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Abstract

The study of 2D shapes and their similarities is a central problem in the field of
vision. It arises in particular from the task of classifying and recognizing objects
from their observed silhouette. Defining natural distances between 2D shapes cre-
ates a metric space of shapes, whose mathematical structure is inherently relevant
to the classification task. One intriguing metric space comes from using conformal
mappings of 2D shapes into each other, via the theory of Tailbnspaces. In
this space every simple closed curve in the plane (a “shape”) is represented by a
‘fingerprint’ which is a diffeomorphism of the unit circle to itself (a differentiable
and invertible, periodic function). More precisely, every shape defines to a unique
equivalence class of such diffeomorphisms up to right multiplication bydhilvs
map. The fingerprint does not change if the shape is varied by translations and
scaling and any such equivalence class comes from some shape. This coset space,
equipped with the infinitesimal Weil-Petersson (WP) Riemannian norm is a met-
ric space. In this space, the shortest path between each two shapes is unique, and
is given by a geodesic connecting them. Their distance from each other is given
by integrating the WP-norm along that geodesic. In this paper we concentrate on
solving the “welding” problem of “sewing” together conformally the interior and
exterior of the unit circle, glued on the unit circle by a given diffeomorphism, to
obtain the unique 2D shape associated with this diffeomorphism. This will allow
us to go back and forth between 2D shapes and their representing diffeomorphisms
in this “space of shapes”.

1 Introduction

Many different representations for the collection of2dl) shapek and many different
measures of similarity between them have been studied recently [12, 13, 19, 1, 20, 16,
14, 11, 10, 2, 3, 17, 6]. Although significant progress has been made, none are fully
satisfactory from the point of view of a leading to a successful classification of the col-
lection of all shapes. In part, this shortcoming is due to the fact that human perception
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1To be clear, by a shape we usually mean a smooth simple closed curve in the plane, although sometimes
we mean the curve plus its interior.



Figure 1. All the figuresA, B, C, D andE are similar to the middle one, but they
differ in different ways. Which shapes should be considered closer may depend on
context. This illustration is due to B. Kimia.

may give different meanings to similarity between shapes in different contexts and for
different tasks [4, 15] (see Fig. 1). In this paper, we propose the study of a new ap-
proach to measuring the similarity of shapes by applying the mathematical theory of
complex analysis. This grows out of a new way of representing shapes.

Representing shapes in a simple way for classification is difficult because of two
things: on the one hand, the set of all shapes is inherently infinite dimensional and,
on the other hand, it has no natural linear structure. More precisely, the first assertion
means that if we map every shape to a poinR6fby assigning to it features, there
will always be many distinct shapes on which all these features coincide. You cannot
capture all the variability of a shape in a finite set of features. The second assertion
means that there is no vector space structure on the set of all shapes, no way of adding,
subtracting and multiplying by scalars in this set which satisfies the vector space ax-
ioms. So if we use an infinite number of features to describe shapes, such as all its
moments or all its Fourier coefficients, then although we get a representation of the set
of shapes in a vector space, there will be sequences of moments or Fourier coefficients
which do not come from any shape. The upshot is that the set of all shapes is mathe-
matically rather complicated. We feel this is the deep reason why shape classification
algorithms in the literature have been less than perfectly satisfactory.

Although the set of shapes is nonlinear and infinite dimensional, this does not pre-
vent it from having its own geometry. The first step towards analyzing its geometry is
to endow this set with anetric a numerical measure of the difference between any 2
shapes. Many metric approaches for the classification of shapes have also been sug-
gested. The Hausdorff distance is perhaps the best known: this is a ‘sup’ or so called
L norm. One can also take the area of the symmetric difference of the interiors of
the 2 shapes: this isA' type norm, gotten by a simple integral. We may also measure

2For example, we have ‘Minkowski addition’ of shapes but this addition cannot have inverses because it
always makes a shape bigger.



in some way the difference of the orientations as well as the locations of the 2 shapes:
these are first derivative norms. One can play with these alternatives and work out
which shapes in Fig. 1 are closer to the central shape in which metric.

In our method of representing shapes, every shape will define a sort of ‘fingerprint’,
which is a diffeomorphism of the unit circle to itself. Such a diffeomorphism is given
by a smooth increasing functigh: R — R which is differentiable and satisfiggz +
27) = f(x) 4+ 27 and two functionsf, f» define the same diffeomorphismfif(z) =
f2(z) + 27n. The group of such diffeomorphisms will be denotedIbiff (S'). The
construction is based on the existence of a conformal mapping from the interior of
any shapd" to the interior of the unit disk via the Riemann mapping theorem. Like
all conformal maps, it preserves the angles between any two intersecting curves and,
moreover, it is unique up to composition with ablus-transformation ambiguity.

More precisely, we will show that every simple closed curve in the plane defines
an equivalence class of diffeomorphisrfis These equivalence classes are the right
cosets of these diffeomorphisms modulo the three dimensional subgrouplbti/
maps PSLy(R), namely the maps from the complex unit cirgle{|z| = 1} to itself
given byz — (az + b)/(bz + a). This set of equivalence classes is then written as
the quotientDiff (S')/PSLy(R). In this assignment, two shap€s, ' define the
samediffeomorphism only when one shape is gotten from the other by a translation
and scaling, i.el's = a - T'; + (b, ¢). If S is the set of 2D shapes ard is the group
of maps(z,y) — (ax + b,ay + ¢), then the result of this construction is a bijection
between the two quotient sets:

Diff(S')/PSLy(R) = S/H.

Moreover, this quotient space turns out to be equipped with a very remarkable met-
ric, the Weil-Petersson (WP) Riemannian metric. The resulting metric space has two
major properties. First, the space has non-positive sectional curvature, and hence there
exists a unique geodesic between each two shapes. Defining the integral of the WP-
norm along a path as the length of this path, a geodesic is defined as the shortest path
connecting the two shapes and its length is the global metric on the space of shapes.
The shapes along that path represent a natural morphing of one into the other. Secondly,
the resulting space is homogenous with respect to the group of diffeomorphisms oper-
ating on the cosets from the left. Thus, for example, we can transform all shapes into
new shapes by composing the coset representing them by a diffeomorphism on the left
and this transformation will preserve the WP distance, take geodesics to geodesics and
hence change the above morphing between any two shapes into the morphing between
the transformed shapes.

It is essential in this framework to be able to move back and forth computationally
betweer2 D shapes and the diffeomorphisms representing them. Moving from a given
shape into the diffeomorphism representing it can be done by computational imple-
mentations of the Riemann mapping theorem. Several approaches to this exist in the

3The reason for the notatiaRS L (R) is that conjugating byl = 1 _Z.Z takes2 x 2 real matrices
to the2 x 2 complex matrics ab , S0 the same notation is used for both groups of matrices.
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literature, see 3.1. Perhaps the most effective way is by using a numerical implementa-
tion of the Schwarz-Christoffel formula, applied to a polygon that tightly approximates
the shape [8]. But going back from the diffeomorphism to the shape is a new com-
putational challenge, known as the “welding” problem. It involves the construction of
two conformal maps, one defined inside the unit circle and one outside, which differ
on the unit circle by the given diffeomorphism. In this paper, we will give two ap-
proaches to computing the solution of welding problem. Having this transformation
between the space of shapes and the group of diffeomorphisms, we then go on to com-
pute geodesics in the WP-metric. We do this by computing the geodesics in the coset
spaceDiff (S')/PSLy(R) and then using welding to move this into a morphing of
two plane shapes.

