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Abstract. We present a new method for automatic segmentation of het-
erogeneous image data, which is very common in medical image analysis.
The main contribution of the paper is a mathematical formulation for
incorporating soft model assignments into the calculation of affinities,
which are traditionally model free. We integrate the resulting model-
aware affinities into the multilevel segmentation by weighted aggregation
algorithm. We apply the technique to the task of detecting and segment-
ing brain tumor and edema in multimodal MR volumes. Our results
indicate the benefit of incorporating model-aware affinities into the seg-
mentation process for the difficult case of brain tumor.

1 Introduction

Medical image analysis typically involves image data that has been generated
from heterogeneous underlying physical processes. Segmenting this data into co-
herent regions corresponding to different anatomical structures is a core problem
with many practical applications. For example, it is important to automatically
detect and classify brain tumors and measure properties such as tumor volume,
which is a key indicator of tumor progression [1]. But automatic segmentation
of brain tumors is very difficult. Brain tumors are highly varying in size, have
a variety of shape and appearance properties, and often deform other nearby
structures in the brain [2]. In general, it is impossible to segment tumor by
simple thresholding techniques [3].

In this paper, we present a new method for automatic segmentation of het-
erogeneous image data and apply it to the task of detecting and describing brain
tumors. The input is multi-modal data since different modes give different cues
for the presence of tumors, edema (swelling), and other relevant structure. For
example, the T2 weighted MR modality contains more pertinent information for
segmenting the edema (swelling) than the T1 weighted modality.

Our method combines two of the most effective approaches to segmentation.
The first approach, exemplified by the work of Tu and Zhu [4], uses class mod-
els to explicitly represent the different heterogeneous processes. The tasks of



segmentation and class membership estimation are solved jointly. This type of
approach is very powerful but the algorithms for obtaining these estimates are
comparatively slow. The second approach is based on the concept of normal-
ized cuts [5] and has lead to the segmentation by weighted aggregation (SWA)
algorithm due to Sharon et al. [6,7]. SWA was first extended to the 3D image
domain by Akselrod-Ballin et al. [8]. In their work, multiple modalities are used
during the segmentation to extract multiscale segments that are then classified
in a decision tree algorithm; it is applied to multiple sclerosis analysis. SWA is
extremely rapid and effective, but does not explicitly take advantage of the class
models used in [4].

In this paper, we first describe (§2) how we unify these two disparate ap-
proaches to segmentation by incorporating Bayesian model classification into
the calculation of affinities in a principled manner. This leads (§3) to a modifica-
tion of the SWA algorithm using class-based probabilities. In §4 we discuss the
specific class models and probability functions used in the experimental results,
which are discussed in §4. We conclude in §5.

2 Integrating Models and Affinities

In this section we discuss the main contribution of the paper: a natural way of
integrating model classes into affinity measurements without making premature
class assignments to the nodes.

Let G = (V,€) be a graph with nodes u,v € V. Each node in the graph is
augmented with properties, or statistics, denoted s, € S, where S is the space
of properties (e.g., R? for standard red-green-blue data). Each node also has an
(unknown) class label ¢, € C, where C is the space of class labels. The edges
are sparse with each node being connected to its nearest neighbors. Each edge is
annotated with a weight that represents the affinity of the two nodes, The affinity
is denoted by w,,, for connected nodes v and v € V. Conventionally, the affinity
function is of the form w,, = exp (—D(sy,s,;0)) where D is a non-negative
distance measure and 0 are predetermined parameters.

The goal of affinity methods is to detect regions R C V with low saliency
defined by

(R) = Zuchogn Ui (1)
Zu,veR Wy

Such regions have low affinity across their boundaries and high affinity within
their interior. An efficient multiscale algorithm for doing this is described in §3.
By contrast, the model based methods define a likelihood function P({s, }|{c.})
for the probability of the observed statistics/measurements {s, } conditioned on
the class labels {c,} of the pixels {u}, and put prior probabilities P({c,}) for
the class labels of pixels. Their goal is to seek estimates of the class labels by
maximizing the posterior probability P({c,}{su}) o P({su}|{cu})P{cu}). In



this paper, we restrict ourselves to a simple model where P(s,|c,) is the condi-
tional probability of the statistics s, at a node u with class ¢,, and P(c,, ¢,) is
the prior probability of class labels ¢, and ¢, at nodes u and v.

