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Abstract

The study of 2D shapes and their similarities is a central
problem in the field of vision. It arises in particular from
the task of classifying and recognizing objects from their
observed silhouette. Defining natural distances between
2D shapes creates a metric space of shapes, whose math-
ematical structure is inherently relevant to the classifica-
tion task. One intriguing metric space comes from using
conformal mappings of 2D shapes into each other, via the
theory of Teichmüller spaces. In this space every simple
closed curve in the plane (a “shape”) is represented by a
‘fingerprint’ which is a diffeomorphism of the unit circle
to itself (a differentiable and invertible, periodic function).
More precisely, every shape defines to a unique equivalence
class of such diffeomorphisms up to right multiplication by
a Möbius map. The fingerprint does not change if the shape
is varied by translations and scaling and any such equiv-
alence class comes from some shape. This coset space,
equipped with the infinitesimal Weil-Petersson (WP) Rie-
mannian norm is a metric space. In this space, it appears
very likely to be true that the shortest path between each
two shapes is unique, and is given by a geodesic connect-
ing them. Their distance from each other is given by inte-
grating the WP-norm along that geodesic. In this paper we
concentrate on solving the “welding” problem of “sewing”
together conformally the interior and exterior of the unit
circle, glued on the unit circle by a given diffeomorphism,
to obtain the unique 2D shape associated with this diffeo-
morphism. This will allow us to go back and forth between
2D shapes and their representing diffeomorphisms in this
“space of shapes”.

1 Introduction

Many different representations for the collection of all 2D
shapes, and many different measures of similarity between
them have been studied recently [15, 16, 22, 1, 23, 20,
17, 12, 13, 11, 2, 3, 21, 7, 10, 10, 14]. Although signifi-
cant progress has been made, none are satisfactory from the
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point of view of a leading to a successful classification of
the collection of all shapes. In part, this shortcoming is due
to the fact that we as humans may give different meanings
to similarity between shapes in different contexts [4, 19]. In
this paper, we propose the study of a new approach to the
collection of all shapes by applying the mathematical theory
of complex analysis.

We begin a mathematical analysis of the set of all sim-
ple closed curves in the plane up to translations and scalings
(“shapes”), by embedding these shapes as points in a metric
space that faithfully represents their continuous variability,
and that allows their classification by similarity (i.e. the in-
verse of their metric distances). Note that there is no natural
linear structure to the set of shapes, and therefore it is unde-
sirable to simply map this set to �n, say, by characterizing
each shape using some n ∈ N real-valued features (e.g.
[5]). In addition, it is obvious that the space of shapes has
to be infinite dimensional to represent all the variability of
all possible simple closed curves. Therefore, embedding the
set of shapes in simplistic spaces, like �n may easily result
in wrong shape classifications.

Many metric approaches for the classification of shapes
have been suggested. Typically, a pairwise distance be-
tween shapes is set up by some 2D spatial comparison be-
tween the two closed curves (e.g. the Hausdorff distance).
Then a generic clustering algorithm is employed for divid-
ing some database of shapes into categories (see [9]). This
approach is more accommodating than simply embedding
the shapes as if they were points in �n, but still lacks the
appropriate structure for morphing between shapes for ex-
ample. It is also a challenge to find a meaningful pairwise
distance on one hand, and an appropriate clustering algo-
rithm on the other hand.

In our space of shapes, every shape will be represented
by a diffeomorphism of the unit circle to itself, that is a
smooth function f : � → � which is differentiable, in-
vertible and satisfies f(x + 2π) = f(x) + 2π. (Equiva-
lently, every such function can be viewed as a real-valued
function from [0, 2π] to itself.) More precisely, we will
show that every simple closed curve in the plane, up to
scaling and translation, corresponds to an equivalence class
of such diffeomorphisms. These equivalence classes are
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the right cosets of these diffeomorphisms modulo the three
dimensional subgroup of Möbius maps, namely the maps
from the complex unit circle {z∣∣|z| = 1} to itself given by
z �→ (az + b)/(b̄z + ā). This quotient space equipped with
the Weil-Petersson Riemannian norm is a metric space.

