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Hierarchy and adaptivity in segmenting visual

scenes
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Finding salient, coherent regions in images is the basis for many
visual tasks, and is especially important for object recognition.
Human observers perform this task with ease, relying on a system
in which hierarchical processing seems to have a critical role'.
Despite many attempts, computerized algorithms*~ have so far
not demonstrated robust segmentation capabilities under general
viewing conditions. Here we describe a new, highly efficient
approach that determines all salient regions of an image and
builds them into a hierarchical structure. Our algorithm, segmen-
tation by weighted aggregation, is derived from algebraic multi-
grid solvers for physical systems®, and consists of fine-to-coarse
pixel aggregation. Aggregates of various sizes, which may or may
not overlap, are revealed as salient, without predetermining their
number or scale. Results using this algorithm are markedly more
accurate and significantly faster (linear in data size) than previous
approaches.

We present an algorithm (flow chart in Fig. 1a) that adaptively
assembles pixels into small aggregates according to resemblance in
luminance. The small aggregates are then assembled in a similar
manner, according to resemblance in their properties, into still larger,
more complex aggregates. As the aggregates are formed at each level,
their statistical properties are accumulated, and their salience is
evaluated according to differences compared with their neighbours’.
Figure 1b shows a salient segment (IIT) composed of a hierarchy of
aggregates at lower levels (I, II). This increase in both the size and
complexity of successive, higher-level aggregates is reminiscent of the
primate visual system, in which neurons in successively higher visual
areas respond to successively more complex stimulus features, within
increasingly larger fields®”.

a
Construct fine-level graph: assign coupling weights between
neighbouring pixels according to intensity contrast
Create coarser-level graph:
1. Select representative nodes as seeds
R;ﬁﬁ:t 2. Aggregate other pixels around seeds, based on their couplings
number || 3. Calculate aggregate (segment) properties
of nodes
1 4. Derive coarse-level couplings from fine-level couplings
and modify by similarity in aggregate properties

!
4‘ Evaluate segments’ saliency
v

‘ Determine boundaries of salient segments by a top-down process

Computationally, it is useful to think of segmentation within the
framework of cuts in graph theory'. Each pixel in an image (Fig. 2a)
corresponds to a node in a graph (Fig. 2b), coupled to each of its four
neighbours according to their similarity in luminance level. The goal
is to ‘cut’ this graph into pieces. A salient segment in the image is one
for which the similarity across its border is small, whereas the
similarity within the segment is large (for a mathematical descrip-
tion, see Methods). We can thus seek a segment that minimizes the
ratio of these two expressions. Despite its conceptual usefulness,
minimizing this ‘normalized cut’ measure is computationally prohi-
bitive, with cost that increases exponentially with image size'.
Approximations to the optimal cut can be obtained using spectral
methods, with the most efficient approximation to date having a

computational cost proportional to n2 (ref. 11) (where n is the
number of pixels), but this supra-linear cost seems to be yet too
demanding for the brain, which deals with very large images.
Moreover, finding salient segments in real images is by nature a
problem of multiple scales. Pixel-scale measurements (for example,
intensity and colour) alone are insufficient to characterize segments,
and larger-scale measurements (for example, average intensity and
texture) at multiple scales must be incorporated as well. However,
there is an inherent ‘chicken-and-egg’ difficulty associated with
applying coarser measurements to images: when coarse-scale
measurements are taken near the boundaries of segments they
mix their statistics, and smooth the transition between them (see
Supplementary Fig. 1b). Consequently, it is difficult to locate the
boundaries between the segments. Ideally, we should apply coarse
measurements only within segments, but segment boundaries

Figure 1| SWA. a, Flow chart. b, A hierarchy
composing a salient segment and its background.
The leopard segment (III) is shown with two out
of the ten levels of aggregates composing it (I, IT).
Original image is shown at the top.
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Figure 2 | The multiscale normalized cut graph approach. a, A simple
image. b, Pixels of the image are nodes, represented by filled circles; strong
coupling is represented by thick red lines, and weak coupling by thin blue
lines. ¢, Adaptive coarsening. Each pixel in b is strongly coupled to one of the
chosen seeds shown here (thus, pixels strongly coupled to a given seed form
an aggregate). Couplings between the seeds are shown. d, An additional
coarsening level. In this case, this is the level at which the salient segment is
detected.