2 Shapes as diffeomorphisms of the circle

In this paper, by a “shape” we mean a simple closed smooth durivethe plane.
Smooth means having derivatives of all orders (i.e. b€éifig), and simple means that

the curves do not intersect themselves. Everything is based on the Riemann map-
ping theorem which states that it is possible to map the unit disc conformally to the
interior of any such shapeThe conformal transformation is unique up to any preced-
ing Mobius transformations mapping the unit disc to itself (that is, maps of the form
2+ (az +b)/(bz + a)). Conformal means that the infinitesimal angle between each
two crossing curves is equal to the infinitesimal angle between the transformed curves.
The nature of these mappings is shown in figure 2, where the image of the radial grid
on the unit disc (made out of concentric circles and lines through the origin) under this
map is shown. Note that the image curves remain perpendicular.

2.1 Shapes to diffeomorphisms

In this whole paper, we associdié with the complex plan€ and hence we denote
planar points by complex numbers-iv. We often want to add in the ‘point at infinity’;
adding this in, we get the extended complex plane, also called the Riemann sphere and
denoted byC = C U {co}

Further, we denote the unit dife | |2|] < 1} by A_ and the infinite region
outside or on the unit disgz | |z| > 1} (includingoo) by A .. Observe that using the
transformatior: — 1/z we can identifyA . with A_. For every simple closed curve
I' in C we denote by’ _ its union with the region enclosed by it, and denotdhyits
union with the infinite region outsidE (includingoc). We can think o’ _ andI',. as
a partition of the Riemann sphere into two parts aldrgee Fig. 3).

Then by the Riemann mapping theorem, forlathere exists a conformal map

d_A_—-T_,

unique up to replacing_ by @ _ o A for any Mobius transformationd : A — A _,
A = (az+b)/(bz +a). Thatis, for every two conformal ma}déf), P AT

4Smoothness df is not required for Riemann’s resuilt.



we have thab® ' 0 ) — A, whereA is a Mobius map.

This works forA* andI'"™ too as the point at infinity is no different from other
finite points. Spelling this out, unddr/z, T' is transformed into the inverted simple
closed curvd” so thatl', is identified with the interiof”_ of I". Thus we can apply
the Riemann mapping theorem to gdi'drom A_ andI'”_. Composing this conformal
map with inverse on both sides, i®.,(z) = 1/®'(1/z), we get a conformal map of
the exteriors

o, AL - T4

® is also unique up to Mbius transformations as above. But now we can do better
with ®_: we take the unique Bbius mapA so that, replacingp,. by &, o A, we
achieve the extra normalization thlt carriesoo to co, and that its differential carries
the real positive axis of thA-plane atx to the real positive axis of the-plane atx.
Thus, we eliminate the Bbius ambiguity of®d for everyI’, and maked, unique.
An example of this construction is shown at the top in Fig. 2, where the duisan
ellipse.

The goal of this construction is to define the map

U=, tod_,

which it is defined on the unit circl§*. (Note that® _(S') = T', and®, (') =

St) v : St — Stis a diffeomorphism, which can be thought of as a periodic, real-
valued function fron0, 27] to [0, 27], having a positive derivative everywher®. is

a uniquely-identifying fingerprint of the shape The fingerprint of the ellipse is also
shown in Fig. 2.

From the Mobius-transformation ambiguity left i@ _ we can see that by the con-
struction of ¥ every simple closed cun& induces a diffeomorphisn¥ : S! — S,
which is unique up to composing on the right by a diffeomorphidém s! — S!
coming from the restriction t&'! of any Mobius transformationl : A_ — A_.

If, as in the introduction, we denote the coset spaieDiff(S!)/PSLy(R) and
we denote the space of simple closed smooth curveg S, then our construction of
¥ gives us the ‘fingerprint’ map:

S — Diff(S')/PSLy(R).

2.2 Diffeomorphisms to shapes: welding

Remarkably, this map is nearly a bijection. In fact, every cdsetPSL,(R) comes
from some shapE and two shapeB;, I'; give the same coset if and only if they differ
by a translation and scaling. 8 is the quotient of shapes modulo translations and
scalings, the final result is

S = Diff(S')/PSLy(R). (1)

To obtainT’, ®_ and®_ corresponding to any coset, we first pick afiyin the
coset. The ‘high level’ way of finding' is to construct an abstract Riemann surface

SRecall that an element in a coset spéat&H is a subseyH = {g o h|h € H} of G.
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Figure 2: On the top, the conformal parametrization of the interior and exterior of an
ellipse given by the Riemann mapping theorem, shown by plotting the images under
®_ and®_ of circles around the origin and radial lines. On the bottom, the ‘finger-
print’ U. The circled points on the 2 figures are corresponding points. Note the large
derivative of the fingerprint at the poimis= 0, 7 corrsponding to the ends of the major
axis and the small derivative at the poifits- /2, 37/2 corresponding to the ends of

the minor axis.

by ‘welding’ A, andA _ using the mapl to glue their boundaries together and apply
the result that any Riemann surface which is topologically a 2-sphere Xlikés, in
fact, conformally isomorphic t@ via some magb. Then®.. are just the restrictions
of ® to AL and the shap€ is nothing but the image of the unit circle in the welded
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Figure 3: The conformal map, as described in Sec. 2.2, maps the two halves of the
z-sphere divided by the unit circle (left) onto the two parts of éhephere divided by
T (right), correspondingly, such th#t (z) = f1(¢(2)) on|z| = 1.

surfaceX under®. This construction is illustrated in Fig. 3.

A less abstract way to prove weldings exist is to use a celebrated existence theorem
of B. Bojarski and L. Bers [9, p.10]. We sketch the proof without details. We use the
standard abreviations:

fo=gUe—ify) o= g tify)

2
The theorem states that for any< 1 and any complex valued functigm(z) with
|(2)| < c (called aBeltrami differentia), the partial differential equation:

FEZ/J’FZa

has a complex valued solutibnWe get they, from ¥ as follows. First defines :
A_ — A_by:

G(rew) = ret?O),
Then lety = G /G, on A_ (one can readily check that this works out tod%%)
andu = 0 on A,. With this i, solve the above equation for the functién Because
uw=0o0nA,, Fmustbe aconformal map ah_, hence it extends teo and we can
normalize it to have positive real derivative there. et be F' on A . Note thatG
satisfies the equation ah_ and, by standard arguments, any other solution there is
G followed by an analytic function (that is a map with complex derivatives but which
is not everywhere conformal because they can be zero). Sb_ldbe the analytic
functionF o G(-Y on A_. Then®_ o G = & on the unit circle, as required.