The construction is based on the theory of conformal
mappings of 2D regions into each other, via the theory of
Teichmüller spaces. Conformal mappings are of great in-
terest since they preserve the angles between any two inter-
secting curves when mapping between differently-shaped
regions, and are unique up to a Möbius-transformation am-
biguity – which is factored out when using the quotient
space of diffeomorphisms. The resulting space has two ma-
jor properties. First, the space has non-positive sectional
curvature [6], which, if some completeness properties hold,
implies that there exists a unique geodesic between each
two shapes. Defining the integral of the WP-norm along a
path as the length of this path, a geodesic is defined as the
shortest path connecting the two shapes and its length is the
global metric on the space of shapes. Moreover, the shapes
along that path represent a natural morphing of one into the
other. Secondly, the resulting space is homogenous with
respect to the group of diffeomorphisms operating on the
cosets from the left. Thus, for example, we can transform
all shapes into new shapes by composing the coset repre-
senting them by a diffeomorphism on the left and this trans-
formation will preserve distance change the above morph-
ing between any two shapes into the morphing between the
transformed shapes.

It is essential in this framework to be able to move back
and forth between 2D shapes and the diffeomorphisms rep-
resenting them. Moving from a given shape into the diffeo-
morphism representing it is not so hard and, for example,
can be simply solved by using an existing numerical im-
plementation of the Schwarz-Christoffel formula, applied
to a polygon that tightly approximates the shape. But go-
ing back from the diffeomorphism to the shape is a major
computational challenge, known as the “welding” problem.
It involves the construction of two conformal maps, one de-
fined inside the unit circle and one outside, which differ on
the unit circle by the given diffeomorphism. Having this
transformation between the space of shapes and the group
of diffeomorphisms will also allow us next to illustrate the
morphing of one shape into the other, along the shortest
path connecting them. For this, we will have to compute
the geodesics in the quotient space of diffeomorphisms, as
we intend to do in a subsequent paper.

In this paper we concentrate on representing the 2D
shapes in the space we suggest, demonstrating how to move
back and forth between the two presentations of 2D shapes:
a simple, closed curve and a representative diffeomorphism
from its corresponding coset in the quotient space. Note
that this means that every shape, up to scaling and transla-

tion, can be naturally described by a “fingerprint”, which is
a diffeomorphism of the circle – a 1D, real-valued periodic
function of [0, 2π] to itself.

2 Shapes as diffeomorphisms of the
circle via conformal mappings

In this paper, by a “shape” we mean a simple closed smooth
curve in the plane. Smooth means having derivatives of all
orders (i.e. being C∞), and simple means that the curves
that do not intersect themselves. For this we make use of
Riemann’s conformal mapping theorem which states that
it is possible to map the unit disc conformally to the inte-
rior of any other such shape. The conformal transforma-
tion is unique up to any preceding Möbius transformations
mapping the unit disc to itself (that is, maps of the form
z �→ (a+ b)/(b̄z + ā)). Conformal means that the infinites-
imal angle between each two crossing curves is equal to the
infinitesimal angle between the transformed curves. This
means for instance, that if we place a radial grid on the unit
disc, made out of concentric circles and lines through the
origin, the right angles between the lines and circles are go-
ing to be preserved in the transformed grid, projected on the
transformed shape.

2.1 Shapes to diffeomorphisms

We associate �2 with the complex plane C, we denote pla-
nar points by complex numbers u + iv, denote the unit disc
by ∆− and the infinite region outside the unit disc plus the
unit circle by ∆+. For every simple closed curve Γ in C
we denote by Γ− its union with the region enclosed by it,
and denote by Γ+ its union with the infinite region out-
side Γ. Then by the Riemann mapping theorem, for all Γ
there exists a conformal map Φ− : ∆− → Γ−, unique
up to replacing Φ− by Φ− ◦ A for any Möbius transfor-
mations A : ∆− → ∆−, A = az+b

b̄z+ā
. That is, for every

two conformal maps Φ(1)
− ,Φ(2)

− : ∆− → Γ− we have that

Φ(2)
−

−1 ◦ Φ(1)
− = A, where A : ∆− → ∆− is a conformal,

Möbius map from the unit disc to itself as defined above.
We denote the extended complex plane or Riemann

sphere by Ĉ .= C ∪{∞}, and add the point at infinity to ∆+

and Γ+. We can think of Γ− and Γ+ as a partition of the
Riemann sphere into two parts along Γ. Observe that using
the transformation 1/z we can identify ∆+ with ∆−. More-
over, under 1/z, Γ is transformed into the inverted simple
closed curve Γ′ so that Γ+ is identified with the interior Γ′

