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Abstract

The study of 2D shapes and their similarities is a central problem in the field of
vision. It arises in particular from the task of classifying and recognizing objects
from their observed silhouette. Defining natural distances between 2D shapes cre-
ates a metric space of shapes, whose mathematical structure is inherently relevant
to the classification task. One intriguing metric space comes from using conformal
mappings of 2D shapes into each other, via the theory of Teichmüller spaces. In
this space every simple closed curve in the plane (a “shape”) is represented by a
‘fingerprint’ which is a diffeomorphism of the unit circle to itself (a differentiable
and invertible, periodic function). More precisely, every shape defines to a unique
equivalence class of such diffeomorphisms up to right multiplication by a Möbius
map. The fingerprint does not change if the shape is varied by translations and
scaling and any such equivalence class comes from some shape. This coset space,
equipped with the infinitesimal Weil-Petersson (WP) Riemannian norm is a met-
ric space. In this space, the shortest path between each two shapes is unique, and
is given by a geodesic connecting them. Their distance from each other is given
by integrating the WP-norm along that geodesic. In this paper we concentrate on
solving the “welding” problem of “sewing” together conformally the interior and
exterior of the unit circle, glued on the unit circle by a given diffeomorphism, to
obtain the unique 2D shape associated with this diffeomorphism. This will allow
us to go back and forth between 2D shapes and their representing diffeomorphisms
in this “space of shapes”.

1 Introduction

Many different representations for the collection of all2D shapes1, and many different
measures of similarity between them have been studied recently [12, 13, 19, 1, 20, 16,
14, 11, 10, 2, 3, 17, 6]. Although significant progress has been made, none are fully
satisfactory from the point of view of a leading to a successful classification of the col-
lection of all shapes. In part, this shortcoming is due to the fact that human perception

∗Research was supported by NSF grants DMS-0074276 and IIS-0205477.
1To be clear, by a shape we usually mean a smooth simple closed curve in the plane, although sometimes

we mean the curve plus its interior.
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Figure 1: All the figuresA, B, C, D andE are similar to the middle one, but they
differ in different ways. Which shapes should be considered closer may depend on
context. This illustration is due to B. Kimia.

may give different meanings to similarity between shapes in different contexts and for
different tasks [4, 15] (see Fig. 1). In this paper, we propose the study of a new ap-
proach to measuring the similarity of shapes by applying the mathematical theory of
complex analysis. This grows out of a new way of representing shapes.

Representing shapes in a simple way for classification is difficult because of two
things: on the one hand, the set of all shapes is inherently infinite dimensional and,
on the other hand, it has no natural linear structure. More precisely, the first assertion
means that if we map every shape to a point ofRn by assigning to itn features, there
will always be many distinct shapes on which all these features coincide. You cannot
capture all the variability of a shape in a finite set of features. The second assertion
means that there is no vector space structure on the set of all shapes, no way of adding,
subtracting and multiplying by scalars in this set which satisfies the vector space ax-
ioms2. So if we use an infinite number of features to describe shapes, such as all its
moments or all its Fourier coefficients, then although we get a representation of the set
of shapes in a vector space, there will be sequences of moments or Fourier coefficients
which do not come from any shape. The upshot is that the set of all shapes is mathe-
matically rather complicated. We feel this is the deep reason why shape classification
algorithms in the literature have been less than perfectly satisfactory.

Although the set of shapes is nonlinear and infinite dimensional, this does not pre-
vent it from having its own geometry. The first step towards analyzing its geometry is
to endow this set with ametric, a numerical measure of the difference between any 2
shapes. Many metric approaches for the classification of shapes have also been sug-
gested. The Hausdorff distance is perhaps the best known: this is a ‘sup’ or so called
L∞ norm. One can also take the area of the symmetric difference of the interiors of
the 2 shapes: this is aL1 type norm, gotten by a simple integral. We may also measure

2For example, we have ‘Minkowski addition’ of shapes but this addition cannot have inverses because it
always makes a shape bigger.
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in some way the difference of the orientations as well as the locations of the 2 shapes:
these are first derivative norms. One can play with these alternatives and work out
which shapes in Fig. 1 are closer to the central shape in which metric.

In our method of representing shapes, every shape will define a sort of ‘fingerprint’,
which is a diffeomorphism of the unit circle to itself. Such a diffeomorphism is given
by a smooth increasing functionf : R→ R which is differentiable and satisfiesf(x +
2π) = f(x) + 2π and two functionsf1, f2 define the same diffeomorphism iff1(x) ≡
f2(x) + 2πn. The group of such diffeomorphisms will be denoted byDiff(S1). The
construction is based on the existence of a conformal mapping from the interior of
any shapeΓ to the interior of the unit disk via the Riemann mapping theorem. Like
all conformal maps, it preserves the angles between any two intersecting curves and,
moreover, it is unique up to composition with a Möbius-transformation ambiguity.

More precisely, we will show that every simple closed curve in the plane defines
an equivalence class of diffeomorphismsf . These equivalence classes are the right
cosets of these diffeomorphisms modulo the three dimensional subgroup of Möbius
maps3 PSL2(R), namely the maps from the complex unit circle{z

∣∣|z| = 1} to itself
given byz 7→ (az + b)/(b̄z + ā). This set of equivalence classes is then written as
the quotientDiff(S1)/PSL2(R). In this assignment, two shapesΓ1, Γ2 define the
samediffeomorphism only when one shape is gotten from the other by a translation
and scaling, i.e.Γ2 = a · Γ1 + (b, c). If S is the set of 2D shapes andH is the group
of maps(x, y) 7→ (ax + b, ay + c), then the result of this construction is a bijection
between the two quotient sets:

Diff(S1)/PSL2(R) ∼= S/H.

Moreover, this quotient space turns out to be equipped with a very remarkable met-
ric, the Weil-Petersson (WP) Riemannian metric. The resulting metric space has two
major properties. First, the space has non-positive sectional curvature, and hence there
exists a unique geodesic between each two shapes. Defining the integral of the WP-
norm along a path as the length of this path, a geodesic is defined as the shortest path
connecting the two shapes and its length is the global metric on the space of shapes.
The shapes along that path represent a natural morphing of one into the other. Secondly,
the resulting space is homogenous with respect to the group of diffeomorphisms oper-
ating on the cosets from the left. Thus, for example, we can transform all shapes into
new shapes by composing the coset representing them by a diffeomorphism on the left
and this transformation will preserve the WP distance, take geodesics to geodesics and
hence change the above morphing between any two shapes into the morphing between
the transformed shapes.

It is essential in this framework to be able to move back and forth computationally
between2D shapes and the diffeomorphisms representing them. Moving from a given
shape into the diffeomorphism representing it can be done by computational imple-
mentations of the Riemann mapping theorem. Several approaches to this exist in the

3The reason for the notationPSL2(R) is that conjugating byA =
� 1 −i

1 i

�
takes2× 2 real matrices

to the2× 2 complex matrics
� a b

b̄ ā

�
, so the same notation is used for both groups of matrices.
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literature, see 3.1. Perhaps the most effective way is by using a numerical implementa-
tion of the Schwarz-Christoffel formula, applied to a polygon that tightly approximates
the shape [8]. But going back from the diffeomorphism to the shape is a new com-
putational challenge, known as the “welding” problem. It involves the construction of
two conformal maps, one defined inside the unit circle and one outside, which differ
on the unit circle by the given diffeomorphism. In this paper, we will give two ap-
proaches to computing the solution of welding problem. Having this transformation
between the space of shapes and the group of diffeomorphisms, we then go on to com-
pute geodesics in the WP-metric. We do this by computing the geodesics in the coset
spaceDiff(S1)/PSL2(R) and then using welding to move this into a morphing of
two plane shapes.

2 Shapes as diffeomorphisms of the circle

In this paper, by a “shape” we mean a simple closed smooth curveΓ in the plane.
Smooth means having derivatives of all orders (i.e. beingC∞), and simple means that
the curves do not intersect themselves. Everything is based on the Riemann map-
ping theorem which states that it is possible to map the unit disc conformally to the
interior of any such shape4. The conformal transformation is unique up to any preced-
ing Möbius transformations mapping the unit disc to itself (that is, maps of the form
z 7→ (az + b)/(b̄z + ā)). Conformal means that the infinitesimal angle between each
two crossing curves is equal to the infinitesimal angle between the transformed curves.
The nature of these mappings is shown in figure 2, where the image of the radial grid
on the unit disc (made out of concentric circles and lines through the origin) under this
map is shown. Note that the image curves remain perpendicular.

