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Abstract

We explore a well–known integral representation of the logarithmic function, and demonstrate its

usefulness in obtaining compact, easily–computable exact formulas for quantities that involve expectations

and higher moments of the logarithm of a positive random variable (or the logarithm of a sum of

such random variables). The integral representation of the logarithm is proved useful in a variety of

information–theoretic applications, including universal lossless data compression, entropy and differential

entropy evaluations, and the calculation of the ergodic capacity of the single-input, multiple–output

(SIMO) Gaussian channel with random parameters (known to both transmitter and receiver). This integral

representation and its variants are anticipated to serve as a useful tool in additional applications, as a

rigorous alternative to the popular (but non–rigorous) replica method (at least in some situations).

Index Terms: Integral representation, logarithmic expectation, universal data compression, entropy,

differential entropy, ergodic capacity, SIMO channel, multivariate Cauchy distribution.
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I. INTRODUCTION

In analytic derivations pertaining to many problem areas in information theory, one frequently

encounters the need to calculate expectations and higher moments of expressions that involve

the logarithm of a positive–valued random variable, or more generally, the logarithm of the sum

of several such random variables. The common practice, in such situations, is either to resort to

upper and lower bounds on the desired expression (e.g., using Jensen’s inequality or any other

well–known inequalities), or to apply the Taylor series expansion of the logarithmic function.

A more modern approach is to use the replica method (see, e.g., [17, Chap. 8]), which is a

popular (but non–rigorous) tool that has been borrowed from the field of statistical physics with

considerable success.

The purpose of this work is to point out to an alternative approach and to demonstrate its

usefulness in some frequently–encountered situations. In particular, we consider the following

integral representation of the logarithmic function (to be proved in the sequel),

lnx =

∫ ∞
0

e−u − e−ux

u
du, x > 0. (1)

The immediate use of this representation is in situations where the argument of the logarithmic

function is a positive–valued random variable, X , and we wish to calculate the expectation,

E{lnX}. By commuting the expectation operator with the integration over u (assuming that

this commutation is valid), the calculation of E{lnX} is replaced by the calculation of the

(often easier) moment–generating function (MGF) of X , as

E{lnX} =

∫ ∞
0

[
e−u − E{e−uX}

] du

u
(2)

Moreover, if X1, . . . , Xn are positive i.i.d. random variables, then

E{ln(X1 + . . .+Xn)} =

∫ ∞
0

(
e−u −

[
E{e−uX1}

]n) du

u
. (3)

This simple idea is not quite new. It has been used in the physics literature, see, e.g., [11,

Eq. (2.4) and onward], [17, Exercise 7.6, p. 140], and [24, Eq. (12) and onward]. We are not

aware, however, of any work in the information theory literature, where it has been used, and

the purpose of this paper is to bring it to the attention of information theorists, as the need to
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evaluate logarithmic expectations is not rare at all in many problem areas of information theory.

Moreover, the integral representation (1) is useful also for evaluating higher moments of lnX ,

most notably, the second moment or variance, in order to assess the statistical fluctuations around

the mean.

We demonstrate the usefulness of this approach in several application areas, including: entropy

and differential entropy evaluations, performance analysis of universal lossless source codes, and

calculations of the ergodic capacity of the Rayleigh single-input multiple-output (SIMO) channel.

In some of these examples, we also demonstrate the calculation of variances associated with the

relevant random variables of interest. As a side remark, in the same spirit of introducing integral

representations and applying them, Simon and Divsalar [22], [23] have brought to the attention

of communication theorists useful, definite–integral forms of the Q–function (Craig’s formula

[5]) and Marcum Q–function, and demonstrated their utility in applications.

It should be pointed out that most of our results remain in the form of a single– or double–

definite integral of certain functions that depend on the parameters of the problem in question.

Strictly speaking, such a definite integral may not be considered a closed–form expression, but

nevertheless, we can say the following:

1) In most of our examples, the expression we obtain is more compact, more elegant, and often

more insightful than the original quantity.

2) The resulting definite integral can actually be considered a closed–form expression “for every

practical purpose” since definite integrals in one or two dimensions can be calculated instantly

using built-in numerical integration operations in MATLAB, Maple, Mathematica, or other

mathematical software tools. This is largely similar to the case of expressions that include

standard functions (e.g., trigonometric, logarithmic, exponential functions, etc.), which are

commonly considered to be closed–form expressions.