−
of Γ′. Thus we can apply the Riemann mapping theorem to
get a Φ′ from ∆− and Γ′

−. Composing this conformal map
with inverse on both sides, i.e. Φ+(z) = 1/Φ′(1/z), we get
a conformal map of the exteriors Φ+ : ∆+ → Γ+. Φ+

is also unique up to Möbius transformations as above. But
now we can also require that Φ+ carries ∞ to ∞, and that
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its differential carries the real positive axis of the ∆-plane
at ∞ to the real positive axis of the Γ-plane at ∞. Thus,
we eliminate the Möbius ambiguity of Φ+ for every Γ, and
make it unique.

The goal of this construction is the conformal map Ψ .=
Φ+

−1 ◦ Φ−, on the domain on which it is defined, namely
the unit circle S1. (Note that Φ−(S1) = Γ, and Φ+

−1(Γ) =
S1.) In fact, Ψ : S1 → S1 is a diffeomorphism, which
can be thought of as a periodic, real-valued function from
[0, 2π] to [0, 2π], having a positive derivative everywhere.
Ψ is a uniquely-identifying fingerprint of the shape Γ.

2.2 Shapes as equivalence classes of diffeo-
morphisms

From the Möbius-transformation ambiguity left in Φ− we
can see that by the construction of Ψ every simple closed
curve Γ induces a diffeomorphism Ψ : S1 → S1, which is
unique up to preceding it by a diffeomorphism Ã : S1 →
S1 coming from the restriction to S1 of any Möbius trans-
formation A : ∆− → ∆−. We denote the group of
all diffeomorphisms Ψ : S1 → S1 by Diff(S1), and
the subgroup of all the restricted Möbius transformations,
Ã : S1 → S1 by PSL2(�).

We denote our quotient space by G/H , where G =
Diff(S1) and H = PSL2(�). An element in G/H is
determined by g ∈ G, and will be referred to as the coset
gH

.= {g◦h|h ∈ H}. We denote the space of simple closed
smooth curves Γ by S, and by S the same space modulo
scaling and translation of its curves. By our construction of
Ψ in Sec. 2.1, we get a map from S to G/H . Remarkably,
this map is a bijection, meaning that for every coset gH in
G/H , there exists a unique Γ ∈ S such that any Γ repre-
senting Γ (same 2D shape up to scale and translation) will
generate a Ψ in gH . Thus we have that

G/H ∼= S. (1)

2.3 Diffeomorphisms to shapes: welding

To obtain the unique Γ corresponding to any such coset
gH ∈ G/H we may pick any Ψ in gH . We may con-
struct an abstract Riemann surface by welding ∆+ and ∆−
using the map Ψ to identify their boundaries and apply the
classification of simply connected Riemann surfaces to say
that the result must be the same as Ĉ. The usual way to do
this is to cite Bers’ theorem [18] which gives us a curve
Γ, and two conformal mappings Φ− : ∆− → Γ− and
Φ+ : ∆+ → Γ+, such that Φ+

−1 ◦ Φ−
∣∣
S1 = Ψ. The

objects {Γ,Φ−,Φ+} are unique up to replacing them by
{A(Γ), A ◦ Φ−, A ◦ Φ+} with an arbitrary Möbius trans-
formation A(z) = (az + b)/(cz + d) (now not necessar-
ily mapping the unit circle to itself). We may also require
that Φ+(∞) = ∞ and that the derivative of Φ+ at ∞ map

the tangent to the positive real axis to itself. This makes
{Γ,Φ−,Φ+} unique up to changing them as above with
A(z) = az + b, a > 0 real. Thus the constructed Γ is
unique up to translations and scalings as required.

2.4 The homogeneous structure of S
The group G operates, of course, on the coset space G/H ,
hence, as a result of the above construction, it operates also
on the space of shapes S . A concrete way of defining this
action is this: to transform any Γ ∈ S by a group element Ψ,
we construct the conformal map Φ+ : ∆+ → Γ+ hence we
get the map Ψ′ = Φ+ ◦ Ψ ◦ Φ−1

+ from Γ to itself. Then we
use the same welding trick by cutting open Ĉ along Γ and
rewelding it with the map Ψ′. Applying Bers’ theorem, the
result can be conformally mapped to the extended sphere,
taking Γ to a new curve Γ′. This way we get a transitive
group operation on S.