2.1 Shapes to diffeomorphisms

In this whole paper, we associateR2 with the complex planeC and hence we denote
planar points by complex numbersu+iv. We often want to add in the ‘point at infinity’;
adding this in, we get the extended complex plane, also called the Riemann sphere and
denoted bŷC .= C ∪ {∞}

Further, we denote the unit disc{z | |z| ≤ 1} by ∆− and the infinite region
outside or on the unit disc{z | |z| ≥ 1} (including∞) by ∆+. Observe that using the
transformationz 7→ 1/z we can identify∆+ with ∆−. For every simple closed curve
Γ in C we denote byΓ− its union with the region enclosed by it, and denote byΓ+ its
union with the infinite region outsideΓ (including∞). We can think ofΓ− andΓ+ as
a partition of the Riemann sphere into two parts alongΓ (see Fig. 3).

Then by the Riemann mapping theorem, for allΓ there exists a conformal map

Φ− : ∆− → Γ−,

unique up to replacingΦ− by Φ− ◦A for any Möbius transformationsA : ∆− → ∆−,
A = (az + b)/(b̄z + ā). That is, for every two conformal mapsΦ(1)

− , Φ(2)
− : ∆− → Γ−

4Smoothness ofΓ is not required for Riemann’s result.
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we have thatΦ(2)
−
−1 ◦ Φ(1)

− = A, whereA is a Möbius map.
This works for∆+ andΓ+ too as the point at infinity is no different from other

finite points. Spelling this out, under1/z, Γ is transformed into the inverted simple
closed curveΓ′ so thatΓ+ is identified with the interiorΓ′− of Γ′. Thus we can apply
the Riemann mapping theorem to get aΦ′ from∆− andΓ′−. Composing this conformal
map with inverse on both sides, i.e.Φ+(z) = 1/Φ′(1/z), we get a conformal map of
the exteriors

Φ+ : ∆+ → Γ+.

Φ+ is also unique up to M̈obius transformations as above. But now we can do better
with Φ+: we take the unique M̈obius mapA so that, replacingΦ+ by Φ+ ◦ A, we
achieve the extra normalization thatΦ+ carries∞ to∞, and that its differential carries
the real positive axis of the∆-plane at∞ to the real positive axis of theΓ-plane at∞.
Thus, we eliminate the M̈obius ambiguity ofΦ+ for everyΓ, and makeΦ+ unique.
An example of this construction is shown at the top in Fig. 2, where the curveΓ is an
ellipse.

The goal of this construction is to define the map

Ψ .= Φ+
−1 ◦ Φ−,

which it is defined on the unit circleS1. (Note thatΦ−(S1) = Γ, andΦ+
−1(Γ) =

S1.) Ψ : S1 → S1 is a diffeomorphism, which can be thought of as a periodic, real-
valued function from[0, 2π] to [0, 2π], having a positive derivative everywhere.Ψ is
a uniquely-identifying fingerprint of the shapeΓ. The fingerprint of the ellipse is also
shown in Fig. 2.

From the M̈obius-transformation ambiguity left inΦ− we can see that by the con-
struction ofΨ every simple closed curveΓ induces a diffeomorphismΨ : S1 → S1,
which is unique up to composing on the right by a diffeomorphismÃ : S1 → S1

coming from the restriction toS1 of any Möbius transformationA : ∆− → ∆−.
If, as in the introduction, we denote the coset space5 by Diff(S1)/PSL2(R) and

we denote the space of simple closed smooth curvesΓ by S, then our construction of
Ψ gives us the ‘fingerprint’ map:

S → Diff(S1)/PSL2(R).

2.2 Diffeomorphisms to shapes: welding

Remarkably, this map is nearly a bijection. In fact, every cosetΨ · PSL2(R) comes
from some shapeΓ and two shapesΓ1,Γ2 give the same coset if and only if they differ
by a translation and scaling. IfS is the quotient of shapes modulo translations and
scalings, the final result is

S ∼= Diff(S1)/PSL2(R). (1)

To obtainΓ, Φ− andΦ+corresponding to any coset, we first pick anyΨ in the
coset. The ‘high level’ way of findingΓ is to construct an abstract Riemann surfaceX

5Recall that an element in a coset spaceG/H is a subsetgH
.
= {g ◦ h|h ∈ H} of G.
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Figure 2: On the top, the conformal parametrization of the interior and exterior of an
ellipse given by the Riemann mapping theorem, shown by plotting the images under
Φ− andΦ+ of circles around the origin and radial lines. On the bottom, the ‘finger-
print’ Ψ. The circled points on the 2 figures are corresponding points. Note the large
derivative of the fingerprint at the pointsθ = 0, π corrsponding to the ends of the major
axis and the small derivative at the pointsθ = π/2, 3π/2 corresponding to the ends of
the minor axis.

by ‘welding’ ∆+ and∆− using the mapΨ to glue their boundaries together and apply
the result that any Riemann surface which is topologically a 2-sphere – likeX – is, in
fact, conformally isomorphic tôC via some mapΦ. ThenΦ± are just the restrictions
of Φ to ∆± and the shapeΓ is nothing but the image of the unit circle in the welded
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Figure 3: The conformal mapf , as described in Sec. 2.2, maps the two halves of the
z-sphere divided by the unit circle (left) onto the two parts of thew-sphere divided by
Γ (right), correspondingly, such thatf−(z) = f+(ϕ(z)) on |z| = 1.

surfaceX underΦ. This construction is illustrated in Fig. 3.
A less abstract way to prove weldings exist is to use a celebrated existence theorem

of B. Bojarski and L. Bers [9, p.10]. We sketch the proof without details. We use the
standard abreviations:

fz =
1
2
(fx − ify), fz̄ =

1
2
(fx + ify).

The theorem states that for anyc < 1 and any complex valued functionµ(z) with
|µ(z)| ≤ c (called aBeltrami differential), the partial differential equation:

Fz̄ = µFz,

has a complex valued solution6. We get theµ from Ψ as follows. First defineG :
∆− → ∆− by:

G(reiθ) = reiΨ(θ).

Then letµ = Gz̄/Gz on∆− (one can readily check that this works out to beeiθ 1−Ψ′
1+Ψ′ )

andµ = 0 on ∆+. With thisµ, solve the above equation for the functionF . Because
µ = 0 on ∆+, F must be a conformal map on∆+, hence it extends to∞ and we can
normalize it to have positive real derivative there. LetΦ+ beF on ∆+. Note thatG
satisfies the equation on∆− and, by standard arguments, any other solution there is
G followed by an analytic function (that is a map with complex derivatives but which
is not everywhere conformal because they can be zero). So letΦ− be the analytic
functionF ◦G(−1) on∆−. ThenΦ− ◦G ≡ Φ+ on the unit circle, as required.

2.3 Shapes with base points

We have now seen that shapes, up to scaling and translation, are represented by cosets
Ψ·PSL2(R) ⊂ Diff(S1). An important variant of this representation concerns shapes

6In fact, it is a homeomorphism and is nearly unique: ifF is one solution, thenaF + b are all the other
solutions
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with base points, that is pairs{Γ, P}whereP is a point in the interior ofΓ. The result is
that shapes with base points are represented by cosetsΨ·ROT (S1) ⊂ Diff(S1) where
ROT (S1) is the group of rotationsθ 7→ θ + φ of the circle. Note thatROT (S1) ⊂
PSL2(R) as the rotation through angleφ is given by the mapz 7→ (az + b)/(b̄z + ā)
for a = eiφ/2, b = 0.