3) The integrals can also be evaluated by power series expansions of the integrand, followed by

term–by–term integration.

4) Owing to Item 3, the asymptotic behavior in the parameters of the model can be evaluated.

5) At least in two of our examples, we show how to pass from an n–dimensional integral (with
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an arbitrarily large n) to one or two–dimensional integrals. This passage is in the spirit of

the passing from a multi–letter expression to a single–letter expression.

To give some preliminary flavor of our message in this work, we conclude this introduction by

mentioning a possible use of the integral representation in the context of calculating the entropy

of a Poissonian random variable. For a Poissonian random variable, N , with parameter λ, the

entropy (in nats) is given by

H(λ) = −E
{

ln

(
e−λλN

N !

)}
= λ− λ lnλ+ E{lnN !}, (4)

where the non–trivial part of the calculation is associated with the last term, E{lnN !}. In [12],

this term was handled by using a non–trivial formula due to Malmstén (see [10, pp. 20–21]),

which represents the logarithm of Euler’s Gamma function in an integral form (see also [15]).

In Section II, we derive the relevant quantity using (1), in a simpler and more transparent form.

The outline of the remaining part of this paper is as follows. In Section II, we provide

some basic mathematical background concerning the integral representation (2) and some of

its variants. In Section III, we present the application examples. Finally, in Section IV, we

summarize and provide some outlook.

II. MATHEMATICAL BACKGROUND

In this section, we present the main mathematical background associated with the integral

representation (1), and provide several variants of this relation, most of which are later used in

this paper. For reasons that will become apparent shortly, we extend the scope to the complex

plane.

Proposition 1:

ln z =

∫ ∞
0

e−u − e−uz

u
du, Re(z) ≥ 0. (5)

Proof:

ln z = (z − 1)

∫ 1

0

dv

1 + v(z − 1)
(6)

= (z − 1)

∫ 1

0

∫ ∞
0

e−u[1+v(z−1)] du dv (7)
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= (z − 1)

∫ ∞
0

e−u
∫ 1

0
e−uv(z−1) dv du (8)

=

∫ ∞
0

e−u

u

[
1− e−u(z−1)

]
du (9)

=

∫ ∞
0

e−u − e−uz

u
du, (10)

where (7) holds since Re{1 + v(z − 1)} > 0 for all v ∈ (0, 1), based on the assumption that

Re(z) ≥ 0; (8) holds by switching the order of integration.

Remark 1: In [13, p. 363, Identity (3.434.2)], it is stated that∫ ∞
0

e−µx − e−νx

x
dx = ln

µ

ν
, Re(µ) > 0, Re(ν) > 0. (11)

Proposition 1 also applies to pure imaginary values of z, which are of interest too (see Corollary 1

in the sequel, and the identity with the characteristic function in (14)).

Proposition 1 paves the way to obtaining some additional related integral representations of

the logarithmic function for the reals.

Corollary 1: ([13, p. 451, Identity 3.784.1]) For every x > 0,

lnx =

∫ ∞
0

cos(u)− cos(ux)

u
du. (12)

Proof: By Proposition 1 and the identity lnx ≡ Re
{

ln(ix)
}

(with i :=
√
−1), we get

lnx =

∫ ∞
0

e−u − cos(ux)

u
du. (13)

Subtracting both sides by the integral in (13) for x = 1 (which is equal to zero) gives (12).

Let X be a real-valued random variable, and let ΦX(ν) := E
{
eiνX

}
be the characteristic

function of X . Then, by Corollary 1,

E
{

lnX
}

=

∫ ∞
0

cos(u)− Re{ΦX(u)}
u

du, (14)

where we are assuming, here and throughout the sequel, that the expectation operation and the

integration over u are commutable, i.e., Fubini’s theorem applies.