We combine the two approaches by defining class dependent affinities in
terms of probabilities. The affinity between nodes u,v € V is defined to be the
probability P(Xuv|su, Sy) = Wy, of the binary event X, that the two nodes lie
in the same region. This probability is calculated by treating the class labels as
hidden variables which are summed out:

P(Xuvlsuasv) = ZZP(XU’U‘SUAS’U7cuac’lj)P(Cu7C’U‘Su7S’U) ’

Cu Cy

X D N P(Xuwl$us 80, Cus €0) P(Sus Sulcu, ¢0) Pleu, )

Cuy Cy

=33 P(Xuolsus 50, cus o) P(sule) Psyleo) Pleus o) (2)

Cy Cy

where the third line follows from the assumption that the nodes are conditionally
independent given class assignments. The first term of (2) is the model-aware
affinity calculation:

P<Xuv|5u73vacuacv> = exp(—D (Su,Sv;e[Cu,CU])> : (3)

Note that the property of belonging to the same region X, is not uniquely
determined by the class variables c,, ¢,. Pixels with the same class may lie in
different regions and pixels with different class labels might lie in the same region.

This definition of affinity is suitable for heterogeneous data since the affinities
are explicitly modified by the evidence P(sy|c,) for class membership at each
pixel u, and so can adapt to different classes. This differs from the conventional
affinity function wy, = exp (—D(sy, s$y;0)), which does not model class mem-
bership explicitly. The difference becomes most apparent when the nodes are
aggregated to form clusters as we move up the pyramid, see the multilevel algo-
rithmic description in §3. Individual nodes, at the bottom of the pyramid, will
typically only have weak evidence for class membership (i.e. p(cy|s,) is roughly
constant). But as we proceed up the pyramid clusters of nodes will usually have
far stronger evidence for class membership, and their affinities will be modified
accordingly.

The formulation presented here is general; in this paper, we integrate these
ideas into the SWA multilevel segmentation framework (§3). In §4, we discuss
the specific forms of these probabilities used in our experiments.

3 Segmentation By Weighted Aggregation

We now review the segmentation by weighted aggregation (SWA) algorithm of
Sharon et al. [6, 7], and describe our extension to integrate class-aware affinities.
As earlier, define a graph G* = (V, £) with the additional superscript indicating



the level in a pyramid of graphs G = {G*: t = 0,...,T}. Denote the multimodal
intensity vector at voxel i as I(i) € R, with M being the number of modalities.

The finest layer in the graph G° = (V9 £Y) is induced by the voxel lattice:
each voxel i becomes a node v € V with 6-neighbor connectivity, and node prop-
erties set according to the image, s, = I(¢). The affinities, w,,, are initialized as
in §2 using D(sy, 84;6) = 0 |s, — sy|;. SWA proceeds by iteratively coarsening
the graph according to the following algorithm:

1. t «— 0, and initialize G° as described above.

2. Choose a set of representative nodes R* C V! such that Vu € V!
D vert Wuv = B eyt Wao-

3. Define graph G'*! = (Vi+1 gitl):
(a) VL« R and edges will be defined in step 3f.

(b) Compute interpolation weights p,uy = %, with u € V! and
vev
U eyttt -

(¢) Accumulate statistics to coarse level: sy =Y Dull %u

uEVE 37yt PoU
(d) Interpolate affinity from the finer level: wyy = Z(u;év)evt Pul WPV -

(e) Use coarse affinity to modulate the interpolated affinity:
WUV = ’lﬂUV exp (—D(SU,Sv;e)) . (4)

(f) Create an edge in £ between U # V € V! when Wiy # 0.
4. t —t+1.
5. Repeat steps 2 — 4 until [V =1 or || = 0.