This representation is a simple extension of what we have already seen: having a
base pointP in the interior of the shapeΓ allows one to normalize the conformal map
Φ− so thatΦ−(0) = P . This fixesΦ− up to right multiplication by a rotation, hence
Ψ is also determined up to such a right multiplication. This state of affairs is often
depicted by a ‘commutative diagram’:

Diff(S1)/ROT (S1) ∼= {Γ, P}/H
↓ ↓

Diff(S1)/PSL2(R) ∼= {Γ}/H

where the vertical arrows denote the maps given by (i) passing from the small cosets
modROT to the larger cosets modPSL; and (ii) passing from a shape with base point
to a shape without base point.

Closely related to this is the following remark: if a cosetΨ · PSL2(R) represents
the shapeΓ, then the cosetsA◦Ψ ·PSL2(R), for various M̈obius mapsA ∈ PSL2(R)
represent the shapesB(Γ) for thosecomplexMöbius mapsB ∈ PSL2(C) such that
B−1(∞) lies outsideΓ. Recall that complex M̈obius maps are the maps of the extended
complex plane given byz 7→ (az + b)/(cz + d). To see this, use the definitionΨ =
Φ−1

+ ◦ Φ−. Then multiplyingΨ on theright by A is the same as replacingΦ+ by
Φ+ ◦A. NowΦ+ ◦A is a good conformal map of the exterior of the unit circle onto the
exterior ofΓ, only it doesn’t have the right normalization any more as it doesn’t carry
∞ to∞. In fact,Q = Φ+(A(∞)) is some point in the exterior ofΓ. Choose a complex
Möbius mapB so thatB−1(∞) = Q. Further require thatB−1 carry the positive real
axis tangent direction at∞ to the tangent direction atQ which is the image of the
positive real direction underΦ+ ◦A. ThenB ◦Φ+ ◦A is fully normalized, carrying∞
to itself and carrying the postive real direction at∞ to itself. ThusΦ′+ = B ◦ Φ+ ◦ A
andΦ′− = B ◦ Φ− are the exterior and interior conformal maps for the shapeB(Γ).
Thus the fingerprint ofB(Γ) is Ψ′ = (Φ′+)−1 ◦ Φ′− = A ◦ Φ−1

+ ◦ Φ− = A ◦Ψ.

2.4 The homogeneous structure ofS
Any groupG operates, of course, on any coset spaceG/H by left multiplication, hence,
as a result of the above construction,Diff(S1) operates on the space of shapesS.
A concrete way of defining this action is this: to transform anyΓ ∈ S by a group
elementΨ, we construct the conformal mapΦ+ : ∆+ → Γ+ hence we get the map
Ψ′ = Φ+◦Ψ◦Φ−1

+ fromΓ to itself. Then we use the same welding trick by cutting open
Ĉ alongΓ and rewelding it with the mapΨ′. The result can be conformally mapped
to the extended sphere, takingΓ to a new curveΓ′. This way we get atransitivegroup
operation onS.
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3 Computing shapes from diffeomorphisms and vice versa

3.1 Schwarz-Christoffel: from shapes to diffeomorphisms

There seem to be three published methods of computing the conformal mapping from
the unit disk to the interior of a simple closed curveΓ:

1. using the Schwarz-Christoffel formula, developed by Tobin Driscoll, cf.
http://www.math.udel.edu/ ∼driscoll/SC and [7].

2. the method of circle packing, developed by Kenneth Stephenson, cf.
http://www.math.utk.edu/ ∼kens/ and [18]

3. the ‘zipper’ algorithm of Donald Marshall, cf.
http://www.math.washington.edu/ ∼marshall/zipper.html .

The Schwarz-Christoffel method is like this: start by approximatingΓ by a poly-
gon. Letz be the complex coordinate in the unit disk, and let{ai} be the points on the
unit circle which will map to the vertices of the polygon and let{παi} be the angles of
the polygon at these vertices. Then for someC1, C2:

Φ(z) = C1

∫ z

0

∏

i

(z − ai)αi−1dz + C2.

For instance, if the polygon is a square, then the conformal map of the unit disk to its
interior is given by the elliptic integral:

Φ(z) = C1

∫ z

0

dz√
1− z4

+ C2.

This method has been implemented in the excellent package ‘sc’ by Tobin Driscoll
(cited above), based on joint work with L.N. Trefethen [8]. The key problem is that one
is usually given only the pointsΦ(ai) and must compute{ai} at the same time asΦ.
Moreover, they are non-unique as, for any Möbius mapA, Φ′ = Φ ◦A, a′i = A−1(ai)
are equally good solutions. The program allows you to specify the pointΦ(0) ∈ Int(Γ)
to get the best looking and best behaved solution. We use this package for our examples
in Section 4 below.

3.2 From diffeomorphisms to shapes: the first method of welding

3.2.1 Reducing welding to coupled elliptic boundary value problems

Setting the equations for the conformal mapf (see Fig. 3). We consider∆− and
∆+ as a partition of the Riemann sphere into two parts along the unit circle∆, and
Γ− andΓ+ as a partition of the Riemann sphere into two parts alongΓ, as explained
in Sec. 2.1 (see Fig. 3). We associate the complex-plane variablez with the∆-sphere,
and the complex-plane variablew with theΓ-sphere. We will assume that0 ∈ Γ− in
order to normalize the mapΦ− as well asΦ+ by asking thatΦ−(0) = 0. Given a
diffeomorphismϕ : ∆ → ∆, we seek a functionf(z) from thez-sphere minus the unit
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circle to thew-sphere, complex analytic on|z| < 1 with boundary valuesf ||z|=1 = f−,
and complex analytic on|z| > 1 with f ||z|=1 = f+, such that

f(0) = 0, f(∞) = ∞
f−(z) = f+(ϕ(z)) |z| = 1 (2)

Definingg, a function of f which is more convenient to compute. Note thatf(z)/z
has finite non-zero limiting values at0 and∞, hence it has a single-valued logarithm
in ∆− and∆+. Thus we may defineg(u) by

log
(

f(eu)
eu

)
= g(u), u ∈ Ĉ− iR (3)

so thatg(u + 2πi) ≡ g(u).
Now,

Re(u) → −∞ ⇒ |eu| → 0
⇒ f(eu) ≈ c1e

u ⇒ g(u) ≈ log c1,
(4)

and
Re(u) →∞ ⇒ |eu| → ∞
⇒ f(eu) ≈ c2e

u ⇒ g(u) ≈ log c2,
(5)

for some constantsc1 andc2. Without loss of generality, we can replacef by c−1
2 f so

thatc2 = 1, andg(u) ≈ 0 asRe(u) → +∞.
We defineΨ : R → R, satisfyingΨ(θ + 2π) = Ψ(θ) + 2π by ϕ(eiθ) = eiΨ(θ).

Then,
g−(iθ) = log(f−(eiθ))− iθ

= log(f+(ϕ(eiθ)))− iθ = log(f+(eiΨ(θ))− iθ
= g+(iΨ(θ)) + iΨ(θ)− iθ.

(6)

Thus we get a new welding condition on the imaginary axis

g−(iθ) = g+(iΨ(θ)) + i(Ψ(θ)− θ). (7)

Note that if Eq. 7 holds atθ then it also holds atθ + 2π.

Setting the equations forg’s imaginary part k. (h is then known from k.) Now
let

g(u) = h(u) + ik(u), (8)

whereh, k are real. Then,

h, k harmonic if Re(u) < 0, Re(u) > 0
h, k → 0 if Re(u) → +∞
h, k → suitable constants if Re(u) → −∞
h, k periodic if u → u + 2πi.

(9)

Furthermore, from Eq. 7 we get that

h−(iθ) = h+(iΨ(θ))
k−(iθ) = k+(iΨ(θ)) + Ψ(θ)− θ.