2.3 Shapes with base points

We have now seen that shapes, up to scaling and translation, are represented by cosets
V. PSLy(R) C Diff(S!). Animportant variant of this representation concerns shapes

6In fact, it is a homeomorphism and is nearly uniqueFifs one solution, theaF' + b are all the other
solutions



with base points, thatis paif§’, P} whereP is a point in the interior of. The resultis
that shapes with base points are represented by cos&97'(S') C Diff(S!) where
ROT(S%) is the group of rotation§ — 6 + ¢ of the circle. Note thaROT(S') C
PSL,(R) as the rotation through angleis given by the map +— (az + b)/(bz + a)
fora = e'®/2 b = 0.

This representation is a simple extension of what we have already seen: having a
base point? in the interior of the shapE allows one to normalize the conformal map
®_ so that®_(0) = P. This fixes®_ up to right multiplication by a rotation, hence
V¥ is also determined up to such a right multiplication. This state of affairs is often
depicted by a ‘commutative diagram’:

Diff(S')/ROT(S') = {I,P}/H
! !
Diff(S')/PSLy(R) = {T}/H

where the vertical arrows denote the maps given by (i) passing from the small cosets
mod ROT to the larger cosets maeS L; and (ii) passing from a shape with base point
to a shape without base point.

Closely related to this is the following remark: if a coget PSL,(R) represents
the shapé&’, then the cosetd o U - PSL4(R), for various Mobius mapsA € PSLy(R)
represent the shapé¥T") for thosecomplexMobius mapsB € PSL»(C) such that
B~!(0) lies outsidd. Recall that complex Mbius maps are the maps of the extended
complex plane given by — (az + b)/(cz + d). To see this, use the definitioh =
<I>jrl o ®_. Then multiplying¥ on theright by A is the same as replacing, by
®, 0 A. Nowd, o A is a good conformal map of the exterior of the unit circle onto the
exterior ofT", only it doesn’t have the right normalization any more as it doesn’t carry
oo to co. Infact,@ = © (A(o0)) is some pointin the exterior &f. Choose a complex
Mobius mapB so thatB~!(co) = Q. Further require thaB~! carry the positive real
axis tangent direction ato to the tangent direction & which is the image of the
positive real direction undep . o A. ThenB o &, o A is fully normalized, carryingo
to itself and carrying the postive real directiorsatto itself. Thus®’, = Bo®, o A
and®’” = B o ®&_ are the exterior and interior conformal maps for the sh&QE).
Thus the fingerprint oB(T') is ¥’ = (¢, )10 ®_ = Ao ® ' o®_= Ao V.

2.4 The homogeneous structure of

Any groupG operates, of course, on any coset spa¢él by left multiplication, hence,

as a result of the above constructidniff (S') operates on the space of shages

A concrete way of defining this action is this: to transform ahye S by a group
element¥, we construct the conformal map, : A, — I'y hence we get the map
v = <I>+o\I/o<I>;1 fromT to itself. Then we use the same welding trick by cutting open
¢ alongT" and rewelding it with the ma@’. The result can be conformally mapped
to the extended sphere, takifigo a new curvd”. This way we get @ransitivegroup
operation orsS.



3 Computing shapes from diffeomorphisms and vice versa

3.1 Schwarz-Christoffel: from shapes to diffeomorphisms

There seem to be three published methods of computing the conformal mapping from
the unit disk to the interior of a simple closed cuive

1. using the Schwarz-Christoffel formula, developed by Tobin Driscoll, cf.
http://www.math.udel.edu/ ~driscoll/SC and [7].

2. the method of circle packing, developed by Kenneth Stephenson, cf.
http://www.math.utk.edu/ ~kens/ and [18]

3. the ‘zipper’ algorithm of Donald Marshall, cf.
http://www.math.washington.edu/ ~marshall/zipper.html

The Schwarz-Christoffel method is like this: start by approximatingy a poly-
gon. Letz be the complex coordinate in the unit disk, and{let} be the points on the
unit circle which will map to the vertices of the polygon and{ety; } be the angles of
the polygon at these vertices. Then for sotheCs:

b(2) =C; / H(z —a;)* Yz 4 Co.
0

For instance, if the polygon is a square, then the conformal map of the unit disk to its
interior is given by the elliptic integral:

2 dz
O(z)=C —— + (.
) 1/0 Viea

This method has been implemented in the excellent packagby Tobin Driscoll
(cited above), based on joint work with L.N. Trefethen [8]. The key problem is that one
is usually given only the point®(a;) and must computéa,} at the same time a8.
Moreover, they are non-unique as, for anpiius map4, ' = ®o A, a} = A~ (a;)
are equally good solutions. The program allows you to specify the gdiit € Int(T")
to get the best looking and best behaved solution. We use this package for our examples
in Section 4 below.

3.2 From diffeomorphisms to shapes: the first method of welding
3.2.1 Reducing welding to coupled elliptic boundary value problems

Setting the equations for the conformal mapf (see Fig. 3). We considerA _ and
A as a partition of the Riemann sphere into two parts along the unit cclend
I'_ andI'; as a partition of the Riemann sphere into two parts alongs explained
in Sec. 2.1 (see Fig. 3). We associate the complex-plane variatikh the A-sphere,
and the complex-plane variable with the T’-sphere. We will assume thate T'_ in
order to normalize the maf_ as well as® by asking thatb_(0) = 0. Given a
diffeomorphismp : A — A, we seek a functiof(z) from thez-sphere minus the unit



circle to thew-sphere, complex analytic ¢a| < 1 with boundary valueg| .-, = f_,
and complex analytic ofx| > 1 with f|,..—; = f, such that

f(0)=0, f(o0)=o00
f-(2) = f+(e(2)) |z =1 2

Defining g, a function of f which is more convenientto compute. Note thatf(z)/z
has finite non-zero limiting values atandoo, hence it has a single-valued logarithm
in A_ andA+. Thus we may defing(u) by

log (f(;“)) =g(u),u € C-iR 3
so thatg(u + 27i) = g(u).
Now,
Re(u) — —o0 = le¥| —0 (@)
= f(e*) = cie¥ = g(u) ~logcy,
and
Re(u) — o0 = |e¥] — o0 (5)

= f(e") = e = g(u) =~ logcs,
for some constants; andc,. Without loss of generality, we can replagdy c; ' f so
thatc, = 1, andg(u) ~ 0 asRe(u) — +oo.
We define? : R — R, satisfying® (6 + 27) = ¥(0) + 27 by p(e??) = ),
Then, 4
g-(i0) log(f—(e")) — 0

= log(fe(p(e?) ~i0 = log(f. (") —if (6)
= 04 (10(8)) +i(6) — if.

Thus we get a new welding condition on the imaginary axis
g-(i0) = g+ (U (0)) + i(¥ (D) — 0). )
Note that if Eq. 7 holds at then it also holds & + 2.

Setting the equations forg’s imaginary part k. (h is then known from k.) Now
let

9(u) = h(u) +ik(u), )
whereh, k are real. Then,
h,k harmonic if Re(u) <0,Re(u)>0
h,k —0 if Re(u) — 400 )
h,k — suitable constants if Re(u) — —o0
h,k periodic if u— u+ 2mi.

