H. Adelson, “The Laplacian Pyramid as a Compact
Image Code,” Commun, 31(4):532–540, 1983.

[7] K. Cho and P. Meer, “Image segmentation from consensus informa-
tion,” CVIU, 68(1): 72–89, 1997.

[8] I. J. Cox, S. B. Rao and Y. Zhong, “Ratio Regions: A Technique
for Image Segmentation,” Proc. Int. Conf. on Pattern Recognition,
B:557–564, August 1996.

[9] R. O. Duda and P. E. Hart, Pattern classification and scene analysis.
John Wiley and Sons, 1973.

[10] J. H. Elder and S. W. Zucker, “Local scale control for edge detection
and blur estimation,” PAMI, 20(7):699–716, 1998.

[11] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision,
Addison-Wesley, Reading, Massachusetts, Vol. 1, 1992, Vol. 2, 1993.

[12] S. L. Horowitz and T. Pavlidis, “Picture Segmentation by a Tree
Traversal Algorithm,” JACM, 23(2):368–388, 1976.

[13] T. Leung and J. Malik, “Contour continuity in region based image
segmentation,” ECCV, 1998.

[14] T. Lindeberg, “Edge detection and ridge detection with automatic
scale selection,” IJCV,30(2):117–154, 1998.

[15] J. Malik, S. Belongie, J. Shi and T. Leung, “Textons, Contours and
Regions: Cue Integration in Image Segmentation,” ICCV, 1999.

[16] J. Malik, S. Belongie, T. Leung and J. Shi “Contour and texture anal-
ysis for image segmentation,” IJCV, 43(1):7–27, 2001.

[17] T. Pavlidis and Y. Liow, “Integrating region growing and edge detec-
tion,” PAMI, 12:255–233, 1990.

[18] P. Perona, J. Malik, “Scale-Space and Edge Detection Using
Anisotropic Diffusion,” PAMI, 12(7):629–639, 1990.

[19] M. Pietikainen, A. Rosenfeld and I. Walter, “Split-and-Link Algo-
rithms for Image Segmentation,” PR, 15 (4):287–298, 1982.

[20] B. M. ter haar Romeny, ed., Geometry-Driven Diffusion in Computer
Vision, Kluwer Academic Pubs., 1994.

[21] E. Sharon, A. Brandt, and R. Basri, “Completion energies and scale,”
PAMI, 22(10):1117–1131, 2000.

[22] E. Sharon, A. Brandt, and R. Basri, “Fast multiscale image segmen-
tation,” CVPR, I:70–77, South Carolina, 2000.

[23] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
PAMI, 22(8):888–905, 2000.

[24] S.L. Tanimoto and A. Klinger, “Structured Computer Vision,” Ma-
chine Perception through Hierarchical Computational Structures.
Academinc Press, New York, 1980.

[25] O. Veksler, “Image Segmentation by Nested Cuts,” CVPR, I:339–
344, 2000.

[26] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data
clustering: theory and its application to image segmentation,” PAMI,
15:1101–1113, 1993.