(10)
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By the Cauchy-Riemann equations, ifu = s + iθ, we have fors < 0, s > 0 that

∂h

∂θ
= −∂k

∂s
,

∂h

∂s
=

∂k

∂θ
. (11)

Fors = 0 this gives

−∂k−
∂s

=
∂h−
∂θ

= Ψ′(θ)
∂h+

∂θ
= −Ψ′(θ)

∂k+

∂s
. (12)

Thus, we can conclude the following conditions onk

k harmonic ons < 0, s > 0
k periodic w.r.t.θ → θ + 2π
k → 0 if s →∞, k → c if s → −∞
k−

∣∣
iθ

= k+

∣∣
iΨ(θ)

+ Ψ(θ)− θ ons = 0
∂k−
∂s

∣∣
iθ

= Ψ′(θ)∂k+
∂s

∣∣
iΨ(θ)

ons = 0,

(13)

for some real constantc which comes implicitly from the equations. Note that Eq. 13
is in fact an equation for a real functionk, of the two real variabless andθ. Having
solved it fork = k(s, θ) we geth = h(s, θ) as the conjugate function ofk, via the
Cauchy-Riemann relations in Eq. 11.

f is then known from k and h. From Eq. 3 and Eq. 8 we get that

f(es+iθ) = eh(s+iθ)+i(k(s+iθ)+θ). (14)

SinceΓ is given byf(θ)
∣∣
s=±0

, we have thath(θ)
∣∣
s=±0

andk(θ)
∣∣
s=±0

describe the
magnitude and angle, respectively, of the complex-plane vectors delineatingΓ as a
periodic function ofθ.

3.2.2 Solving the elliptic problem numerically

Given a diffeomorphismΨ, we solve Eq. 13 for theθ-periodic functionk = k(s, θ) on
the plane branchθ ∈ [0, 2π] and−∞ < s < ∞. We conveniently set three different,
staggered grids on(s, θ), with uniform meshsizeδ > 0 for the three functionsk, h and
g (see the square inset in Fig. 4). In practice, we cut off thes direction into−ŝ ≤ s ≤ ŝ,
for someŝ > 0, at which the values ofk, h andg already converge to constants (cf.
Eq. 9). Solving fork on thek-grid, we use Eq. 11 to computeh on theh-grid, and
interpolating both to getg on theg-grid. It is the values ofg on s = ±0 that fix the
resulting curveΓ. In practice, havingk, we directly computeh on s = ±0, at the
k-grid points, as explained at the end of Sec. 3.2.2.

Solving for k: setting the s-grid and three types of numerical equations (see Fig.
4). Solving fork(s, θ), we define the(si, θj) k-grid, by indexing withi, j ∈ N ans-
grid: si ∈ {−ŝ, (−ŝ+δ), (−ŝ+2δ), ...,−2δ,−δ,−0, +0, δ, 2δ, ..., (ŝ−2δ), (ŝ−δ), ŝ},
and aθ-grid: θj ∈ {0, δ, 2δ, ..., (2π − δ)} (for which the indexj applies periodically).
We set three different types of equations.
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Figure 4: The(si, θj) k-grid on the(s, θ) plane. In blue over the grid points, a
schematic sketch of the three types of equations involved in the numeric solution of
k, as described in Sec. 3.2.2: the zero derivatives at the external boundaries (s = ±ŝ),
described by the equal signs (Neuman boundary conditions), the template of the Lapla-
cian mask applied to internal grid points (s 6= ±0,±ŝ), and the 9 grid points (cir-
cled) involved in the internal boundary condition for every internal-boundary grid point
(s = ±0). The square inset demonstrates the three staggered grids, for the functionsk,
h andg. Every grid point is represented by the corresponding letter.

Setting the Laplacian-mask equations. First we have the basic simplest second-
order discretization of the Laplace equation holding for every internal point,k being
harmonic, that is:∀j and∀si 6= ±ŝ,±0 we have

0 = 1
δ2 ( −4k(si, θj) + k(si−1, θj) + k(si+1, θj)

+ k(si, θj−1) + k(si, θj+1) ) (15)

Setting the Neuman-boundary-condition equations. Second, accounting fork’s
convergence to constants ats = ±∞, we set Neuman boundary conditions at the
external boundariessi = ±ŝ

k(−ŝ, θj) = k(−ŝ + δ, θj) ∀j
k(ŝ, θj) = k(ŝ− δ, θj) ∀j (16)

Setting the internal-boundary-condition (welding) equations. Third, we have the
k-value, andk-derivative pair of welding equations from Eq. 13, between the internal
boundariess = −0, associated withk−, ands = +0 associated withk+.

For everyj we will associate one such pair of equations with every valuek(−0, θj),
and similarly with every valuek(+0, θj). We separate the equations fork− from those
for k+ because the values ofΨ(θj) involved in the equation fork(−0, θj) do not nec-
essarily fall on some grid lineθj̃ , sinceΨ is a continuous welding diffeomorphism that
does not typically sendθj into some other grid lineθj̃ . (Symmetrically, when focusing
on the pair of welding equations fork(+0, θj) we may have thatΨ−1(θj) is not a grid
line.)

For every grid lineθj we use the following second-order discretizations for∂k±
∂s

12



∂k
∂s

∣∣
(−0,θ)

= 3
2δ k(−0, θ)− 2

δ k(−0− δ, θ)+
1
2δ k(−0− 2δ, θ) + O(δ2),

(17)

and

∂k
∂s

∣∣
(+0,Ψ)

= − 3
2δ k+

∣∣
(+0,Ψ)

+ 2
δ k

∣∣
(+0+δ,Ψ)

−
1
2δ k

∣∣
(+0+2δ,Ψ)

+ O(δ2).
(18)

To replace the first term on the right,k
∣∣
(+0,Ψ(θj))

, we may simply use the value of

k at the grid point(−0, θj), via thek-value welding equation from Eq. 13

k+

∣∣
(+0,Ψ(θj))

= k(−0, θj)−Ψ(θj) + θj . (19)

The other two values ofk participating in Eq. 18 may each be simply interpolated
from the nearest three grid points along theθ-direction. We use three such values to
keep an approximation of orderδ2. More precisely, for everys-column, and specifi-
cally for s = +0 + δ ands = +0 + 2δ, we can write the exact interpolation relations

k
∣∣
(s,Ψ)

= (Ψ−θj2 )(Ψ−θj3 )

(θj1−θj2 )(θj1−θj3 )k
∣∣
(s,θj1 )

+ O(δ2)
(Ψ−θj1 )(Ψ−θj3 )

(θj2−θj1 )(θj2−θj3 )k
∣∣
(s,θj2 )

+ (Ψ−θj1 )(Ψ−θj2 )

(θj3−θj1 )(θj3−θj2 )k
∣∣
(s,θj3 )

,
(20)

whereθj1 , θj2 andθj3 are the closest grid points toΨ.
Substituting Eq. 19 and Eq. 20 in Eq. 18 we get from the last equation in Eq. 13 an

equation between exactly 9 grid values. We associate this equation with the unknown
k(−0, θj). A similar equation is associated withk(+0, θj) for everyθj . Together with
Eq. 15 and Eq. 16 we have thus associated one equation with every grid point(si, θj).
See Fig.4 for exemplifying the three different types of equations.

Regularizing the system of equations fork. Notice however that the solution is
still not uniquely fixed. Adding a constant to any solution of this system will keep it a
solution still. Thus the system is singular. So we first need to add one more equation
that will determine that constant. Recalling thatk → 0 ass →∞ (cf. Eq. 9), a natural
numerical equivalent condition would be that

∫ 2π

θ=0
k(∞, θ) = 0, and in its descretized

form

δ
∑

j

k(ŝ, θj) = 0. (21)

(We could in principle set a one grid-point value ofk but this is less favorable numer-
ically in general, and somewhat less amendable when carrying the set of differential
equations in Eq. 13 to other, coarser grids.)

We now have one equation more than variables. Up to round-off errors the system
has a unique solution since the equations are dependent. But for the numerical solver
to work properly we add another unknown, sayε, to some of the equations making the
new system non-singular. Since the system without this addition has a unique solution
ε will actually turn out to be zero up to round-off errors. We have chosen to addε to
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each of thek-derivative welding equations, although other choices could be made as
well.