Furthermore, from Eq. 7 we get that

Z—(iﬁ) = hy(10(0))

(i0) = ky(i0(0))+ W (6) — . (10)

10



By the Cauchy-Riemann equationsuit= s + 6, we have fors < 0, s > 0 that

onh Ok Oh Ok

-tz D 11
00 ds’ 0s 00 (11)
For s = 0 this gives
Ok_ _0Oh_ _ _, Ohy ., Oky
55~ og VW05 = VO (12)
Thus, we can conclude the following conditions/on
k harmonicors < 0, s >0
k periodic w.r.t.0 — 0 + 27
k— 0if s — oo, k:—>Cifs—>—oo (13)
k—|m:k+‘w 9‘% —0 ons=0
Ok _ ’ k
o5 o = ¥'(0) 55 ’1\1/(9) ons =0,

for some real constamtwhich comes implicitly from the equations. Note that Eq. 13
is in fact an equation for a real functidgn of the two real variables andd. Having
solved it fork = k(s,0) we geth = h(s,0) as the conjugate function @f, via the
Cauchy-Riemann relations in Eq. 11.

f is then known from k and . From Eq. 3 and Eqg. 8 we get that
f(eeriG) _ eh(s+i0)+i(k(s+i0)+9)' (14)

SinceT is given by f(0)|,_, ., we have thah(6)| _,  andk(0)| __, describe the
magnitude and angle, respectively, of the complex-plane vectors delinéatisga
periodic function off.

3.2.2 Solving the elliptic problem numerically

Given a diffeomorphisn®, we solve Eq. 13 for thé-periodic functionk = k(s, ) on
the plane branch € [0,27] and—oo < s < co. We conveniently set three different,
staggered grids ofs, 8), with uniform meshsizé > 0 for the three function, » and

g (see the square insetin Fig. 4). In practice, we cut ofsttigection into—§ < s < s,
for somes > 0, at which the values of, h andg already converge to constants (cf.
Eqg. 9). Solving fork on thek-grid, we use Eq. 11 to computeon theh-grid, and
interpolating both to geg on theg-grid. It is the values of; on s = +0 that fix the
resulting curvel’. In practice, having:, we directly computé, on s = +0, at the
k-grid points, as explained at the end of Sec. 3.2.2.

Solving for k: setting the s-grid and three types of numerical equations (see Fig.
4). Solving fork(s, ¢), we define thés;, 6;) k-grid, by indexing withi, j € N ans-
grid: s; € {—8, (=8+9), (—5+26), ..., —24, —6,—0,40, 6,24, ..., (§—24), (§—9), §},
and ag-grid: 0; € {0,4, 26, ..., (2m — 6)} (for which the indexj applies periodically).
We set three different types of equations.

11
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Figure 4: The(s;,0;) k-grid on the(s,6) plane. In blue over the grid points, a
schematic sketch of the three types of equations involved in the numeric solution of
k, as described in Sec. 3.2.2: the zero derivatives at the external boundatiesy),
described by the equal signs (Neuman boundary conditions), the template of the Lapla-
cian mask applied to internal grid points ¢ +0,+3), and the 9 grid points (cir-
cled) involved in the internal boundary condition for every internal-boundary grid point
(s = £0). The square inset demonstrates the three staggered grids, for the fukctions

h andg. Every grid point is represented by the corresponding letter.

Setting the Laplacian-mask equations. First we have the basic simplest second-
order discretization of the Laplace equation holding for every internal pbibging
harmonic, that isY; andVs; # +§, +0 we have

0=5(—4k(si,0;) + k(si-1,0;) + k(sit1,0;) (15)
+ k(8i79j_1) + k(si,9j+1) )

Setting the Neuman-boundary-condition equations. Second, accounting fat's
convergence to constants at= +oo, we set Neuman boundary conditions at the
external boundaries, = £3

(16)

Setting the internal-boundary-condition (welding) equations. Third, we have the
k-value, andk-derivative pair of welding equations from Eq. 13, between the internal
boundaries = —0, associated wittk_, ands = +0 associated witlk , .

For every; we will associate one such pair of equations with every value), §;),
and similarly with every valué(+0,6;). We separate the equations for from those
for k4 because the values @f(¢;) involved in the equation fok(—0, ¢;) do not nec-
essarily fall on some grid liné:, sinceV is a continuous welding diffeomorphism that
does not typically send; into some other grid lin€;. (Symmetrically, when focusing
on the pair of welding equations féf+0, 6,) we may have tha? ~*(6;) is not a grid
line.)

For every grid lined; we use the following second-order discretizationsﬁﬁ?

12



%| o = %k( 0,0) — 2k(—0—4,0)+ 17
%k( 8,0) + 0(6?),
and
ok 42
? j+o,\1/) 25k+‘(+o W) Sk”(+o+5,\p)_ (18)
k (+0+26,0) T 0(5%).

To replace the first term on the right\,(Jro w(o,y) WE may simply use the value of
? J
k at the grid poini{(—0, §;), via thek-value welding equation from Eqg. 13

k+‘(+0’\p(gj)) = ]42(—0, ej) - \11(9]) + ej' (19)
The other two values of participating in Eg. 18 may each be simply interpolated
from the nearest three grid points along thdirection. We use three such values to
keep an approximation of ordéf. More precisely, for everg-column, and specifi-
cally fors = 40 + ¢ ands = 40 + 24, we can write the exact interpolation relations

(P—05,)(¥—0;5)

ko) = Braw ¥ +0(6%)

J1 Y3 ) 05, —0; 5,0,
AR (’ ) ) w0, | (20)
(9427911)(0 79 ) (5,0]'2) (91'37‘9]'1)(9 7942) (510]‘3)’

whered;, , §;, andd;, are the closest grid points tb.

Substituting Eq. 19 and Eqg. 20 in Eq. 18 we get from the last equation in Eq. 13 an
equation between exactly 9 grid values. We associate this equation with the unknown
k(—0,6;). A similar equation is associated witi{+0, 6;) for everyd,;. Together with
Eq. 15 and Eq. 16 we have thus associated one equation with every grid o).

See Fig.4 for exemplifying the three different types of equations.

Regularizing the system of equations fork. Notice however that the solution is

still not uniquely fixed. Adding a constant to any solution of this system will keep it a
solution still. Thus the system is singular. So we first need to add one more equation
that will determine that constant. Recalling tkhat- 0 ass — oo (cf. EQ. 9), a natural
numerical equivalent condition would be tfﬁﬁo k(c0,0) = 0, and in its descretized
form

5> k(3,0;) =0. (21)
J

(We could in principle set a one grid-point valuefobut this is less favorable numer-
ically in general, and somewhat less amendable when carrying the set of differential
equations in Eqg. 13 to other, coarser grids.)

We now have one equation more than variables. Up to round-off errors the system
has a unigue solution since the equations are dependent. But for the numerical solver
to work properly we add another unknown, sayo some of the equations making the
new system non-singular. Since the system without this addition has a unique solution
e will actually turn out to be zero up to round-off errors. We have chosen ta @od
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each of thek-derivative welding equations, although other choices could be made as
well.