3 The WP Riemannian metric on S
3.1 The WP norm on the Lie algebra of G

The Lie algebra of the group G is given by the vector space
of smooth vector fields on the circle: φ(θ)∂/∂θ where φ(θ+
2π) = φ(θ). The adjoint action of g ∈ G is the linear
map from Lie(G) to itself induced by the conjugation map
h �→ g−1 ◦ h ◦ g from G to itself. Explicitly, this maps
φ ∈ Lie(G) to φ ◦ g/g′, i.e. adg(φ) = φ ◦ g/g′.

We can expand such a φ in a Fourier series φ(θ) =∑∞
n=−∞ aneinθ (where an = a−n). The Weil-Petersson

norm on Lie(G) is defined by:

||φ||2WP =
∞∑

n=2

(n3 − n)|an|2.

The null space of this norm is given by those vector fields
whose only Fourier coefficients are a−1, a0 and a1, i.e. the
vector fields (a + b cos(θ) + c sin(θ))∂/∂θ, which are ex-
actly those tangent to the Möbius subgroup H , i.e. in the
Lie algebra of H .

The motivation for this particular definition is the fact
that, for all h ∈ H and φ ∈ Lie(G), one can verify that

||adh(φ)||WP = ||φ||WP .

3.2 Extending the metric to G/H

A general fact on metrics on coset spaces is that a Rieman-
nian metric on G/H which is invariant by all left multipli-
cation maps Lg : G/H → G/H , for all g ∈ G is given by a
norm ||φ|| on the Lie algebra of G which is zero on the Lie
subalgebra of H and which satisfies ||adh(φ)|| = ||φ|| for
all h ∈ H . Here the norm on the tangent space TgH,G/H to
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G/H at any gH is gotten from the norm on the Lie algebra
via the isomorphism

DLg : Lie(G)/Lie(H) = TeH,G/H → TgH

given by the derivative of Lg at the identity e of G. In par-
ticular, this applies to our G and H . Because G/H ∼= S̄,
we have now constructed a homogeneous Riemannian met-
ric on S also.

Next let’s translate this into concrete terms. Take any
path Ψ(t, θ) in G, where t ∈ [0, t0] ⊂ � and Ψ(t, θ+2π) =
Ψ(t, θ) + 2π. The tangent vectors to this path are given by
∂Ψ(t,θ)

∂t = Ψt(t, θ) or, translated back to the Lie algebra
by left multiplication by Ψ−1, by Ψt(t, θ)/Ψθ(t, θ). We
expand the tangent vector at every t ≥ 0 by its Fourier series
in θ:

Ψt(t, θ)/Ψθ(t, θ) =
∞∑

n=−∞
an(t)einθ, (2)

where a−n(t) = an(t) because the vector field is real. Its
Weil-Petersson norm is then given by

‖Ψt(t, θ)/Ψθ(t, θ)‖WP
.=

∞∑
n=2

|an(t)|2(n3 − n) (3)

and the length of the path is by definition:∫ t0
0

√∑∞
n=2 |an(t)|2(n3 − n)dt.

4 Computing shapes from diffeomor-
phisms and vice versa

4.1 Schwarz-Christoffel: shapes to diffeo-
morphisms

Arguably the most computationally efficient way to com-
pute the conformal map Φ from the unit disk to the interior
of a simple closed curve Γ is to approximate Γ by a polygon
and use the Schwarz-Christoffel formula. This formula is as
follows: let z be the complex coordinate in the unit disk, let
{ai} be the points on the unit circle which will map to the
vertices of the polygon and let {παi} be the angles of the
polygon at these vertices. Then for some C1, C2:

Φ(z) = C1

∫ z ∏
i

(z − ai)αi−1dz + C2.

This method has been implemented in the excellent package
‘sc’ by Tobin Driscoll, based on earlier work by L.N. Tre-
fethen, and distributed at www.math.udel.edu/∼driscoll/SC
[8]. The key problem is that one is usually given only the
points Φ(ai) and must compute {ai} at the same time as Φ.
Moreover, they are non-unique as, for any Möbius map A,
Φ ◦A, {A−1(ai)} are equally good solutions. The program

allows you to specify the point Φ(0) ∈ Int(Γ) to get the
best looking and best behaved solution. (See Fig. 1 for an
example.)