The parameter ( in step 2 governs the amount of coarsening that occurs at each
layer in the graph (we set 8 = 0.2 in this work). [6] shows that this algorithm
preserves the saliency function (1).

Incorporating Class-Aware Affinities. The two terms in (4) convey dif-
ferent affinity cues: the first affinity Wy is comprised of finer level (scale) affini-
ties interpolated to the coarse level, and the second affinity is computed from the
coarse level statistics. For all types of regions, the same function is being used.
However, at coarser levels in the graph, evidence for regions of known types (e.g.,
tumor) starts appearing resulting in more accurate, class-aware affinities:

Woy = v P(Xuv|su, sv) , (5)

where P(Xyv|su,syv) is evaluated as in (2). We give an example in §4 (Fig-
ure 4) showing the added power of integrating class knowledge into the affinity
calculation in the case of heterogeneous data like tumor and edema. Further-
more, the class-aware affinities compute model likelihood terms, P(sy|cy), as a
by-product. Thus, we can also associate a most likely class with each node in
the graph: ¢j; = argmax.ec P(sy|c). In combination with region saliency (1),
this classification is used to extract segmented and classified regions from the
pyramid G.



4 Application to Brain Tumor Segmentation

In this section, we describe how we applied the proposed algorithm to the prob-
lem of brain tumor segmentation.

Related Work in Brain Tumor Segmentation. Segmentation of brain
tumor has been widely studied in medical imaging. Here, we review some ma-
jor approaches to the problem; [1, 3] contain more complete literature reviews.
Fletcher-Heath et al. [9] take a fuzzy clustering approach to the segmentation
followed by 3D connected components to build the tumor shape. Liu et al. [1]
take a similar fuzzy clustering approach in an interactive segmentation system
that is shown to give an accurate estimate of tumor volume. Kaus et al. [10]
use the adaptive template-moderated classification algorithm to segment the MR
image into five different tissue classes: background, skin, brain, ventricles, and
tumor. Prastawa et al. [3] present a detection/segmentation algorithm based
on learning voxel-intensity distributions for normal brain matter and detecting
outlier voxels, which are considered tumor. Lee et al. [11] use the recent dis-
criminative random fields coupled with support vector machines to perform the
segmentation.

Data Processing. We work with a dataset of 30 manually annotated glioblas-
toma multiforme (GBM) [2] brain tumor studies. Using FSL tools [12], we pre-
processed the data through the following pipeline: (1) spatial registration, (2)
noise removal, (3) skull removal, and (4) intensity standardization. The 3D data
is 256 x 256 with 24 slices. We use the T1 weighted pre and post-contrast modal-
ity, and the FLAIR modality in our experimentation.

Class Models and Feature Statistics. We model four classes: non-data
(outside of head), brain matter, tumor, and edema. Each class is modeled by a
Gaussian distribution with full-covariance giving 9 parameters, which are learned
from the annotated data. The node-class likelihoods P(s,|c,) are computed di-
rectly against this Gaussian model. Manual inspection of the class histograms
indicates there are some non-Gaussian characteristics in the data, which will be
modeled in future work.

The class prior term, P(cy,¢,), encodes the obvious hard constraints (i.e.
tumor cannot be adjacent to non-data), and sets the remaining unconstrainted
terms to be uniform according to the maximum entropy principle. For the model-
aware affinity term (3), we use a class dependent weighted distance:

M
P(XuvlSu; Sv, Cus €y) = exp <_ Z ogicv ’SUm o S:Jn|> ) (6)

m=1

where superscript ™ indicates vector element at index m. The class dependent
coefficients are set by hand using domain knowledge. They are presented in
Table 1 (we abbreviate non-data, ND).

Note that the coefficients are symmetric (i.e., equal for Brain, Tumor and
Tumor, Brain), and we have included only those pairs not excluded by the hard
constraints discussed above. The sole feature statistic that we accumulate for
each node in the graph (SWA step 3c) is the average intensity. The feature



m Cus Cv ND, ND|ND, Brain|Brain, Tumor|Brain, Edema|Tumor, Edema
T1 % 0 0 0 0
T1 with Contrast % % 1 0 %
FLAIR 1 1 0 1 T

3 2 2
Table 1. Coefficients used in model-aware affinity calculation. Rows are modality and
columns are (symmetric) class pairs.

statistics, model choice and model-aware affinity form is specific to our problem;
many other choices could also be made in this and other domains for these
functions.