Having computed £ we computeh and then g, on s = —0. Having computed the
values ofk over thek-grid we note that in order to get the resulting shépee only

need the values gf(s, 8) and hence of(s, §) at either one of the internal boundaries

s = £0. We can use a discretized version of the first Cauchy-Riemann equation pre-
sented in Eq. 11 in order to approxima%% ons = +0, at exactly midpoints between

the k-grid points. Specifically we write

h(—079j+13s—h(_079j) —
1 (o ok 2
) (K (—0,0541) + E|(*019j)) +O(5 )’

where%\(f0 600) and 2k ](70 ,, Were already computed during the process of com-
puting k, via Eq. 17. We can easily integrate the valyés—0,6;)}, out of their
differences computed in Eq. 22, up to a global additive constant that does not matter in
terms of the resulting'.

From{k(—0,6;)},; and{h(-0,6,)}; we have{g(—0,6;)}, via Eq. 8, and can get
{f(—=0,0;)}, via Eq. 3, and eventuallly.

(22)

3.3 A second method of welding

The second algorithm is based on the Hilbert transform. Recall that for functions on
the real line, the Hilbert transform is convolution with the singular ketrieland that
it multiples the fourier transform of the function by: - sign(¢). In our case, we are
dealing with functions on the circle and the modified Hilbert transform is convolution
with ctn(#/2) or, equivalently, multiplication of the fourier coefficients by - sign(n).
For any functionf € L?(S%), let H(f) be its Hilbert transform in this sense.

Now consider the functiorf, as above. It is meromorphic dhz| > 1} U co and
with a simple pole and positive real derivativesat hence it has an expansion:

fi(z)=bz4+ag+arz  +asz24+---, b>0.
Sincel is only defined up to scalings, we can normalize so that1. Thus, on the

unit circle: _
f+(619) — 619 + Z ane—zne.
n>0

Let F() = fy(e*). Then
iH(F)(0) = 2¢" +ag — F(6).
On the other hand, we know thét is holomorphic on{|z| < 1}, so it has the expan-

sion:
fo(zx)=co+crz+ca® +---.
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Sincef_(e'?) = F(¥(0)), we get:
iH(F o®)(0) = (FoW)(0) — co.
Thus, by subtraction, we get:
iH(FoW) oW —iH(F)=2F — (ag + ¢o) — 2€%.

We may replace” by F' — % sincel is only defined up to a translation. Letting
K(F)=i/2(H(F)— H(F o U)o w(-1) we get the integral equation

K(F)+F =¢" (23)

for F.
We can calculatél as follows. Lety = U(—1) be the inverse of the welding map.
Then:

K(F)(6y) %/S ctn (91 ; 92) F(65)df; — ctn (W) F(U(63)dbs

%/51 (ctn <01 292) — X' (69)ctn (W)) F(62)d0

and it is easily seen that the poles in the kernel cancel out. Remarkalytherefore
a smooth integral operator. By the Fredholm alternativean be solved for agl +
K)~1(e") provided thatl + K has no kernel. Running the above argument backwards,
it is easily seen that a function in its kernel would define a holomorphic function on
the compact surface gotten by welding and this would have to be a constant. These are
not in the kernel ag( kills constants. Thus the welding is transformed into solving a
well-posed integral equation.

Numerically, we samplé’ on some grid and need only convert the linear mkap
into a suitable matrix. The only difficult point is to not allow the singularity of the
Hilbert kernel to cause problems. To address this, we use the fact that the Hilbert
kernel can be integrated explicitly:

/ab ctn(z/2)dz = 2log (

Note that even if) € (a, b), the result is correct provided the intergal is taken to be its
principal value (i.e. the limit of its values on the dom&in—e| U [, b] ase — 0).

The linear mapK is then converted into a matrix as follows: B{¢) be given
at pointsf = 0%, e.g.0* = 2ra/N. Let92T1/2 = (9~ + 6+1)/2. The divide
the interval[0, 2] into intervalsI,, = [9>~1/2,§>+1/2]. AssumeF is approximately
constant on each interva),. Then replacing”(6z) for 65 € I5 by F(6°), and setting
6 = 6, the integral forK over Iz gives the matrix entry:

o))

sin(6% — 97+1/2) - sin(x(6%) — x(97-1/2))
sin(0o — 68-1/2) . sin(x(02) — x(65+1/2)) |

Kaﬁ =1 10g
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4 Examples of Fingerprints and their Shapes

We implemented solvers both for the welding equations described in Eq. 13, accord-
ing to Sec. 3.2.2 and for Eq. 23 in Sec. 3.3. To go back and forth betWesmd
Diff (S1)/PSLy(R) we start with a shapE € S, and using the Schwarz-Christoffel
transformation (Sec. 3.1) we compute the two conformal mappigsand & of
the unit disc to the interior and exterior of the shape, correspondingly as explained in
Sec. 2.1. We may then obtain a diffeomorphigrfrom the coset iDiff (S')/PS L2 (R)
describingl’ by defining¥ = &, ' o @_\Sl. To go back from¥ to I" we follow
Sec. 3.2.2 or Sec. 3.3 for welding in order to gleand demonstrate that the resulting
I is indeed the one we started with.

The first example is a family of shapes for which the conformal mappingsnd
& can be solved analytically: these are the lens or eye shaped regions bounded by
two circular arcs meeting at two corners. Figure 5 shows how the conformal map to
the interior one such shape can be constructed. To get any other eye shaped region,
one need only change the power in the third step and changedbaiMmap used in
the final step. If the angle of the eye at its corneras then one uses; = z5. The
same method gives us the conformal to the exterior, except that as the exterior angle is
(2 — a)m, one usess = 22~ . Applying this construction to both the interior and the
exterior, we can verify that the fingerprints which give eye shaped regions are all of the
form:

Vs(0)=2- arctan(tan(9/2)5) ., wheretan® = sign(tan)|tan|?.  (24)

Here, ifar is the angle of the corner of the eye, theér- a/(2 — «). The fingerprint
for one eye shape is shown in Fig. 6.
It is striking that the formula for the fingerprint of eye-shaped regions is of the
form f=1(3 - f(0)): in fact definef; : (0,7) «— R by f1(0) = log(tan(d/2)) and
fa: (—m,0) «— R by f3(0) = log(— tan(6/2)). Then

frH(B(f1(0))) on(0,)
Us(0) = ¢ fo ' (B(f2(6))) on(~,0)
gifg=0o0rm
This formula makes apparent the identity:
\115152 - \Ilﬁl o \Ilﬁz'

In this situation, the set of diffeomorphisii¥ 3} is called aone parameter subgroup
All one-parameter subgroups of the group of diffeomorphisms can be gotten this
way. Their additive form is more general. To put thg’s in this form, it's convenient
to decompose the circle infour intervals between the four fixed poi8, = /2, 7, 37 /2}
of 3. Then defing(6) = log(| log(] tan(6/2)|)|) at all non-fixed points. Then:

“Llog(B) + g(0)), if 0 € (k—1)7/2,kn/2), somek
Ws(0) = { gif ) :glmr/Q,gsomek.

The recipe generalizes like this: take any decomposition of the circle into a set of
intervals{I; = (0x,0x+1)}. On each interval, take a bijective mgp : I;, — R.
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Figure 5: Example: The construction®f_ - the conformal mapping of the interior of

the unit disc onto the interior of the “eye” shape, presented in steps. The transformation

2 = €T carries the real-plangs, 6) to the complex-plane circle (most left); =

1*2‘1 carries the circle to a half-plane (second left) = z,%/? carries the half-plane to
angled” half-plane (second right), ang = 1+Z3 carries the angled half-plane to

the eye shape (most right). Note that the same maps take the exterior of the unit circle

to the exterior of the eye, except that the middle map must be replacegdayz4/‘3.