are unknown before the measurements are taken—hence, the
chicken-and-egg difficulty. As detailed below, our hierarchical algo-
rithm applies an adaptive coarsening process that solves this pro-
blem. (See Supplementary Fig. 1 for an example of the preservation
of boundaries by aggregates in our algorithm, compared to regular
coarsening.) In addition, the complexity of our algorithm is linear
with the number of pixels in the image, on a regular serial computer,
and only logarithmic with the image size on a parallel computer.
Therefore both the results and computational speed for obtaining
them are qualitatively improved under our segmentation by
weighted aggregation (SWA) algorithm.

Inspired by algebraic multigrid solvers for physical systems' we
apply a multiscale approach for recursively reducing the normalized-
cut minimization problem in a non-iterative manner. We start by
choosing about half of the pixels as representatives, which we call
seeds: these are chosen so that every pixel in the original image is
strongly coupled (that is, similar) to at least one seed adjacent to it®
(Fig. 2¢). We then define the minimization problem only for the seeds,
and subsequently approximate the solution for the whole image
using an interpolation matrix that is set according to the coupling
between neighbouring pixels in the fine scale (see Methods).

In addition to significantly reducing the number of nodes in the
graph, this coarsening creates small aggregates of pixels adapted to
the image at hand, the intensities of which are similar. Every pixel
belongs to either one or several aggregates, each centred at one seed,
by an interpolation weight proportional to the coupling between that
pixel and the seed. We continue recursively (Fig. 2d), aggregating
collections of nodes into much fewer nodes in the coarser-level
graphs, thus creating a pyramid of graphs with larger aggregates of
pixels in its coarser levels. Salient segments emerge in the appropriate
level of the pyramid as nodes that are coupled weakly to their
neighbours (for example, Figs 1b and 2d). Consequently, the mini-
mization problem is simplified into one of looking for salient nodes
at all levels of the pyramid.

Moreover, we use this approach to go far beyond cut minimiza-
tion. After each coarsening step, coarse measurements are taken over
the newly formed aggregates and are subsequently used to affect the
aggregation process. (One such measure, shown in Supplementary
Fig. 1, is the average intensity of the aggregate.) These multiscale
measures for each aggregate include statistics characterizing the
textures that appear in the image: the variance of the mean intensities
and the second-order shape moments of its sub-aggregates at each
finer level”. Consequently, each aggregate is represented by a multi-
scale set of characteristic measurements, efficiently summarizing its
detailed pixel information. These measures are calculated recursively,
and hence very efficiently: every measure at any level is determined
directly from measures computed at the previous, finer levels. This
treatment of texture replaces the need to apply many filters to the
image*'*", which suffers from the chicken-and-egg difficulty and
from higher complexity.
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Figure 3 | Segmentation results for eight challenging images of animals on
cluttered backgrounds. Transparent colours are overlaid over the original
image (left) to mark segments (second left). In the top four images, we zoom
into regions (marked with red squares) that are strikingly ambiguous to
segment, and show our successful global-segmentation results. In the lower
four images we zoom into regions (marked with blue squares) that have very
different textural properties, but were nevertheless correctly grouped
together into the same segment.

All of these measurements are incorporated into the segmentation
process by affecting the coupling (similarity) between neighbouring
aggregates (see Methods). Thus, analogous to the coupling between
pixels according to similarity in luminance level, the coupling
between aggregates reflects statistical similarities that could not be
detected at finer levels. Note that this means that we are using
contrast between region properties as a qualitative improvement of
the process, in addition to contrast across boundaries in the simple
normalized-cut approach.

The coarsening process detailed above keeps—out of the vast
amount of data in the image—only the information necessary to
segment it. In particular, nodes at coarse levels do not carry with
them the precise boundary location of the corresponding segment. A
top-down process can be used upon the detection of any salient
segment in order to locate its exact boundary. We roll down the

© 2006 Nature Publishing Group



NATURE

Figure 4 | Similarity search by parts. Top: three example queries (cyan,
pink, orange frames) with the original images on the left. The segmentation
of each image is shown on the right in each frame, with the target query
segment (user-selected) outlined in yellow: lower flank of left frame, right

pyramid to a desired fine level, by multiplying the interpolation
matrices relating each two consecutive levels. We take advantage of
this top-down procedure to improve further the segmentation by
an additional energy-minimization sweep at each level as it is
encountered (see Methods), together with prodding the weighted
interpolations towards boolean associations, thus sharply delineating
the segment boundary.