Figure 1: Using Schwarz-Christoffel. The conformal mappings Φ− and
Φ+, described in Sec. 2.1, carry a homogenous radial grid (left, drawn
schematically) onto the interior and exterior of Γ separately (right).

4.2 Welding: diffeomorphisms to shapes

4.2.1 Setting up the analytic welding equations

Figure 2: The conformal map f , as described in Sec.4.2.1, maps the two
halves of the z-sphere divided by the unit circle (left) onto the two parts
of the w-sphere divided by Γ (right), correspondingly, such that f−(z) =
f+(ϕ(z)) on |z| = 1.

We consider ∆− and ∆+ as a partition of the Riemann
sphere into two parts along the unit circle ∆, and Γ− and
Γ+ as a partition of the Riemann sphere into two parts
along Γ, as explained in Sec. 2.1 (see Fig. 2). We asso-
ciate the complex-plane variable z with the ∆-sphere, and
the complex-plane variable w with the Γ-sphere. We will
assume that 0 ∈ ∆− in order to normalize the map Φ− as
well as Φ+ by asking that Φ−(0) = 0. Given a diffeo-
morphism ϕ : ∆ → ∆, we seek a function f(z) from the
z-sphere minus the unit circle to the w-sphere, complex an-
alytic on |z| < 1 with boundary values f ||z|=1 = f−, and
on |z| > 1 with f ||z|=1 = f+, such that

f(0) = 0, f(∞) = ∞
f−(z) = f+(ϕ(z)) |z| = 1 (4)

Note that f(z)/z has finite non-zero limiting values at 0 and
∞, hence it has a single-valued logarithm in ∆− and ∆+.
Thus we may define g(u) by

log
(

f(eu)
eu

)
= g(u), u ∈ Ĉ − S1 (5)
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so that g(u + 2πi) ≡ g(u).
Now,

Re(u) → −∞ ⇒ |eu| → 0
⇒ f(eu) ≈ c1e

u ⇒ g(u) ≈ log c1,
(6)

and
Re(u) → ∞ ⇒ |eu| → ∞
⇒ f(eu) ≈ c2e

u ⇒ g(u) ≈ log c2,
(7)

for some constants c1 and c2. Without loss of generality,
we can replace f by c−1

2 f so that c2 = 1, and g(u) ≈ 0 as
Re(u) → +∞.

We define Ψ : � → �, satisfying Ψ(θ+2π) = Ψ(θ)+2π
by ϕ(eiθ) = eiΨ(θ). Then,

g−(iθ) = log(f−(eiθ)) − iθ
= log(f+(ϕ(eiθ))) − iθ = log(f+(eiΨ(θ)) − iθ
= g+(iΨ(θ)) + iΨ(θ) − iθ.

(8)
Thus we get a new welding condition on the imaginary

axis
g−(iθ) = g+(iΨ(θ)) + i(Ψ(θ) − θ). (9)

Note that if Eq. 9 holds at θ then it also holds at θ + 2π.
Now let

g(u) = h(u) + ik(u), (10)

where h, k are real. Then,

h, k harmonic if Re(u) < 0, Re(u) > 0
h, k → 0 if Re(u) → +∞
h, k → suitable constants if Re(u) → −∞
h, k periodic if u → u + 2πi.

(11)
Furthermore, from Eq. 9 we get that

h−(iθ) = h+(iΨ(θ))
k−(iθ) = k+(iΨ(θ)) + Ψ(θ) − θ.

(12)

By the Cauchy-Riemann equations, if u = s + iθ, we
have for s < 0, s > 0 that

∂h

∂θ
= −∂k

∂s
,

∂h

∂s
=

∂k

∂θ
. (13)

For s = 0 this gives

−∂k−
∂s

=
∂h−
∂θ

= Ψ′(θ)
∂h+

∂θ
= −Ψ′(θ)

∂k+

∂s
. (14)

Thus, we can conclude the following conditions on k

k harmonic on s < 0, s > 0
k periodic w.r.t. θ → θ + 2π
k → 0 if s → ∞, k → c if s → −∞
k−

∣∣
iθ

= k+

∣∣
iΨ(θ)