We can work out the fingerprint by going from to z; to z; which we equate te},

then back toz, and toz; without going toz4 at all. Using the fact that it; = ¢,

thenz, = —itan(0/2), we get the formulal(9) = 2arctar{+| tan(6/2)|'/?) where

the sign is that of the tangent.

Then define: y |
U, (0) = { fi (ot fi(0)), if 6 € I,

0, if 6 = 0,, somek.
For « infinitesimal, this diffeomorphism is given by the vector field:

L

fr(0)

In this way, every vector fielad defines a one-parameter subgroup, as is well known
from the theory of Lie groups.

Here’s an elegant example of this: start with the Fourier basis for vector fields —
v, (0) = sin(nf),n > 2. The zeros of these vector fields are #hepoints{rk/n,0 <

o0) = o= ot )| = () () =

Figure 6: On the left, the fingerprint of the eye shape as given by Eq. 24; in the middle
and right, the functiong (s, §) andh(s,#) used in Sec. 3.2.2 to construct the shape
from its fingerprint.
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@=atan(EDan(E), 500 8 samples

Figure 7: The shapes obtained by welding wi#fin)arctarfa tan(nf/2)) for (n, «)
equal to (2,2), (2,50), (5,2) and (4,50).

k < 2n}: these will be the fixed points of the corresponding one-parameter subgroups.
By integrating, we solve fof;, and it comes out:

f(6) =~ log( tan 20)).

Welding, one finds wonderfub-petalled ‘flowers’ coming out as the corresponding
shapes. As you move out on the one-parameter subgroup, incregsthg petals
start as small ripples, then extend and form alternating large circular evaginations and
invaginations. This is shown in Fig. 7.

Another simple example is the square. As mentioned above, the interior and exte-
rior conformal maps are given by simple Schwarz-Christoffel expressioamely:

i
ve=) e

z 4

() = z—f—/oo (chzl _ 1) d

From the last two examples, you see that at corners, the derivative of the conformal map
on the interior goes too (shown by the spreading out of the internal radial lines at the
corners) while the derivative of the conformal map on the exterior goes to 0 (shown
by the bunching up of the external radial lines). This is seen explicitly by noting that
the derivative of the S-C formula is just its integrand and this is O (respat convex

(resp. concave) corners. Thus the derivative of the fingerprist & convex corners,

0 at concave corners. If the shape has high positive curvature at some point but not

“For the modifications used in the expression for the exterior, see [7], p. 52.
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Figure 8: On the top left, internal and external conformal parametrization of the square.
Top right, the fingerprint of the square; in the bottom, the functiass) andh(s, )
used in Sec. 3.2.2 to construct the shape from its fingerprint.

infinite as in a convex corner, we will find that the fingerprint has large derivative at
the corresponding point; while points with large negative curvature—otas in a
concave corner, the fingerprint has very small derivative at the corresponding point.
An interesting family of fingerprints are those coming from long elongated blobs,
i.e. elliptical or 'cigar-shaped’ blobs. One might have expected that these come from
the one-parameter subgroup given by the vector fiald26), but, as we saw, these
shapes develop concavities. This is because they are symmetrical with respect to in-
versionz — 1/z. Although the exact fingerprint for specific large eccentricity ellipses
or long blobs is hard to compute exactly, the following argument gives fingerprints for
one family of long blobs, as one verifies by welding. To construct this, we use 2 simple
conformal maps which don’t quite match up and then we force them to match up! The
exterior of a circle can be mapped to the whole plane minus théslit- ] by the
conformal mapu = (r/2)(u+ 1/u). In this map, the exterior of a circle| > A, for A
slightly greater than 1, is carried to the exterior of an ellipse surrounding the slit, with
widthr(A+1/)) ~ 2r and small height(A—1/X). Unfortunately, the conformal map
to the interior of the ellipse is not given by elementary functions. But one can map the
interior of the circle to the striimag(w)| < = by the mapw = 2log((1+2)/(1—=z)),
and this maps the interior of the cirdlg < u, for i slightly less than 1, to the interior
of a cigar-shaped region inside this strip. This blob has height slightly les@thand
width 4log((1 + u)/(1 — w)). Both maps are illustrated in Figure 9.
The images of these circles roughly match up if we requirezhat (A — 1/X)
and4log(((1 + p)/(1 — p)) = r(A+ 1/X). We make an approximate fingerprint by
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Figure 9: The construction of an explicit formula for the fingerprint of a long blob: on
the left, (i) the red curve is an ellipse and its exterior is uniformizedby (r/2)(u +

1/u), (ii) the interior of the blue curve is uniformized by the map= 2log((1 +

z)/(1 — z)) applied to a circle with radius slightly less than 1. The fingerprint on the
right is made by matching points on these with the same real part and the yellow curve
on the left is the result of welding with this fingerprint.

mapping a point on the circle| =  to that point on the circléu| = X for which the
real parts of the correspondingvalues are equal. This means:

,‘92
Re(L (A + X~1c")) = Re (2 log Gw)) |

~ it

2 ) 1+ vcosby 20
= 10 _— V=
& 1—vcosfy )’ 1+ p?

Simplifying, we get the formula for the fingerprints of long blobs as:

1+ vcos by 1+v
0, = 1 —=1] /1
! arccos( 8 (1 - 1/00592) / ©8 <1 — y>>
In this form, the fingerprint has high derivatives at 2 points, corresponding to the 2
ends of the blob and the interior conformal map takes 0 to the center of the blob. The
same shape, however, is defined®y,, o A for any Mobius mapA. In particular,
we get such a fingerprint if the interior map is chosen to take 0 to a point at one end of

the blob. Then the fingerprint will only have high derivatives at one point. With some
experimentation, one finds a simple form for such a fingerprint:

or

1+ uew?
1 — peifz

%(/\ + A Y cosh; =log (‘

2arctan(6’1 Viog(1 + atan2(9/2))) . if 0 €[00, 0]

Whiob2(6) = . .
2arctan(tan(6/2) + Csysign(d)) , if 0 € (—m,m) — [—6o, 6]
whereC;, C, are chosen to make the above continuous with continuous deriatives
We can use the formula for elongated blobs to illustrate the power of the group law
in Diff (S!). Supposel; and ¥, are the fingerprints of 2 shapes. We can combine

8Infact, if b = a.tan(fp/2), c = 1+a.tan?(0o/2), thenC; = v/Togc.c/bandCs = (log(c/e).c+
1)/b.
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them in various ways using the fingerprifdtso Ao W,, for various Mdbius mapsi. As
A varies, the mode of combination varies. We tdke= Wy, to be the fingerprint of
a suitable blob an@; = ¥y40n to be the fingerpint of a ‘boomerang’ shape computed
by Schwarz-Chistoffel. To combine them, we will first pick the constartsdé,in the
blob fingerprint so tha¥ o1 is close to the identity over much of its domain, and has
very large derivative at one point. Then we combine them with a rotatiamserted.
In fact, to put the boomerang back in a fixed orientation, we show in Fig. 10 the shapes
defined byR~! o Upjop1 0 R 0 Upoom The effect will be to create a new shape in which
a blob is glued to the boomerang at a point depending on where this derivative is large.
Finally, we look at two more complex shapes. The first is a silhouette of a cat.
For this we apply the Schwarz-Christoffel package in order to obigi#y. Hence
U (9), ¥'(0) and¥ () involved in Eq. 13 are computed numerically. We reconstrcut
the shape using the first welding method. The result is shown in Fig. 11. Note again
the close similarity of the computdd (right) to the original shape (left). Recall from
Eq. 14 the way: andh (Fig. 11, bottom row) describi. In our current straightforward
implementation we are limited in the size of the 0)-grid we can solve for. This
results in the minor distortions ik, 4 and the resulting.
The final example is the silhouette of the upper body of a person (see Fig. 12).