The algorithm is extremely efficient, as only its initial, very simple
aggregation is done at the level of individual pixels. Complexity per
aggregate increases linearly with the level, whereas their number
drops geometrically. Moreover, the algorithm can use massive
parallel processing, especially at the finer (the most expensive) levels.
Our current implementation takes 2s to complete the bottom-up
aggregation of a 450 X 450 image using a Pentium 4, 1.6-GHz
processor. Further optimization is still possible for the runtime to
take significantly less than a second, and even down to a tiny fraction
of a second on a parallel computer.

We tested our method on a set of challenging natural images
containing animals camouflaged against their backgrounds. Whereas
humans may use object knowledge aided by memory to segment
such images, our approach has been to find out how far segmentation
can reach using input-driven processing only. Figure 3 shows a
typical set of results. In each case we present the automatically
detected level in the pyramid containing the most salient segment.
In all examples the animal was segmented in one piece by our
method, out-performing other leading algorithms (see Supplemen-
tary Fig. 2). Our method succeeds in these challenging images, in
which a cluttered background is often locally difficult to distinguish
from the animal segment. In the top four examples we zoom in on an
area where local differences in the original image (second panel from
right) are hard to detect, yet the multiscale considerations in our
algorithm yield a successful segmentation (far right panel). Note, for
example, the fine difference detected along the squirrel’s back.
Furthermore, despite differences between areas within a segment,
our method captures the essential similarities well enough to join
them together into a coherent segment. This is exemplified in the
bottom four examples, which show two widely differing areas that are
segmented together (two right panels). Two regions with very
different luminance levels are segmented together in the lion example,
because of texture similarity. Even such seemingly different areas as
those belonging to the shell (bottom example) are joined together
because their orderly oriented texture makes them more similar to
each other than to neighbouring areas. In Supplementary Fig. 2 we
compare SWA over the same set of images to several available state-
of-the-art segmentation algorithms, and demonstrate its superior
performance.

To demonstrate the utility of the hierarchical segment representation
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lens and left lens for the left, middle and right examples, respectively.
Bottom: 27 images from the database (out of 110; see Supplementary Fig. 3),
with coloured boxes indicating the most similar sunglasses found for each

query.

of the image provided by the SWA for higher-level visual tasks, we
next applied it to a search task. The task was to find within a database
of objects—sunglasses in this case—those that most resemble a target
item in some feature (for example, shape of lenses), by matching
aggregated properties of salient segments in the SWA hierarchy. The
system pre-segments all images, and a query consists of selecting a
segment within the target image. The segment with the most similar
aggregated properties (shape, colour) within all database images is
instantaneously found by searching through all summarized proper-
ties, and the sunglasses it belongs to are presented as the most similar
to the query image. Figure 4 presents the results of three queries using
this system, and Supplementary Fig. 3 presents the full database. The
success of this system highlights the value of a robust hierarchical
segmentation for higher-level tasks, importantly allowing a com-
parison of the same semantic object parts (for example, lenses)
within different images, thus comparing ‘apples to apples’ and
‘oranges to oranges.

Our SWA algorithm constructs a representation of the image as a
hierarchy of adaptive segments and finds the most salient segments
without predetermining their number or size. Many common objects
can naturally be described as a hierarchical collection of segments—
thus, obtaining a hierarchy of salient segments is a useful novel
framework within which to tackle object recognition. Our framework
naturally allows the incorporation of top-down effects, expressing
prior knowledge about properties of visual objects, as well as effects
of context and attention, through the modification of couplings in
the adaptive structure. For example, a probabilistic preference for
smooth edges can be used in a top-down manner to join together
aggregates with co-aligned boundaries even when lighting conditions
make them appear different'. The simple top-down process already
implemented in our algorithm suggests that although bottom-up
mechanisms quickly segment the image into meaningful regions,
feedback is needed for the accurate delineation of segment bound-
aries, as suggested also for the human visual system'”. The increase in
the size of aggregates and the complexity of their characteristics when
moving up the hierarchy resemble well known properties of the
primate visual system, as does the importance of interactions
between the different levels'. Precise localization of segment borders
may well be an important role for the massive feedback projections in
the visual cortex.