Similarly, by returning to Proposition 1 (confined to a real–valued argument of the logarithm),

the calculation of E{lnX} can be replaced by the calculation of the MGF of X , as

E{lnX} =

∫ ∞
0

[
e−u − E

{
e−uX

}] du

u
. (15)
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In particular, if X1, . . . , Xn are positive i.i.d. random variables, then

E{ln(X1 + . . .+Xn)} =

∫ ∞
0

[
e−u −

(
E
{
e−uX1

})n] du

u
. (16)

Remark 2: One may further manipulate (15) and (16) as follows. Since lnx ≡ 1
s ln(xs) for

any s 6= 0 and x > 0, then the expectation of lnX can also be represented as

E{lnX} =
1

s

∫ ∞
0

[
e−u − E

{
e−uX

s}] du

u
, s 6= 0. (17)

The idea is that if, for some s /∈ {0, 1}, E{e−uXs} can be expressed in closed form, whereas it

cannot for s = 1 (or even E{e−uXs} < ∞ for some s /∈ {0, 1}, but not for s = 1), then (17)

may prove useful. Furthermore, if X1, . . . , Xn are positive i.i.d. random variables, s > 0, and

Y = (Xs
1 + . . .+Xs

n)1/s, then

E{lnY } =
1

s

∫ ∞
0

[
e−u −

(
E
{
e−uX

s
1

})n] du

u
. (18)

For example, if {Xi} are i.i.d. standard Gaussian random variables and s = 2, then (18) enables

to calculate the expected value of the logarithm of a chi-squared distributed random variable

with n degrees of freedom. In this case,

E{e−uX2
1} =

1√
2π

∫ ∞
−∞

e−ux
2

e−x
2/2 dx

=
1√

2u+ 1
, (19)

and, from (18) with s = 2,

E{lnY } = 1
2

∫ ∞
0

[
e−u − (2u+ 1)−n/2

] du

u
. (20)

It should be noted that according to the pdf of a chi-squared distribution, one can express E{lnY }

as a one-dimensional integral even without using (18). However, for general s > 0, the direct

calculation of E
{

ln (
∑n

i=1 |Xi|s)
}

leads to an n-dimensional integral, whereas (18) provides a

one-dimensional integral whose integrand involves in turn the calculation of a one-dimensional

integral too.

Identity (1) also proves useful when one is interested, not only in the expected value of

lnX , but also in higher moments, in particular, its second moment or variance. In this case, the
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one–dimensional integral becomes a two–dimensional one. Specifically, for any s > 0,

Var{lnX} = E{ln2(X)} − [E{lnX}]2 (21)

=
1

s2
E
{∫ ∞

0

∫ ∞
0

(
e−u − e−uXs) (

e−v − e−vXs) dudv

uv

}
− 1

s2

∫ ∞
0

∫ ∞
0

(
e−u − E{e−uXs}

) (
e−v − E{e−vXs}

) du dv

uv
(22)

=
1

s2

∫ ∞
0

∫ ∞
0

[
E
{
e−(u+v)X

s}− E
{
e−uX

s}E{e−vXs}] dudv

uv
(23)

=
1

s2

∫ ∞
0

∫ ∞
0

Cov
{
e−uX

s

, e−vX
s} du dv

uv
. (24)

More generally, for a pair of positive random variables, (X,Y ), and for s > 0,

Cov{lnX, lnY } =
1

s2

∫ ∞
0

∫ ∞
0

Cov
{
e−uX

s

, e−vY
s} dudv

uv
. (25)

For later use, we present the following variation of the basic identity.

Proposition 2: Let X be a random variable, and let

MX(s) := E
{
esX
}
, ∀ s ∈ R, (26)

be the MGF of X . If X is non-negative, then

E
{

ln(1 +X)
}

=

∫ ∞
0

e−u [1−MX(−u)]

u
du, (27)

and

Var
{

ln(1 +X)
}

=

∫ ∞
0

∫ ∞
0

e−(u+v)

uv

[
MX(−u− v)−MX(−u)MX(−v)

]
dudv. (28)

Proof: Equation (27) is a trivial consequence of (15). As for (28), we have

Var
{

ln(1 +X)
}

= E
{

ln2(1 +X)
}
−
(
E
{

ln(1 +X)
})2

= E
{∫ ∞

0

e−u

u

(
1− e−uX

)
du

∫ ∞
0

e−v

v

(
1− e−vX

)
dv

}
−
∫ ∞
0

∫ ∞
0

e−(u+v) [1−MX(−u)] [1−MX(−v)]

uv
dudv (29)

=

∫ ∞
0

∫ ∞
0

e−(u+v)

uv
E
{(

1− e−uX
) (

1− e−vX
)}

dudv
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−
∫ ∞
0

∫ ∞
0

e−(u+v) [1−MX(−u)−MX(−v) +MX(−u)MX(−v)]

uv
dudv (30)