5 The WP Riemannian metric onS

5.1 The WP norm on the Lie algebra ofDiff (S*)

The Lie algebra of the grouPiff (S!) is given by the vector spasec(S*) of smooth
vector fields on the circlex(§)0/00 wherev(6 + 27) = v(6). In general, the adjoint
action of a group elemepte G is the linear map from Lig~) to itself induced by the
conjugation mag — g~—! o h o g from G to itself. Explicitly, this maps € vec(S!)
to(vog)/g, ie.adys(v) =(vog)/g.

We can expand sucheain a Fourier series(0) = >.°° _ _ a,e™? (wherea,, =

n=—oo N

a_n). The Weil-Petersson norm orec(S?) is defined by:

oo

lolliyp =Y (n* = n)lan|*.

n=2

The null space of this norm is given by those vector fields whose only Fourier coeffi-
cients arei_1, ag anday, i.e. the vector fieldéa + b cos(0) + csin(6))9/00, which are
exactly those tangent to thedWlius subgrou@® S L. (R), i.e. in its Lie algebrasis(R).

The motivation for this particular definition is the fact that, for@le PSLy(R)
andv € vec(S'), one can verify that

llady (v)[lwp = [[v]lwp-

5.2 Extending the metric toDiff (S')/PSLy(R)

Riemannian metrics on coset spa¢gsd which areinvariantby all left multiplication
mapsL, : G/H — G/H,g € G are given by normgjv|| on the Lie algebra ofz
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Figure 10: Top row: the boomerang shape, its fingerprint, the fingerprint of the blob
and the fingerprint of a composition. Note the very large derivative on the boomerang
fingerprint for two ends, and the very small derivative for the concave corner. The blob
fingerprint has one point of high derivative corresponding to the far end, the origin
being placed at the near end. A rotation is used in the composition, and the small
circles mark corresponding points in the graphs of the 3 diffeomorphisms. On the
bottom row: shapes defined by compositions of the fingerprints with various rotations
and constants. The composite shapes can be interpreted as the boomerang plus a blob
at some point of its boundary — short on the left, much longer than the boomerang itself
on the right. In the composite shapes on the left, the blob’s constanis-are’’, on

the righta = ¢°°, while 6, = .05 radians in both cases. For each set of constants,
rotations througtt /10 radians have been put in the middle so that the protrusions are
placed on the boomerang at different points of its boundary.

22



Figure 11: Top: the conformal mappings. and®, carrying a homogenous radial
grid (left, drawn schematically) onto the interior and exterior of the cat silholiette
middle line: the fingerprint of the cat and the cat, as reconstructed by welding following
the first method; bottom: the harmonic functiognandk used for reconstruction.

which are zero on the Lie subalgebraffand which satisfy|ad;, (v)|| = ||v]| for all
h € H. Here the norm on the tangent spag; ¢, to G/H at anygH is gotten
from the norm on the Lie algebra via the isomorphism

DL, : Lie(G)/Lie(H) = Top.c/n — Ton

given by the derivative of., at the identitye of G. In particular, this applies to
Diff(S') and PSLy(R). BecauseDiff(S')/PSLy(R) = S, we have now con-
structed a homogeneous Riemannian metriS @tso.

Next let's translate this into concrete terms. Take any path 0) in Diff(S?),
wheret € [0,t] € R and¥(t,0 + 27) = ¥(t,0) + 27. The tangent vectors to
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Figure 12: A truncated human figure. On the left, the conformal parametrization of
the interior and exterior; in the middle, the fingerprints; on the right, the reconstruction
using the first method.

this path are given bw = WU,(t,0) or, translated back to the Lie algebra using

DLEI,_”, by W.(t,0)/%y(t,0). We expand the tangent vector at every 0 by its
Fourier series ird:

o0

U, (t’ 6)/\119 (tv 9) = Z an (t)einé, (25)

wherea_,,(t) = a,(t) because the vector field is real. Its Weil-Petersson norm is then
given by

oo

194 (t,0)/%a(t,0)[we = Y lan()]*(n” — n) (26)

n=2

and the length of the path is by definitioﬁf“ VYol lan ()2 (n® — n)dt.

It is a wonderful fact that all sectional curvatures of the Weil-Petersson norm are
non-positive [5]. Because of this, it is to be expected that there is a unique geodesic
joining any two shapéd'|, T, € S. Because minimizing energy and length are equiv-
alent, these geodesics are the solutions of the following minimization problem

to o©
Ming,0),¢, / > lan()P(n® = n)dt, 27)
t=0 -9

where¥(0,0) and ¥ (ty, 0) are the diffeomorphisms corresponding to the two given
end-point shapes.

6 Calculating the geodesics

We solve for the geodesidsl(t, 0)}.c(0,1, Where¥(t,0) € Diff(S') Vi € [0,1],
parameterized by 'timef between the two given end-point shaples = ¥(0, ) and

U, = ¥(1,0). The length of the geodesic between each two given end-point shapes is
obtained by minimizing the Weil-Petersson norm

9Because the space is infinite dimensional, this requires proof and this aspect of the metric does seem to
have been discussed in the literature.
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1
/0 194(£,0) /04 (£, 0) |w (28)

where ¥y and ¥, are the diffeomorphisms (fingerprints) corresponding to the two
given end-point shapes (see Sec. 5.2).
Minimizing the norm in Eq. 28 is equivalent to minimizing the energy

E(Vy, /Z\an (n® — n)dt, (29)

(cf. Sec. 5.2), where

\I}t(ta 9)/\110@76) = Z an(t)eine (30)
n=—oo

We discretizet € [0,1] into M homogenously spaced points = %7, u =
0,1,2,...,M, and we discretizéd € [—m,n| into N homogenously spaced points
O = —m+ 2k k=0,2,..,N — 1. We will always chooseV = 2", andM = 2™
for suitablen, m. We discretize the geodesics usingkau)-grid into {U (¢, 0x) } & u.
wherek = 0,2,....N — 1, andu = 0,2,..., M. Both Ty = {U(to,0k)}r and
\Tfl = {U(tn, 1)} are fixed as the end-point diffeomorphisms. In addition it is con-
venient for computing the energy (Eq. 29) to discretize the parammethe integral
using also ash|fted gnd namely ars-grid for whicht, = —M +37,5=1,2,..., M.
We denotet, = ¢, 2M andt,, =ts+ 2M, so that the grids_ ands+ c0|nC|de
with points of theu grid.