Extracting Tumor and Edema from the Pyramid. We select the subset
of segments that are classified as tumor (i.e., T = {u: ¢ = tumor}) and as edema
(i.e., B = {u: ¢& = edema}). From these two sets, we extract the segments that
have saliency better than a fixed threshold: T' C T such that I'({u}) < 7 and
likewise for edema. Recall that (1) implies lower values are more salient. In our
experiments, 7 is fixed at 1073, which was empirically determined to divide
salient regions from non-salient ones well. Voxels are labeled as tumor, edema,
or “other” according to their membership in these sets after the regions are
interpolated down the pyramid to the finest level [6].

Results. We experimented with a dataset of 30 cases with varying degrees of
GBM tumor. We computed the Jaccard score (ratio of true pos. to true pos. plus
false pos. and neg.) for the segmentation and classification (S+C) on a subset of
the data. The subset was chosen based on the absence of necrosis; the Gaussian
class models presented in §4 cannot account for the bimodality of the statistics
with necrosis present. The Jaccard score for tumor is 0.56+0.04 and for edema is
0.77 £ 0.08. From inspection of the graph pyramid, we find that both the tumor
and edema are segmented and classified correctly in most cases. However, the
corresponding segments are not necessarily the most salient ones in the graph
pyramid.

On page 9, we show three examples of the S+C
to exemplify different aspects of the algorithm. For
space reasons, we show a single, indicative slice from
each volume. Each example has a pair of images to
compare the ground truth S+C against the auto-
matic S+C; green represents tumor and red repre-
sents edema. Figure 2 shows the pyramid overlayed
on the T1 with contrast image. Figure 3 demon-
strates the importance of using multiple modalities
in the problem of brain tumor segmentation. On the
top row, the pyramid is overlayed on the T1 with con-
trast modality and on the bottom row, it is overlayed on the FLAIR modality.
We easily see (from the left most column) that the tumor and edema phenomena

Fig. 1. Class labels over-
layed on a slice layer.



present quite different signals in these two modalities. Yet, the two phenomena
are accurately segmented; in Figure 1, we show the class labels for the layer in
the third column. E indicates edema, T indicates tumor, and any non-labeled
segment is classified a brain. Figure 4 shows a comparison between using (rows
1 and 2) and not using (row 3) class-aware affinities. We see that with our ex-
tension, the segmentation algorithm is able to more accurately delineate the
complex edema structure.

5 Conclusion

We have made two contributions in this paper. The main contribution is the
mathematical formulation presented in §2 for bridging graph-based affinities and
model-based techniques. In addition, we extended the SWA algorithm to inte-
grate model-based terms into the affinities during the coarsening. The model-
aware affinities integrate classification without making premature hard, class
assignments. We applied these techniques to the difficult problem of segment-
ing and classifying brain tumor in multimodal MR volumes. The results showed
good segmentation and classification and demonstrated the benefit of including
the model information during segmentation.

The model-aware affinities are a principled approach to incorporate model
information into rapid bottom-up algorithms. In future work, we will extend this
work by including more complex statistical models (as in [4]) involving additional
feature information (e.g. shape) and models for the appearance of GBM tumor.
We will further extend the work to automatically learn the model-dependent
affinity parameters from data instead of manually choosing them from domain
knowledge.
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Fig. 2. Example of tumor detection and segmentation in post-contrast T'1 weighted.
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Fig. 3. Example segmentation demonstrating importance of multiple modalities.

Ground {ruth
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Fig. 4. Example segmentation comparing the integration of class information into the
affinity calculation (rows 1 and 2, T1 post-contrast and FLAIR, resp.) versus no class
information (row 3). See §4 for a full explanation of the figures on this page.