Having computedk we computeh and then g, on s = −0. Having computed the
values ofk over thek-grid we note that in order to get the resulting shapeΓ we only
need the values ofg(s, θ) and hence ofh(s, θ) at either one of the internal boundaries
s = ±0. We can use a discretized version of the first Cauchy-Riemann equation pre-
sented in Eq. 11 in order to approximate∂h

∂θ on s = ±0, at exactly midpoints between
thek-grid points. Specifically we write

h(−0,θj+1)−h(−0,θj)
δ =

− 1
2

(
∂k
∂s

∣∣
(−0,θj+1)

+ ∂k
∂s

∣∣
(−0,θj)

)
+ O(δ2),

(22)

where∂k
∂s

∣∣
(−0,θj+1)

and ∂k
∂s

∣∣
(−0,θj)

were already computed during the process of com-

puting k, via Eq. 17. We can easily integrate the values{h(−0, θj)}j out of their
differences computed in Eq. 22, up to a global additive constant that does not matter in
terms of the resultingΓ.

From{k(−0, θj)}j and{h(−0, θj)}j we have{g(−0, θj)}j via Eq. 8, and can get
{f(−0, θj)}j via Eq. 3, and eventuallyΓ.

3.3 A second method of welding

The second algorithm is based on the Hilbert transform. Recall that for functions on
the real line, the Hilbert transform is convolution with the singular kernel1/x and that
it multiples the fourier transform of the function by−i · sign(ξ). In our case, we are
dealing with functions on the circle and the modified Hilbert transform is convolution
with ctn(θ/2) or, equivalently, multiplication of the fourier coefficients by−i ·sign(n).
For any functionf ∈ L2(S1), let H(f) be its Hilbert transform in this sense.

Now consider the functionf+ as above. It is meromorphic on{|z| ≥ 1} ∪∞ and
with a simple pole and positive real derivative at∞, hence it has an expansion:

f+(z) = bz + a0 + a1z
−1 + a2z

−2 + · · · , b > 0.

SinceΓ is only defined up to scalings, we can normalize so thatb = 1. Thus, on the
unit circle:

f+(eiθ) = eiθ +
∑

n≥0

ane−inθ.

Let F (θ) = f+(eiθ). Then

iH(F )(θ) = 2eiθ + a0 − F (θ).

On the other hand, we know thatf− is holomorphic on{|z| ≤ 1}, so it has the expan-
sion:

f−(z) = c0 + c1z + c2z
2 + · · · .

14



Sincef−(eiθ) = F (Ψ(θ)), we get:

iH(F ◦Ψ)(θ) = (F ◦Ψ)(θ)− c0.

Thus, by subtraction, we get:

iH(F ◦Ψ) ◦Ψ(−1) − iH(F ) = 2F − (a0 + c0)− 2eiθ.

We may replaceF by F − a0+c0
2 sinceΓ is only defined up to a translation. Letting

K(F ) = i/2(H(F )−H(F ◦Ψ) ◦Ψ(−1)), we get the integral equation

K(F ) + F = eiθ (23)

for F .
We can calculateK as follows. Letχ = Ψ(−1) be the inverse of the welding map.

Then:

K(F )(θ1) =
i

2

∫

S1
ctn

(
θ1 − θ2

2

)
F (θ2)dθ2 − ctn

(
χ(θ1)− θ3

2

)
F (Ψ(θ3)dθ3

=
i

2

∫

S1

(
ctn

(
θ1 − θ2

2

)
− χ′(θ2)ctn

(
χ(θ1)− χ(θ2)

2

))
F (θ2)dθ2

and it is easily seen that the poles in the kernel cancel out. Remarkably,K is therefore
a smooth integral operator. By the Fredholm alternative,F can be solved for as(I +
K)−1(eiθ) provided thatI+K has no kernel. Running the above argument backwards,
it is easily seen that a function in its kernel would define a holomorphic function on
the compact surface gotten by welding and this would have to be a constant. These are
not in the kernel asK kills constants. Thus the welding is transformed into solving a
well-posed integral equation.

Numerically, we sampleF on some grid and need only convert the linear mapK
into a suitable matrix. The only difficult point is to not allow the singularity of the
Hilbert kernel to cause problems. To address this, we use the fact that the Hilbert
kernel can be integrated explicitly:

∫ b

a

ctn(x/2)dx = 2 log
(∣∣∣∣

sin(a/2)
sin(b/2)

∣∣∣∣
)

.

Note that even if0 ∈ (a, b), the result is correct provided the intergal is taken to be its
principal value (i.e. the limit of its values on the domain[a,−ε] ∪ [ε, b] asε → 0).

The linear mapK is then converted into a matrix as follows: letF (θ) be given
at pointsθ = θα, e.g.θα = 2πα/N . Let θα+1/2 = (θα + θα+1)/2. The divide
the interval[0, 2π] into intervalsIα = [θα−1/2, θα+1/2]. AssumeF is approximately
constant on each intervalIα. Then replacingF (θ2) for θ2 ∈ Iβ by F (θβ), and setting
θ1 = θα, the integral forK overIβ gives the matrix entry:

Kα,β = i · log
∣∣∣∣
sin(θα − θβ+1/2) · sin(χ(θα)− χ(θβ−1/2))
sin(θα − θβ−1/2) · sin(χ(θα)− χ(θβ+1/2))

∣∣∣∣ .
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4 Examples of Fingerprints and their Shapes

We implemented solvers both for the welding equations described in Eq. 13, accord-
ing to Sec. 3.2.2 and for Eq. 23 in Sec. 3.3. To go back and forth betweenS and
Diff(S1)/PSL2(R) we start with a shapeΓ ∈ S, and using the Schwarz-Christoffel
transformation (Sec. 3.1) we compute the two conformal mappings,Φ− andΦ+ of
the unit disc to the interior and exterior of the shape, correspondingly as explained in
Sec. 2.1. We may then obtain a diffeomorphismΨ from the coset inDiff(S1)/PSL2(R)
describingΓ by definingΨ .= Φ+

−1 ◦ Φ−
∣∣
S1 . To go back fromΨ to Γ we follow

Sec. 3.2.2 or Sec. 3.3 for welding in order to getf , and demonstrate that the resulting
Γ is indeed the one we started with.

The first example is a family of shapes for which the conformal mappingsΦ− and
Φ+ can be solved analytically: these are the lens or eye shaped regions bounded by
two circular arcs meeting at two corners. Figure 5 shows how the conformal map to
the interior one such shape can be constructed. To get any other eye shaped region,
one need only change the power in the third step and change the Möbius map used in
the final step. If the angle of the eye at its corners isαπ, then one usesz3 = zα

2 . The
same method gives us the conformal to the exterior, except that as the exterior angle is
(2− α)π, one usesz3 = z2−α

2 . Applying this construction to both the interior and the
exterior, we can verify that the fingerprints which give eye shaped regions are all of the
form:

Ψβ(θ) = 2 · arctan
(
tan(θ/2)β

)
, where tanβ = sign(tan)| tan |β . (24)

Here, ifαπ is the angle of the corner of the eye, thenβ = α/(2− α). The fingerprint
for one eye shape is shown in Fig. 6.

It is striking that the formula for the fingerprint of eye-shaped regions is of the
form f−1(β · f(θ)): in fact definef1 : (0, π) ←→ R by f1(θ) = log(tan(θ/2)) and
f2 : (−π, 0) ←→ R by f2(θ) = log(− tan(θ/2)). Then

Ψβ(θ) =





f−1
1 (β(f1(θ))) on (0, π)

f−1
2 (β(f2(θ))) on (−π, 0)

θ if θ = 0 or π

This formula makes apparent the identity:

Ψβ1β2 = Ψβ1 ◦Ψβ2 .

In this situation, the set of diffeomorphisms{Ψβ} is called aone parameter subgroup.
All one-parameter subgroups of the group of diffeomorphisms can be gotten this

way. Their additive form is more general. To put theΨβ ’s in this form, it’s convenient
to decompose the circle intofour intervals between the four fixed points{0, π/2, π, 3π/2}
of Ψβ . Then defineg(θ) = log(| log(| tan(θ/2)|)|) at all non-fixed points. Then:

Ψβ(θ) =
{

g−1(log(β) + g(θ)), if θ ∈ ((k − 1)π/2, kπ/2), somek
θ if θ = kπ/2, somek.