+ Ψ(θ) − θ on s = 0
∂k−
∂s

∣∣
iθ

= Ψ′(θ)∂k+
∂s

∣∣
iΨ(θ)

on s = 0,

(15)

for some real constant c which comes implicitly from the
equations. Note that Eq. 15 is in fact an equation for a real
function k, of the two real variables s and θ. Having solved
it for k = k(s, θ) we get h = h(s, θ) as the conjugate func-
tion of k, via the Cauchy-Riemann relations in Eq. 13. From
Eq. 5 and Eq. 10 we get that

f(es+iθ) = eh(s+iθ)+s+i(k(s+iθ)+θ). (16)

Since Γ is given by f(θ)
∣∣
s=±0

, we have that h(θ)
∣∣
s=±0

and

k(θ)
∣∣
s=±0

describe the the magnitude and angle, respec-
tively, of the complex-plane vectors delineating Γ as a peri-
odic function of θ.

4.2.2 Solving the welding equations numerically

Given a diffeomorphism Ψ, we solve Eq. 15 for the θ-
periodic function k = k(s, θ) on the plane branch θ ∈
[0, 2π] and −∞ < s < ∞. We conveniently set three
different, staggered grids on (s, θ), with uniform meshsize
h > 0 for the three functions k, h and g (see the square
inset in Fig. 3). In practice, we cut off the s direction into
−ŝ ≤ s ≤ ŝ, for some ŝ > 0, at which the values of k,
h and g already converge to constants (cf. Eq. 11). Solv-
ing for k on the k-grid, we use Eq. 13 to compute h on the
h-grid, and interpolating both to get g on the g-grid. It is
the values of g on s = ±0 that fix the resulting curve Γ. In
practice, having k, we directly compute h on s = ±0, at the
k-grid points, as explained at the end of Sec. 4.2.2.

Figure 3: The (si, θj) k-grid on the (s, θ) plane. In blue over the grid
points, a schematic sketch of the three types of equations involved in the
numeric solution of k, as described in Sec. 4.2.2: the zero derivatives at
the external boundaries (s = ±ŝ), described by the equal signs (Neuman
boundary conditions), the template of the Laplacian mask applied to in-
ternal grid points (s �= ±0,±ŝ), and the 9 grid points (circled) involved
in the internal boundary condition for every internal-boundary grid point
(s = ±0). The square inset demonstrates the three staggered grids, for the
functions k, h and g. Every grid point is represented by the corresponding
letter.

Solving for k(s, θ), we define the (si, θj) k-grid, by in-
dexing with i, j ∈ N an s-grid: si ∈ {−ŝ, (−ŝ+h), (−ŝ+
2h), ...,−2h,−h,−0,+0, h, 2h, ..., (ŝ − 2h), (ŝ − h), ŝ},
and a θ-grid: θj ∈ {0, h, 2h, ..., (2π − h)} (for which the
index j applies periodically). We set three different types of
equations.

First we have the basic simplest second-order discretiza-
tion of the Laplace equation holding for every internal point,
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k being harmonic, that is: ∀j and ∀si �= ±ŝ,±0 we have

0 = 1
h2 ( −4k(si, θj) + k(si−1, θj) + k(si+1, θj)

+ k(si, θj−1) + k(si, θj+1) )
(17)

Second, accounting for k’s convergence to constants at
s = ±∞, we set Neuman boundary conditions at the exter-
nal boundaries si = ±ŝ

k(−ŝ, θj) = k(−ŝ + h, θj) ∀j
k(ŝ, θj) = k(ŝ − h, θj) ∀j

(18)

Third, we have the k-value, and k-derivative pair of
welding equations from Eq. 15, between the internal bound-
aries s = −0, associated with k−, and s = +0 associated
with k+.

For every j we will associate one such pair of equations
with every value k(−0, θj), and similarly with every value
k(+0, θj). We separate the equations for k− from those for
k+ because the values of Ψ(θj) involved in the equation
for k(−0, θj) do not necessarily fall on some grid line θj̃ ,
since Ψ is a continuous welding diffeomorphism that does
not typically send θj into some other grid line θj̃ . (Symmet-
rically, when focusing on the pair of welding equations for
k(+0, θj) we may have that Ψ−1(θj) is not a grid line.)