=

∫ ∞
0

∫ ∞
0

e−(u+v)

uv

[
1−MX(−u)−MX(−v) +MX(−u− v)

]
dudv

−
∫ ∞
0

∫ ∞
0

e−(u+v)

uv

[
1−MX(−u)−MX(−v) +MX(−u)MX(−v)

]
dudv (31)

=

∫ ∞
0

∫ ∞
0

e−(u+v)

uv

[
MX(−u− v)−MX(−u)MX(−v)

]
dudv. (32)

The following result relies on the validity of (5) to the right-half complex plane, and its

derivation is based on the identity ln(1 + x2) ≡ ln(1 + ix) + ln(1 − ix) for all x ∈ R. In

general, it may be used if the characteristic function of a random variable X has a closed–form

expression, whereas the MGF of X2 does not admit a closed–form expression (see Proposition 2).

We introduce the result, although it is not directly used in the paper.

Proposition 3: Let X be a real-valued random variable, and let

ΦX(u) := E
{
eiuX

}
, ∀u ∈ R, (33)

be the characteristic function of X . Then,

E
{

ln(1 +X2)
}

= 2

∫ ∞
0

e−u

u

(
1− Re

{
ΦX(u)

})
du, (34)

and

Var
{

ln(1 +X2)
}

= 2

∫ ∞
0

∫ ∞
0

e−u−v

uv

[
Re{ΦX(u+ v)}+ Re{ΦX(u− v)}

− 2 Re{ΦX(u)}Re{ΦX(v)}
]

dudv. (35)

As a final note, we point out that the fact that the integral representation (2) replaces the

expectation of the logarithm of X by the expectation of an exponential function of X , has an

additional interesting consequence: an expression like ln(n!) becomes the integral of the sum

of a geometric series, which in turn is easy to express in closed form. Specifically,

ln(n!) =

n∑
k=1

ln k

=

n∑
k=1

∫ ∞
0

(e−u − e−uk) du

u
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=

∫ ∞
0

(
ne−u −

n∑
k=1

e−uk

)
du

u

=

∫ ∞
0

e−u
(
n− 1− e−un

1− e−u

)
du

u
. (36)

Thus, for a positive integer-valued random variable, N , the calculation of E{lnN !} requires

merely the calculation of E{N} and the MGF, E{e−uN}. For example, if N is a Poissonian

random variable, as discussed near the end of the Introduction, both E{N} and E{e−uN} are

easy to evaluate. This approach is a simple, direct alternative to the one taken in [12] (see

also [15]), where Malmstén’s non–trivial formula for ln Γ(z) (see [10, pp. 20–21]) was invoked.

(Malmstén’s formula for ln Γ(z) applies to a general, complex–valued z with Re(z) > 0; in

the present context, however, only integer real values of z are needed, and this allows the

simplification shown in (36)). The above described idea of the geometric series will also be

used in one of our application examples, in Section III-D.

III. APPLICATIONS

In this section, we show the usefulness of the integral representation of the logarithmic

function in several problem areas in information theory. To demonstrate the direct computability

of the relevant quantities, we also present graphs of their numerical calculation. In some of the

examples, we also demonstrate calculations of the second moments and variances.

A. Differential Entropy for Generalized Multivariate Cauchy Densities

Let (X1, . . . , Xn) be a random vector whose probability density function is of the form

f(x1, . . . , xn) =
Cn

[1 +
∑n

i=1 g(xi)]
q , ∀ (x1, . . . , xn) ∈ Rn, (37)

for a certain non–negative function g and positive constant q such that∫
Rn

dx

[1 +
∑n

i=1 g(xi)]
q <∞. (38)

We refer to this kind of density as generalized multivariate Cauchy because the multivariate

Cauchy density is obtained as a special case where g(x) = x2 and q = 1
2(n + 1). Using the

Laplace transform relation,

1

sq
=

1

Γ(q)

∫ ∞
0

tq−1e−st dt, ∀ q ≥ 1, Re(s) > 0, (39)
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f can be represented as a mixture of product measures:

f(x1, . . . , xn) =
Cn

[1 +
∑n

i=1 g(xi)]
q

=
Cn

Γ(q)

∫ ∞
0

tq−1e−t exp

{
−t

n∑
i=1

g(xi)

}
dt. (40)

Defining

Z(t) :=

∫ ∞
−∞

e−tg(x) dx, ∀ t > 0, (41)

we get from (40),

1 =
Cn

Γ(q)