METHODS

The image is regarded as a weighted graph G = (V; E), V being its set of n
nodes, each corresponding to a pixel, v; (i = 1,...n), and E the set of undirected
weighted edges w jj, connecting neighbouring nodes v, v;. wj; = e~li=Il where
I, I; are the intensities of pixels i, j, respectively, and « is a globally set, positive
real constant. We conveniently treat W as a symmetric matrix, with all w;; = 0
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and w;; = 0 if v;and v; are not neighbours. We further associate with the nodes a

state vector u = (uy,uy, ..., u,), and define the energy
2
dmwilui —4)* u'Lu
I(u) = =2 ij j L )
Zi>jW1j“i“j JuTWu

where L, the so-called laplacian matrix of the graph, is set to satisfy the equality
between the numerators, and W between the denominators. Any boolean
assignment of u that yields a low-energy value I'(u) corresponds to a salient
segment S in the image: the pixels i € {1,2, ..., n} for which u; = 1 are the pixels
in S, otherwise u; = 0.

If we permit real-value assignments to u, the minimum for I is obtained by
the solution of the generalized eigen problem Lu = AWu with minimal positive
eigenvalue A. The algebraic multigrid procedure for solving this eigen problem
consists of choosing a representative subset of N = pixels in the image, which
we call seeds and denote by renaming their corresponding state variables u;s to
be U= (Uy, U,,...,Uy). For suitable choice of representatives®, the minimizing
eigenvector satisfies u = PU, where the interpolation P is a sparse matrix
{pij}; assuming for simplicity of notation that Uy = uy, (k=1,2,...,N), then
pix =wix/ 3wy for i> N; whereas for i =N, py =0 except for p; =1,
(1 =1,k = N). Substituting the interpolation relation in equation (1), we seek
to minimize

UTCP'LPU _ 3 WUk — Up?
;UT(PTWP)U P WrUkU

where {iy} are set to satisfy the equality between the numerators, and {Wy}
between the denominators. I'(U) may effectively be approximated by replacing
{Wi} with the simpler {#y}. We call {ivy} the coarse graph weights. By this
coarsening we reduce the original minimization problem in u to a much smaller
minimization problem in U, the solution of which approximates the solution in
u via the interpolation relation. Finally, this coarsening procedure can be
repeated recursively, level after level’.

We next modify the coarse graph weights to reflect also contrast in properties
at the current coarse level, in addition to contrast at the finer level. This is done
by collecting a vector of multilevel properties fy = (f1,fk2,...fkm) for every
coarse node k and using these properties to reduce the coupling between
neighbouring aggregates k and I by a factor proportional to exp(—f; Af)),
where the diagonal matrix A weighs the importance of every property. Entries
in f; represent statistics over the properties of the set of sub-aggregates of k. These
are computed from the sub-aggregates using averaging weighted according to
the interpolation matrix, and include its average intensity and the variances in
the average intensities of its sub-aggregates at all finer scales, as well as its low-
order shape moments (based on averaging x/y¥, where (x;, y;) is the location of
node v;and k, [ =0, 1, ...).

We detect the salient segments at all levels of the pyramid as those aggregates k
for which I'(U) has low values, with the state vector Usset to 1 at the kth entry and
0 elsewhere. For each such aggregate k we use a top-down process to delineate its
boundary. We start at the level at which k was detected with its characteristic state
vector U. By repeating interpolations from this level down to any finer level,
using successively the interpolation relations given by the matrices P, we obtain
for each finer aggregate the relative weight by which it relates to the aggregate k.
Our goal at this stage is to bring u closer to a boolean state vector. We do so by
modifying, at each of the finer levels, the interpolated u before interpolating it to
the next finer level. Values u; > 0.9 are set to 1, and values u; < 0.1 are set to 0.
Finally, at the finest level each pixel is associated solely with the aggregate k at the
coarsest level for which its weight turned out largest. Note that despite the

I(U) = 2)
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incorporation of the top-down process, complexity remains linear because the
finest scale of aggregates needed to detail the segment boundary is proportional
to its size.
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