For every grid line θj we use the following second-order
discretizations for ∂k±

∂s

∂k
∂s

∣∣
(−0,θ)

= 3
2hk(−0, θ) − 2

hk(−0 − h, θ) +
1
2hk(−0 − 2h, θ) + O(h2),

(19)

and

∂k
∂s

∣∣
(+0,Ψ)

= − 3
2hk+

∣∣
(+0,Ψ)

+ 2
hk

∣∣
(+0+h,Ψ)

−
1
2hk

∣∣
(+0+2h,Ψ)

+ O(h2).
(20)

To replace the first term on the right, k
∣∣
(+0,Ψ(θj))

, we

may simply use the value of k at the grid point (−0, θj), via
the k-value welding equation from Eq. 15

k+

∣∣
(+0,Ψ(θj))

= k(−0, θj) − Ψ(θj) + θj . (21)

The other two values of k participating in Eq. 20 may
each be simply interpolated from the nearest three grid
points along the θ-direction. We use three such values to
keep an approximation of order h2. More precisely, for
every s-column, and specifically for s = +0 + h and
s = +0 + 2h, we can write the exact interpolation relations

k
∣∣
(s,Ψ)

= (Ψ−θj2 )(Ψ−θj3 )

(θj1−θj2 )(θj1−θj3 )k
∣∣
(s,θj1 )

+ O(h2) +
(Ψ−θj1 )(Ψ−θj3 )

(θj2−θj1 )(θj2−θj3 )k
∣∣
(s,θj2 )

+ (Ψ−θj1 )(Ψ−θj2 )

(θj3−θj1 )(θj3−θj2 )k
∣∣
(s,θj3 )

,

(22)

where θj1 , θj2 and θj3 are the closest grid points to Ψ.
Substituting Eq. 21 and Eq. 22 in Eq. 20 we get from

the last equation in Eq. 15 an equation between exactly 9
grid values. We associate this equation with the unknown
k(−0, θj). A similar equation is associated with k(+0, θj)
for every θj . Together with Eq. 17 and Eq. 18 we have
thus associated one equation with every grid point (si, θj).
See Fig.3 for exemplifying the three different types of equa-
tions.

Notice however that the solution is still not uniquely
fixed. Adding a constant to any solution of this system
will keep it a solution still. Thus the system is singular.
So we first need to add one more equation that will deter-
mine that constant. Recalling that k → 0 as s → ∞ (cf.
Eq. 11), a natural numerical equivalent condition would be
that

∫ 2π

θ=0
k(∞, θ) = 0, and in its descretized form

h
∑

j

k(ŝ, θj) = 0. (23)

(We could in principle set a one grid-point value of k but this
is less favorable numerically in general, and somewhat less
amendable when carrying the set of differential equations in
Eq. 15 to other, coarser grids.)

We now have one equation more than variables. Up to
round-off errors the system has a unique solution since the
equations are dependent. But for the numerical solver to
work properly we add another unknown, say ε, to some of
the equations making the new system non-singular. Since
the system without this addition has a unique solution ε will
actually turn out to be zero up to round-off errors. We have
chosen to add ε to each of the k-derivative welding equa-
tions, although other choices could be made as well.

Having computed the values of k over the k-grid we note
that in order to get the resulting shape Γ we only need the
values of g(s, θ) and hence of h(s, θ) at either one of the in-
ternal boundaries s = ±0. We can use a discretized version
of the first Cauchy-Riemann equation presented in Eq. 13 in
order to approximate ∂h

∂θ on s = ±0, at exactly midpoints
between the k-grid points. Specifically we write

h(−0,θj+1)−h(−0,θj)
h =

− 1
2

(
∂k
∂s

∣∣
(−0,θj+1)

+ ∂k
∂s

∣∣
(−0,θj)

)
+ O(h2),

(24)

where ∂k
∂s

∣∣
(−0,θj+1)

and ∂k
∂s

∣∣
(−0,θj)

were already computed
during the process of computing k, via Eq. 19. We can eas-
ily integrate the values {h(−0, θj)}j out of their differences
computed in Eq. 24, up to a global additive constant that
does not matter in terms of the resulting Γ.