∫ ∞
0

tq−1e−t
∫
Rn

exp

{
−t

n∑
i=1

g(xi)

}
dx1 . . . dxn dt

=
Cn

Γ(q)

∫ ∞
0

tq−1e−t
(∫ ∞
−∞

e−tg(x) dx

)n
dt

=
Cn

Γ(q)

∫ ∞
0

tq−1e−tZn(t) dt, (42)

and so,

Cn =
Γ(q)∫ ∞

0
tq−1e−tZn(t) dt

. (43)

The calculation of the differential entropy of f is associated with the evaluation of the expectation

E
{

ln
[
1 +

∑n
i=1 g(Xi)

]}
. Now, using (27)

E

{
ln

[
1 +

n∑
i=1

g(Xi)

]}
=

∫ ∞
0

e−u

u

(
1− E

{
exp

[
−u

n∑
i=1

g(Xi)

]})
du, (44)

and

E

{
exp

[
−u

n∑
i=1

g(Xi)

]}

=
Cn

Γ(q)

∫ ∞
0

tq−1e−t
∫
Rn

exp

{
−(t+ u)

n∑
i=1

g(xi)

}
dx1 . . . dxn dt

=
Cn

Γ(q)

∫ ∞
0

tq−1e−tZn(t+ u) dt. (45)

Thus, the differential entropy of (X1, . . . , Xn) is given by

h(X1, . . . , Xn) = q E ln

[
1 +

n∑
i=1

g(Xi)

]
− lnCn
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= q

∫ ∞
0

e−u

u

(
1− Cn

Γ(q)

∫ ∞
0

tq−1e−tZn(t+ u)dt

)
du− lnCn

=
qCn
Γ(q)

∫ ∞
0

∫ ∞
0

tq−1e−(t+u)

u

[
Zn(t)− Zn(t+ u)

]
dtdu− lnCn. (46)

For g(x) = |x|θ, with an arbitrary θ > 0, we obtain from (41) that

Z(t) =
2 Γ(1/θ)

θ t1/θ
. (47)

In particular, for θ = 2 and q = 1
2(n+ 1), we get the multivariate Cauchy density from (37). In

this case, since Γ
(
1
2

)
=
√
π, it follows from (47) that Z(t) =

√
π
t for t > 0, and from (43)

Cn =
Γ
(
n+1
2

)
πn/2

∫ ∞
0

t(n+1)/2−1e−t t−n/2 dt

=
Γ
(
n+1
2

)
πn/2 Γ

(
1
2

) =
Γ
(
n+1
2

)
π(n+1)/2

. (48)

Combining (46), (47) and (48) gives

h(X1, . . . , Xn) =
n+ 1

2π(n+1)/2

∫ ∞
0

∫ ∞
0

e−(t+u)

u
√
t

[
1−

(
t

t+ u

)n/2]
dt du

+
(n+ 1) lnπ

2
− ln Γ

(
n+ 1

2

)
. (49)

0 10 20 30 40 50 60 70 80 90 100

n

-1

-0.5

0

0.5

1

1.5

2

h(
X

1, .
..,

 X
n)/

 n
  [

na
ts

]

Fig. 1. The normalized differential entropy, 1
n
h(X1, . . . , Xn) (see (49)), for a multivariate Cauchy distribution,

f(x1, . . . , xn) = Cn/[1 +
∑n

i=1 x
2
i ]

(n+1)/2, with Cn in (48).
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Fig. 1 displays the normalized differential entropy, 1
n h(X1, . . . , Xn), for 1 ≤ n ≤ 100.

We believe that the interesting point, conveyed in this application example, is that (46) provides

a kind of a “single–letter expression”; the n–dimensional integral, associated with the original

expression of the differential entropy h(X1, . . . , Xn), is replaced by the two–dimensional integral

in (46), independently of n.

B. Ergodic Capacity of the Rayleigh SIMO Channel

Consider the SIMO channel with L receive antennas and assume that the channel transfer

coefficients, h1, . . . , hL, are independent, zero–mean, circularly symmetric complex Gaussian

random variables with variances σ21, . . . , σ
2
L. The ergodic capacity (in nats per channel use) of

the SIMO channel is given by

C = E

{
ln

(
1 + ρ

L∑
`=1

|h`|2
)}

= E

{
ln

(
1 + ρ

L∑
`=1

(
f2` + g2`

))}
, (50)

where f` := Re{h`}, g` := Im{h`}, and ρ := P
N0

is the signal–to–noise ratio (SNR) (see, e.g.,

[9], [25] and many references therein).