The recipe generalizes like this: take any decomposition of the circle into a set of
intervals{Ik = (θk, θk+1)}. On each interval, take a bijective mapfk : Ik ←→ R.
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Figure 5: Example: The construction ofΦ− - the conformal mapping of the interior of
the unit disc onto the interior of the “eye” shape, presented in steps. The transformation
z1 = es+iθ carries the real-plane(s, θ) to the complex-plane circle (most left),z2 =
1−z1
1+z1

carries the circle to a half-plane (second left),z3 = z2
3/2 carries the half-plane to

an “angled” half-plane (second right), andz4 = 1−z3
1+z3

carries the angled half-plane to
the eye shape (most right). Note that the same maps take the exterior of the unit circle
to the exterior of the eye, except that the middle map must be replaced byz′3 = iz

4/3
2 .

We can work out the fingerprint by going fromz1 to z2 to z3 which we equate toz′3,
then back toz2 and toz1 without going toz4 at all. Using the fact that ifz1 = eiθ,
thenz2 = −i tan(θ/2), we get the formulaΨ(θ) = 2arctan(±| tan(θ/2)|1/2) where
the sign is that of the tangent.

Then define:

Ψα(θ) =
{

f−1
k (α + fk(θ)), if θ ∈ Ik,

θ, if θ = θk, somek.

Forα infinitesimal, this diffeomorphism is given by the vector field:

v(θ) =
∂

∂α
f−1

k (α + fk(θ))
∣∣∣
α=0

=
(
f−1

k

)′
(fk(θ)) =

1
f ′k(θ)

.

In this way, every vector fieldv defines a one-parameter subgroup, as is well known
from the theory of Lie groups.

Here’s an elegant example of this: start with the Fourier basis for vector fields –
vn(θ) = sin(nθ), n ≥ 2. The zeros of these vector fields are the2n points{πk/n, 0 ≤

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 6: On the left, the fingerprint of the eye shape as given by Eq. 24; in the middle
and right, the functionsk(s, θ) andh(s, θ) used in Sec. 3.2.2 to construct the shape
from its fingerprint.
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Figure 7: The shapes obtained by welding with(2/n)arctan(α tan(nθ/2)) for (n, α)
equal to (2,2), (2,50), (5,2) and (4,50).

k < 2n}: these will be the fixed points of the corresponding one-parameter subgroups.
By integrating, we solve forfk and it comes out:

fk(θ) =
1
n

log(| tan
n

2
θ|).

Welding, one finds wonderfuln-petalled ‘flowers’ coming out as the corresponding
shapes. As you move out on the one-parameter subgroup, increasingα, the petals
start as small ripples, then extend and form alternating large circular evaginations and
invaginations. This is shown in Fig. 7.

Another simple example is the square. As mentioned above, the interior and exte-
rior conformal maps are given by simple Schwarz-Christoffel expressions7, namely:

Φ−(z) =
∫ z

0

dζ√
1− ζ4

Φ+(z) = z +
∫ z

∞

(√
ζ4 − 1
ζ2

− 1

)
dζ

From the last two examples, you see that at corners, the derivative of the conformal map
on the interior goes to∞ (shown by the spreading out of the internal radial lines at the
corners) while the derivative of the conformal map on the exterior goes to 0 (shown
by the bunching up of the external radial lines). This is seen explicitly by noting that
the derivative of the S-C formula is just its integrand and this is 0 (resp.∞) at convex
(resp. concave) corners. Thus the derivative of the fingerprint is∞ at convex corners,
0 at concave corners. If the shape has high positive curvature at some point but not

7For the modifications used in the expression for the exterior, see [7], p. 52.
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Figure 8: On the top left, internal and external conformal parametrization of the square.
Top right, the fingerprint of the square; in the bottom, the functionsk(s, θ) andh(s, θ)
used in Sec. 3.2.2 to construct the shape from its fingerprint.

infinite as in a convex corner, we will find that the fingerprint has large derivative at
the corresponding point; while points with large negative curvature, not−∞ as in a
concave corner, the fingerprint has very small derivative at the corresponding point.

An interesting family of fingerprints are those coming from long elongated blobs,
i.e. elliptical or ’cigar-shaped’ blobs. One might have expected that these come from
the one-parameter subgroup given by the vector fieldsin(2θ), but, as we saw, these
shapes develop concavities. This is because they are symmetrical with respect to in-
versionz 7→ 1/z. Although the exact fingerprint for specific large eccentricity ellipses
or long blobs is hard to compute exactly, the following argument gives fingerprints for
one family of long blobs, as one verifies by welding. To construct this, we use 2 simple
conformal maps which don’t quite match up and then we force them to match up! The
exterior of a circle can be mapped to the whole plane minus the slit[−r + r] by the
conformal mapw = (r/2)(u+1/u). In this map, the exterior of a circle|u| ≥ λ, for λ
slightly greater than 1, is carried to the exterior of an ellipse surrounding the slit, with
width r(λ+1/λ) ≈ 2r and small heightr(λ−1/λ). Unfortunately, the conformal map
to the interior of the ellipse is not given by elementary functions. But one can map the
interior of the circle to the strip|imag(w)| < π by the mapw = 2 log((1+z)/(1−z)),
and this maps the interior of the circle|z| ≤ µ, for µ slightly less than 1, to the interior
of a cigar-shaped region inside this strip. This blob has height slightly less than2π and
width 4 log((1 + µ)/(1− µ)). Both maps are illustrated in Figure 9.

The images of these circles roughly match up if we require that2π = r(λ − 1/λ)
and4 log(((1 + µ)/(1 − µ)) = r(λ + 1/λ). We make an approximate fingerprint by
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Figure 9: The construction of an explicit formula for the fingerprint of a long blob: on
the left, (i) the red curve is an ellipse and its exterior is uniformized byw = (r/2)(u +
1/u), (ii) the interior of the blue curve is uniformized by the mapw = 2 log((1 +
z)/(1 − z)) applied to a circle with radius slightly less than 1. The fingerprint on the
right is made by matching points on these with the same real part and the yellow curve
on the left is the result of welding with this fingerprint.

mapping a point on the circle|z| = µ to that point on the circle|u| = λ for which the
real parts of the correspondingz-values are equal. This means:

Re
(r

2
(
λeiθ1 + λ−1e−iθ1

))
= Re

(
2 log

(
1 + µeiθ2

1− µeiθ2

))
.

or

r

2
(λ + λ−1) cos θ1 = log

(∣∣∣∣
1 + µeiθ2

1− µeiθ2

∣∣∣∣
2
)

= log
(

1 + ν cos θ2

1− ν cos θ2

)
, ν =

2µ

1 + µ2

Simplifying, we get the formula for the fingerprints of long blobs as:

θ1 = arccos

(
log

(
1 + ν cos θ2

1− ν cos θ2

) /
log

(
1 + ν

1− ν

))

In this form, the fingerprint has high derivatives at 2 points, corresponding to the 2
ends of the blob and the interior conformal map takes 0 to the center of the blob. The
same shape, however, is defined byΨblob1 ◦ A for any Möbius mapA. In particular,
we get such a fingerprint if the interior map is chosen to take 0 to a point at one end of
the blob. Then the fingerprint will only have high derivatives at one point. With some
experimentation, one finds a simple form for such a fingerprint:

Ψblob2(θ) =

{
2arctan

(
C1

√
log(1 + a tan2(θ/2))

)
, if θ ∈ [−θ0, θ0]

2arctan(tan(θ/2) + C2sign(θ)) , if θ ∈ (−π, π)− [−θ0, θ0]

whereC1, C2 are chosen to make the above continuous with continuous derivatives8.
We can use the formula for elongated blobs to illustrate the power of the group law

in Diff(S1). SupposeΨ1 andΨ2 are the fingerprints of 2 shapes. We can combine

8In fact, if b = a. tan(θ0/2), c = 1+a. tan2(θ0/2), thenC1 =
√

log c.c/b andC2 = (log(c/e).c+
1)/b.
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them in various ways using the fingerprintsΨ1◦A◦Ψ2, for various M̈obius mapsA. As
A varies, the mode of combination varies. We takeΨ1 = Ψblob2 to be the fingerprint of
a suitable blob andΨ2 = Ψboom to be the fingerpint of a ‘boomerang’ shape computed
by Schwarz-Chistoffel. To combine them, we will first pick the constantsa andθ0in the
blob fingerprint so thatΨblob1 is close to the identity over much of its domain, and has
very large derivative at one point. Then we combine them with a rotationR inserted.
In fact, to put the boomerang back in a fixed orientation, we show in Fig. 10 the shapes
defined byR−1 ◦Ψblob1◦R ◦Ψboom. The effect will be to create a new shape in which
a blob is glued to the boomerang at a point depending on where this derivative is large.