From {k(−0, θj)}j and {h(−0, θj)}j we have
{g(−0, θj)}j via Eq. 10, and can get {f(−0, θj)}j

via Eq. 5, and eventually Γ.
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Original shape and SC Shape fingerprint - Ψ(θ) k(s, θ) h(s, θ) Γ via welding
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Figure 4: Experimental results. For each shape we present a row of five columns. (From left) 1st column: The conformal mappings Φ− and Φ+

carrying the two copies of the unit disc, ∆− and ∆+ onto the interior and the exterior of the Γ shape, as explained in Sec. 2.1. The figure illustrates
how a homogenous radial grid on ∆− and ∆+, made of concentric lines through the origin, is mapped differently into the interior and exterior of the
Γ shape. Note the differences in the densities of the radial grid lines, along Γ, between the interior and the exterior maps. This difference in densities
along Γ is exactly what is encoded by the diffeomorphisms Ψ ∈ G/H that match Γ, and is the fingerprint of the shape. 2nd column: Shape fingerprint
Ψ(θ) : [0, 2π] → [0, 2π], computed analytically for the first row, and numerically via Schwarz-Christoffel for the last four rows. 3rd column: k(s, θ),
computed over the grid (si, θj). 4th column: h(s, θ), conjugated from k(s, θ) over the grid (si, θj). 5th column: the shape Γ, as it results from Ψ via
welding, up to scale and translation, obtained by drawing f(s = 0) in the complex plane.

Figure 5: Example: The construction of Φ− - the conformal mapping of the interior of the unit disc onto the interior of the ”eye” shape, presented in
steps.

7



5 Results and Examples

We implemented a solver for the set of welding equations
described in Eq. 15, according to Sec. 4.2.2. To go back
and forth between S and G/H we start with a shape Γ ∈ S,
and using the Schwarz-Christoffel transformation (Sec. 4.1)
we compute the two conformal mappings, Φ− and Φ+ of
the unit disc to the interior and exterior of the shape, corre-
spondingly as explained in Sec. 2.1. We may then obtain a
diffeomorphism Ψ from the coset in G/H describing Γ by
defining Ψ .= Φ+

−1 ◦ Φ−
∣∣
S1 . To go back from Ψ to Γ we

follow Sec. 4.2.2 for welding in order to get f , and demon-
strate that the resulting Γ is indeed the one we started with.

The first example we solve for represents a family of
shapes for which the conformal mappings Φ− and Φ+ can
be solved analytically. Following the construction of Φ−
for the ”eye” shape (Fig. 5) we can analytically obtain that
Ψ(θ) = Φ+

−1(Φ−(eiθ)) = 2atan(signθ tan
1
2 ( |θ|2 )) for

θ ∈ [−π, π]. The eye shape, Ψ(θ) and the results of solving
Eq. 15 for that Ψ, as described in Sec. 4.2.2, are presented
in the first row of Fig. 5. The fact that the Γ obtained by
welding (right) is identical, up to scale and translation, to
the original shape (left) demonstrates the successful recon-
struction of Γ from Ψ, via welding.

We continue by experimenting with four additional,
more complex shapes, a square, a boomerang, a person’s
upper-body and a cat (see Fig. 5). For these we apply the
Schwarz-Christoffel transformation in order to obtain Ψ(θ).
Hence Ψ(θ), Ψ′(θ) and Ψ−1(θ) involved in Eq. 15 are com-
puted numerically. Note again the striking similarity of the
computed Γ (right) to the original shape (left). Recall from
Eq. 16 the way k and h (Fig. 4, columns 3-4) describe Γ. In
our current straightforward implementation we are limited
in the size of the (s, θ)-grid we can solve for. This results in
the minor distortions in k, h and the resulting Γ. We are cur-
rently implementing a multigrid algorithm for a faster and
more accurate solution, that will alow better resolution for
handling much more complex shapes.

6 Summary and Conclusions

We introduce a metric space-of-shapes that arises from con-
formal mappings, through the mathematical theory of com-
plex analysis. In this space, it appears very likely to be true
that the shortest path between each two shapes is unique,
and is given by a geodesic connecting them, providing a
path for morphing between them. Every shape is repre-
sented in this space by an equivalence class of “fingerprints”
each of which is a diffeomorphism of the unit circle to it-
self. We solved the welding problem to allow moving back
and forth between shapes and this space-of-shapes, thus al-
lowing the continuation of the research of shapes within
this space. Indeed, our next step will be to compute the

geodesics between shapes. We expect these to reflect the ap-
pealing structure-preserving properties of conformal map-
pings, and to be very relevant to the comparison and classi-
fication of shapes.
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