We can therefore discretize

1 (W(ts,,O0ks1) — V(ts,,0k_1) n U(ts_ ,0ry1) — V(ts_,0k_1)
2 4w /N 4w /N ’

IIZ

(tsa ek)

and U(tss,0) — U(ts—,0)
U s o~ ER) - S—>

t(t ,9) ]./M ’
thus obtaining the following discretization:

\I/t(t(s’vek) ~ (MN> ql(tburvek) - \Il(té 70k)
\IJG(tsvgk‘) N 87T \I/(ts+79k+1) + \I/(ts_79k+1) - \I}( S+70k‘ 1) \Ij(ts_70k71)
(33)
To compute the geodesidsl(t,, 0x)}r.., We will therefore minimize the dis-
cretized version of Eq. 29

N—-2

M
E(\Tjov‘il) iz Z |an(ts)[*(n® —n), (34)

s=1 n=2
whereVs =1,2,..., M andk = 0,1, ..., N — 1 we have the discrete Fourier transform

N/2

U, ( ) _
\117 Z an s 27r1nk/N7 aN—n(ts) = an(ts)- (35)
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(cf. Eq. 30, but now with maximum frequency/2).
We denoteEo 1= .E(\If()7 \I/ ) \Pk,u = \I/(tu7 Qk) and\IJSi,u = \Il(tsi,ék).

6.1 Direct computation of the energy gradientaﬁovl/a\lfk,u

For introducing numerical, iterative minimization of the ene@yl it is useful to de-
velop an efficient formula for directly computing its gradi@ﬁo,l/a‘lfkyu. To obtain
this we define

@ = k> —k, wherek = min(k, N — k). (36)

We then defingw; };¥ ' to be the discrete Fourier transform{af; };* ,'. That is

N-1
— Z ﬁ}\ke—Qﬂ'ikl/N. (37)
k=0
Denoting
. \I/t(ts79k-)
S(U) = ——2— 38
fee )= Gy6.0,) )

we can rewrite??m, up to a multiplicative constant in the following way

Eox =Y wi;fis(¥)f;s(¥). (39)

1,5,8

(by simply substituting Eqg. 37 and Eq. 38 in Eq. 39 to satisfy Eq. 34 and Eq. 35.)
Hence
8E0 1 0fj s(0)
=2 i—ifis : . 40
8\Ifk ” ”st ~ifis akllk,u (40)
Note thataff ) for every entry(k, u) is only different from0 in 6 of its (j, s)
entries. That is, Whem, =wuorsy =u,andj = k—1,k,k + 1. Denoting
Ut = Ut 575 2M , we can break Eq. 40 into six sums, each of which is efficiently computed
through a multiplication of a fullv x N matrix of the formw,_; with a sparseV x M
matrix of the formf; ..

6.2 Choosing a representative fingerprint in each shape coset

Recall that every shape is represented by an equivalence class of diffeomorphisms,
namely a coset iDiff (S')/PSLy(R). This creates ambiguities in the choise of fin-
gerprint¥ of each shape that need to be resolved before making a numerical computa-
tion of the geodesic between two shapes. The most natural way to obtain a canonical
representative of each coset is to choose the unique diffeomorphism in that coset which
fixes three prescribed values (angles).

Specifically, suppose the coset corresponding to a shape is given by the subset

{U o A|¥ € Diff(S'), A € PSLy(R)} C Diff(S).
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For any¥ we can find a uniquel so thatl o A fixes three prescribed angles, thus
obtaining a unique fingerprint representatibm A for the coset - PS L, (R).

Using Driscoll's Schwarz-Christoffel software package we compute a fingerprint
VU for each shape, such thléi{ —7) = —x. We then compos& with A € PSLy(R),
denoting? = ¥ o A such thatl(—n) = —m, ¥(a) = a and¥(3) = 3, where
a = —7n/4 andf = +x /2. We obtain this by taking

A(9) =2 - arctarfa + btan(6/2)), (41)

which satisfiesA(—n) = —n for everya,b € R, and fixa andb so thatA(a) =
U~ (a)andA(3) = ¥~1(3). Thatis, by Eq. 41 we solve farandb such that

IS
Q

a -1
a+btan § = tan( B ) (42)

a—f—btang = tan(=—5+).

1S

6.3 Minimizing the energy E;

As we have seen in the previous section, we may assume that the figgewfpfiamj
¥, of the end-point shapes satishy(—7) = ¥1(—7) = —7, (o) = ¥1(a) = «
and Uy (8) = ¥,(8) = 5. We then minimizeE,; (see Eq. 39) with all the inter-
mediate diffeomorphisms along the geodesic keeping the three angles and 3
fixed. That is, we minimizeE, ; with respect to the scalar variablést,,, 6;,), for
u=1,2,...M —landk € {0,1,..., N — 1}, k # 0,3N/8,3N/4. For these remain-
ing three values of corresponding té = —, «, 3 we keep the values the diffeomor-
phisms fixed through the minimization, i.€.t,,0r) = Vo(ty, 0k) = Y1 (ty,0r) =
—m,—m/4or +7/2,Yu=1,2,..., M — 1.

We start withM = 8 and N = 64, and set as the initial approximation for all
intermediate diffemorphisms a fingerprint of the circle shape. Specifically we set

U (ty,O0k) = Oy, (43)

foru=1,2,..,.M —1andk =0,1,..., N — 1.

We then minimizeE), ; by gradient descent, starting at the current approximation
to the solution (the initial approximation from Eq. 43), and minimizing the energy
along the direction of the gradient (using the ‘line search’ method). In practice, we use
the Matlab optimization functiofminnuc . We then take this minimizing solution
for (N = 64, M = 8), and interpolate it in the variable®;} ' to be an initial
approximation for the higher resolution cagd, = 128, M = 8), and minimize again
the same way usinfminunc . We interpolate into even higher resolution one more
time to solve fol N = 256, M = 8).

7 Examples of geodesics

Below are 4 goedesics computed by the algorithm above. Each of these figures should
be read from left to right and top to bottom, starting at the top-left and ending at the
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bottom-right. Note the strong tendency to revert to shapes nearly equal to circles in the
middle: this is a reflection of the fact the space of shapes is negatively curved in this
metric.

Figure 13: A geodesic: rotating the ellipse by3, clockwise.

8 Summary and Conclusions

We introduce a metric space-of-shapes that arises from conformal mappings, through
the mathematical theory of complex analysis. In this space, the shortest path between
each two shapes is unique, and is given by a geodesic connecting them, providing a path
for morphing between them. Every shape is represented in this space by an equivalence
class of “fingerprints” each of which is a diffeomorphism of the unit circle to itself.

We solved the welding problem to allow moving back and forth between shapes and
this space-of-shapes, thus allowing the continuation of the research of shapes within
this space. Indeed, our next step will be to compute the geodesics between shapes.
We expect these to reflect the appealing structure-preserving properties of conformal
mappings, and to be very relevant to the comparison and classification of shapes.
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