Finally, we look at two more complex shapes. The first is a silhouette of a cat.
For this we apply the Schwarz-Christoffel package in order to obtainΨ(θ). Hence
Ψ(θ), Ψ′(θ) andΨ−1(θ) involved in Eq. 13 are computed numerically. We reconstrcut
the shape using the first welding method. The result is shown in Fig. 11. Note again
the close similarity of the computedΓ (right) to the original shape (left). Recall from
Eq. 14 the wayk andh (Fig. 11, bottom row) describeΓ. In our current straightforward
implementation we are limited in the size of the(s, θ)-grid we can solve for. This
results in the minor distortions ink, h and the resultingΓ.

The final example is the silhouette of the upper body of a person (see Fig. 12).

5 The WP Riemannian metric onS
5.1 The WP norm on the Lie algebra ofDiff(S1)

The Lie algebra of the groupDiff(S1) is given by the vector spacevec(S1) of smooth
vector fields on the circle:v(θ)∂/∂θ wherev(θ + 2π) = v(θ). In general, the adjoint
action of a group elementg ∈ G is the linear map from Lie(G) to itself induced by the
conjugation maph 7→ g−1 ◦ h ◦ g from G to itself. Explicitly, this mapsv ∈ vec(S1)
to (v ◦ g)/g′, i.e.adg(v) = (v ◦ g)/g′.

We can expand such av in a Fourier seriesv(θ) =
∑∞

n=−∞ aneinθ (wherean =
a−n). The Weil-Petersson norm onvec(S1) is defined by:

||v||2WP =
∞∑

n=2

(n3 − n)|an|2.

The null space of this norm is given by those vector fields whose only Fourier coeffi-
cients area−1, a0 anda1, i.e. the vector fields(a+b cos(θ)+c sin(θ))∂/∂θ, which are
exactly those tangent to the M̈obius subgroupPSL2(R), i.e. in its Lie algebrapsl2(R).

The motivation for this particular definition is the fact that, for allφ ∈ PSL2(R)
andv ∈ vec(S1), one can verify that

||adφ(v)||WP = ||v||WP .

5.2 Extending the metric toDiff(S1)/PSL2(R)

Riemannian metrics on coset spacesG/H which areinvariantby all left multiplication
mapsLg : G/H → G/H, g ∈ G are given by norms||v|| on the Lie algebra ofG
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Figure 10: Top row: the boomerang shape, its fingerprint, the fingerprint of the blob
and the fingerprint of a composition. Note the very large derivative on the boomerang
fingerprint for two ends, and the very small derivative for the concave corner. The blob
fingerprint has one point of high derivative corresponding to the far end, the origin
being placed at the near end. A rotation is used in the composition, and the small
circles mark corresponding points in the graphs of the 3 diffeomorphisms. On the
bottom row: shapes defined by compositions of the fingerprints with various rotations
and constants. The composite shapes can be interpreted as the boomerang plus a blob
at some point of its boundary – short on the left, much longer than the boomerang itself
on the right. In the composite shapes on the left, the blob’s constants area = e20, on
the righta = e50, while θ0 = .05 radians in both cases. For each set of constants,
rotations throughkπ/10 radians have been put in the middle so that the protrusions are
placed on the boomerang at different points of its boundary.
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Figure 11: Top: the conformal mappingsΦ− andΦ+ carrying a homogenous radial
grid (left, drawn schematically) onto the interior and exterior of the cat silhouetteΓ;
middle line: the fingerprint of the cat and the cat, as reconstructed by welding following
the first method; bottom: the harmonic functionsh andk used for reconstruction.

which are zero on the Lie subalgebra ofH and which satisfy||adh(v)|| = ||v|| for all
h ∈ H. Here the norm on the tangent spaceTgH,G/H to G/H at anygH is gotten
from the norm on the Lie algebra via the isomorphism

DLg : Lie(G)/Lie(H) = TeH,G/H → TgH

given by the derivative ofLg at the identitye of G. In particular, this applies to
Diff(S1) and PSL2(R). BecauseDiff(S1)/PSL2(R) ∼= S̄, we have now con-
structed a homogeneous Riemannian metric onS also.

Next let’s translate this into concrete terms. Take any pathΨ(t, θ) in Diff(S1),
wheret ∈ [0, t0] ⊂ R andΨ(t, θ + 2π) = Ψ(t, θ) + 2π. The tangent vectors to
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Figure 12: A truncated human figure. On the left, the conformal parametrization of
the interior and exterior; in the middle, the fingerprints; on the right, the reconstruction
using the first method.

this path are given by∂Ψ(t,θ)
∂t = Ψt(t, θ) or, translated back to the Lie algebra using

DL
(−1)
Ψ , by Ψt(t, θ)/Ψθ(t, θ). We expand the tangent vector at everyt ≥ 0 by its

Fourier series inθ:

Ψt(t, θ)/Ψθ(t, θ) =
∞∑

n=−∞
an(t)einθ, (25)

wherea−n(t) = an(t) because the vector field is real. Its Weil-Petersson norm is then
given by

‖Ψt(t, θ)/Ψθ(t, θ)‖WP
.=

∞∑
n=2

|an(t)|2(n3 − n) (26)

and the length of the path is by definition:
∫ t0
0

√∑∞
n=2 |an(t)|2(n3 − n)dt.

It is a wonderful fact that all sectional curvatures of the Weil-Petersson norm are
non-positive [5]. Because of this, it is to be expected that there is a unique geodesic
joining any two shapes9 Γ1, Γ2 ∈ S. Because minimizing energy and length are equiv-
alent, these geodesics are the solutions of the following minimization problem

MinΨ(t,θ),t0

∫ t0

t=0

∞∑
n=2

|an(t)|2(n3 − n)dt, (27)

whereΨ(0, θ) andΨ(t0, θ) are the diffeomorphisms corresponding to the two given
end-point shapes.

6 Calculating the geodesics

We solve for the geodesics{Ψ(t, θ)}t∈[0,1], whereΨ(t, θ) ∈ Diff(S1) ∀t ∈ [0, 1],
parameterized by ’time’t between the two given end-point shapesΨ0

.= Ψ(0, θ) and
Ψ1

.= Ψ(1, θ). The length of the geodesic between each two given end-point shapes is
obtained by minimizing the Weil-Petersson norm

9Because the space is infinite dimensional, this requires proof and this aspect of the metric does seem to
have been discussed in the literature.
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∫ 1

0

‖Ψt(t, θ)/Ψθ(t, θ)‖WP dt, (28)

whereΨ0 and Ψ1 are the diffeomorphisms (fingerprints) corresponding to the two
given end-point shapes (see Sec. 5.2).

Minimizing the norm in Eq. 28 is equivalent to minimizing the energy

E(Ψ0, Ψ1)
.=

∫ 1

0

∞∑
n=2

|an(t)|2(n3 − n)dt, (29)

(cf. Sec. 5.2), where

Ψt(t, θ)/Ψθ(t, θ) =
∞∑

n=−∞
an(t)einθ (30)

We discretizet ∈ [0, 1] into M homogenously spaced pointstu = u
M , u =

0, 1, 2, ...,M , and we discretizeθ ∈ [−π, π] into N homogenously spaced points
θk = −π + 2πk

N , k = 0, 2, ..., N − 1. We will always chooseN = 2n, andM = 2m

for suitablen,m. We discretize the geodesics using a(k, u)-grid into {Ψ(tu, θk)}k,u,
wherek = 0, 2, ..., N − 1, and u = 0, 2, ..., M . Both Ψ̃0

.= {Ψ(t0, θk)}k and
Ψ̃1

.= {Ψ(tM , θk)}k are fixed as the end-point diffeomorphisms. In addition it is con-
venient for computing the energy (Eq. 29) to discretize the parametert in the integral
using also a shiftedu-grid, namely ans-grid for whichts = 1

2M + s
M , s = 1, 2, ...,M .

We denotets−
.= ts − 1

2M andts+

.= ts + 1
2M , so that the gridss− ands+ coincide

with points of theu grid.
We can therefore discretize

Ψθ(ts, θk) ∼= 1
2

(
Ψ(ts+ , θk+1)−Ψ(ts+ , θk−1)

4π/N
+

Ψ(ts− , θk+1)−Ψ(ts− , θk−1)
4π/N

)
,

(31)
and

Ψt(ts, θ) ∼= Ψ(ts+, θ)−Ψ(ts−, θ)
1/M

, (32)

thus obtaining the following discretization:

Ψt(ts, θk)
Ψθ(ts, θk)

∼=
(

MN

8π

)
Ψ(ts+ , θk)−Ψ(ts− , θk)

Ψ(ts+ , θk+1) + Ψ(ts− , θk+1)−Ψ(ts+ , θk−1)−Ψ(ts− , θk−1)
(33)

To compute the geodesics{Ψ(tu, θk)}k,u, we will therefore minimize the dis-
cretized version of Eq. 29

Ẽ(Ψ̃0, Ψ̃1)
.=

M∑
s=1

N−2∑
n=2

|an(ts)|2(n3 − n), (34)

where∀s = 1, 2, ...,M andk = 0, 1, ..., N − 1 we have the discrete Fourier transform

Ψt(ts, θk)
Ψθ(ts, θk)

=
1
N

N/2∑
n=0

an(ts)e2πink/N , aN−n(ts) = an(ts). (35)
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(cf. Eq. 30, but now with maximum frequencyN/2).
We denoteẼ0,1

.= Ẽ(Ψ̃0, Ψ̃1), Ψk,u
.= Ψ(tu, θk), andΨs±,u

.= Ψ(ts± , θk).

6.1 Direct computation of the energy gradient∂Ẽ0,1/∂Ψk,u

For introducing numerical, iterative minimization of the energyẼ0,1 it is useful to de-
velop an efficient formula for directly computing its gradient∂Ẽ0,1/∂Ψk,u. To obtain
this we define

ŵk
.= k̃3 − k̃, wherek̃ = min(k, N − k). (36)

We then define{wl}N−1
l=0 to be the discrete Fourier transform of{ŵl}N−1

l=0 . That is

wl =
N−1∑

k=0

ŵke−2πikl/N . (37)

Denoting

fk,s(Ψ) .=
Ψt(ts, θk)
Ψθ(ts, θk)

, (38)

we can rewriteẼ0,1, up to a multiplicative constant in the following way

Ẽ0,1 =
∑

i,j,s

wi−jfi,s(Ψ)fj,s(Ψ). (39)

(by simply substituting Eq. 37 and Eq. 38 in Eq. 39 to satisfy Eq. 34 and Eq. 35.)
Hence

∂Ẽ0,1

∂Ψk,u
= 2

∑

i,j,s

wi−jfi,s(Ψ)
∂fj,s(Ψ)
∂Ψk,u

. (40)

Note that∂fj,s(Ψ)
∂Ψk,u

for every entry(k, u) is only different from0 in 6 of its (j, s)
entries. That is, whens− = u or s+ = u, and j = k − 1, k, k + 1. Denoting
u± = u± 1

2M , we can break Eq. 40 into six sums, each of which is efficiently computed
through a multiplication of a fullN ×N matrix of the formwi−j with a sparseN ×M
matrix of the formfi,s.

6.2 Choosing a representative fingerprint in each shape coset

Recall that every shape is represented by an equivalence class of diffeomorphisms,
namely a coset inDiff(S1)/PSL2(R). This creates ambiguities in the choise of fin-
gerprintΨ of each shape that need to be resolved before making a numerical computa-
tion of the geodesic between two shapes. The most natural way to obtain a canonical
representative of each coset is to choose the unique diffeomorphism in that coset which
fixes three prescribed values (angles).

Specifically, suppose the coset corresponding to a shape is given by the subset

{Ψ ◦A|Ψ ∈ Diff(S1), A ∈ PSL2(R)} ⊂ Diff(S1).
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For anyΨ we can find a uniqueA so thatΨ ◦ A fixes three prescribed angles, thus
obtaining a unique fingerprint representationΨ ◦A for the cosetΨ · PSL2(R).

Using Driscoll’s Schwarz-Christoffel software package we compute a fingerprint
Ψ for each shape, such thatΨ(−π) = −π. We then composeΨ with A ∈ PSL2(R),
denotingΨ̂ .= Ψ ◦ A such thatΨ̂(−π) = −π, Ψ̂(α) = α and Ψ̂(β) = β, where
α = −π/4 andβ = +π/2. We obtain this by taking

A(θ) = 2 · arctan(a + b tan(θ/2)), (41)

which satisfiesA(−π) = −π for everya, b ∈ R, and fix a and b so thatA(α) =
Ψ−1(α) andA(β) = Ψ−1(β). That is, by Eq. 41 we solve fora andb such that

a + b tan α
2 = tan(Ψ−1α

2 )
a + b tan β

2 = tan(Ψ−1β
2 ).

(42)

6.3 Minimizing the energyẼ0,1

As we have seen in the previous section, we may assume that the fingerprintsΨ̃0 and
Ψ̃1 of the end-point shapes satisfỹΨ0(−π) = Ψ̃1(−π) = −π, Ψ̃0(α) = Ψ̃1(α) = α

and Ψ̃0(β) = Ψ̃1(β) = β. We then minimizeẼ0,1 (see Eq. 39) with all the inter-
mediate diffeomorphisms along the geodesic keeping the three angles−π, α andβ
fixed. That is, we minimizẽE0,1 with respect to the scalar variablesΨ(tu, θk), for
u = 1, 2, ..., M − 1 andk ∈ {0, 1, ..., N − 1}, k 6= 0, 3N/8, 3N/4. For these remain-
ing three values ofk corresponding toθ = −π, α, β we keep the values the diffeomor-
phisms fixed through the minimization, i.e.Ψ(tu, θk) = Ψ̃0(tu, θk) = Ψ̃1(tu, θk) =
−π,−π/4 or + π/2, ∀u = 1, 2, ...,M − 1.

We start withM = 8 andN = 64, and set as the initial approximation for all
intermediate diffemorphisms a fingerprint of the circle shape. Specifically we set

Ψ(tu, θk) = θk, (43)

for u = 1, 2, ..., M − 1 andk = 0, 1, ..., N − 1.
We then minimizeẼ0,1 by gradient descent, starting at the current approximation

to the solution (the initial approximation from Eq. 43), and minimizing the energy
along the direction of the gradient (using the ‘line search’ method). In practice, we use
the Matlab optimization functionfminnuc . We then take this minimizing solution
for (N = 64,M = 8), and interpolate it in the variables{θk}N−1

k=0 to be an initial
approximation for the higher resolution case,(N = 128,M = 8), and minimize again
the same way usingfminunc . We interpolate into even higher resolution one more
time to solve for(N = 256,M = 8).

7 Examples of geodesics

Below are 4 goedesics computed by the algorithm above. Each of these figures should
be read from left to right and top to bottom, starting at the top-left and ending at the
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bottom-right. Note the strong tendency to revert to shapes nearly equal to circles in the
middle: this is a reflection of the fact the space of shapes is negatively curved in this
metric.

Figure 13: A geodesic: rotating the ellipse byπ/3, clockwise.

8 Summary and Conclusions

We introduce a metric space-of-shapes that arises from conformal mappings, through
the mathematical theory of complex analysis. In this space, the shortest path between
each two shapes is unique, and is given by a geodesic connecting them, providing a path
for morphing between them. Every shape is represented in this space by an equivalence
class of “fingerprints” each of which is a diffeomorphism of the unit circle to itself.
We solved the welding problem to allow moving back and forth between shapes and
this space-of-shapes, thus allowing the continuation of the research of shapes within
this space. Indeed, our next step will be to compute the geodesics between shapes.
We expect these to reflect the appealing structure-preserving properties of conformal
mappings, and to be very relevant to the comparison and classification of shapes.
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