Paper [9] is devoted, among other things, to the exact evaluation of (50) by finding the density

of the random variable defined by
∑L

`=1(f
2
` + g2` ), and then taking the expectation w.r.t. that

density. Here, we show that the integral representation in (5) suggests a more direct approach

to the evaluation of (50). It should also be pointed out that this approach is more flexible than

the one in [9], as the latter strongly depends on the assumption that {hi} are Gaussian and

statistically independent. The integral representation approach also allows other distributions of

the channel transfer gains, as well as possible correlations between the coefficients and/or the

channel inputs. Moreover, we are also able to calculate the variance of ln
(

1 + ρ
∑L

`=1 |h`|2
)

,

as a measure of the fluctuations around the mean, which is obviously related to the outage.

Specifically, in view of Proposition 2 (see (27)), let

X := ρ

L∑
`=1

(f2` + g2` ). (51)

For all u > 0,

MX(−u) = E
{

exp

(
−ρu

L∑
`=1

(f2` + g2` )

)}
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=

L∏
`=1

{
E
{
e−uρf

2
`

}
E
{
e−uρg

2
`

}}

=

L∏
`=1

1

1 + uρσ2`
, (52)

where (52) holds since

E
{
e−uρf

2
`

}
= E

{
e−uρg

2
`

}
=

∫ ∞
−∞

dw√
πσ2`

e−w
2/σ2

` e−uρw
2

=
1√

1 + uρσ2`

. (53)

From (27), (50) and (52), the ergodic capacity (in nats per channel use) is given by

C = E

{
ln

(
1 + ρ

L∑
`=1

(
f2` + g2`

))}

=

∫ ∞
0

e−u

u

(
1−

L∏
`=1

1

1 + uρσ2`

)
du

=

∫ ∞
0

e−x/ρ

x

(
1−

L∏
`=1

1

1 + σ2`x

)
dx. (54)

As for the variance, from Proposition 2 (see (28)) and (52),

Var

{
ln

(
1 + ρ

L∑
`=1

[f2` + g2` ]

)}

=

∫ ∞
0

∫ ∞
0

e−(x+y)/ρ

xy

{
L∏
`=1

1

1 + σ2` (x+ y)
−

L∏
`=1

[
1

(1 + σ2`x)(1 + σ2` y)

]}
dx dy. (55)

A similar analysis holds for the multiple-input single-output (MISO) channel. By partial–fraction

decomposition of the expression (see the right side of (54))

1

x

(
1−

L∏
`=1

1

1 + σ2`x

)
,

C can be expressed as a linear combination of integrals of the form∫ ∞
0

e−x/ρ dx

1 + σ2`x
=

1

σ2`

∫ ∞
0

e−t dt

t+ 1/(σ2`ρ)

=
e1/(σ

2
`ρ)

σ2`

∫ ∞
1/(σ2

`ρ)

e−s

s
ds
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=
1

σ2`
e1/(σ

2
`ρ) E1

(
1

σ2`ρ

)
, (56)

where E1(·) is the (modified) exponential integral function, defined as

E1(x) :=

∫ ∞
x

e−s

s
ds, ∀x > 0. (57)

A similar representation appears also in [9, Eq. (7)].

Consider the example of L = 2, σ21 = 1
2 and σ22 = 1. From (54), the ergodic capacity of the

SIMO channel is given by

C =

∫ ∞
0

e−x/ρ

x

[
1− 1

(x/2 + 1)(x+ 1)

]
dx

=

∫ ∞
0

e−x/ρ (x+ 3) dx

(x+ 1)(x+ 2)

= 2e1/ρE1

(
1

ρ

)
− e2/ρE1

(
2

ρ

)
. (58)

The variance in this example (see (55)) is given by

Var

{
ln

(
1 + ρ

2∑
`=1

(f2` + g2` )

)}

=

∫ ∞
0

∫ ∞
0

e−(x+y)/ρ

xy

[
1(

1 + 0.5(x+ y)
)
(1 + x+ y)

− 1

(1 + 0.5x)(1 + 0.5y)(1 + x)(1 + y)

]
dx dy

=

∫ ∞
0

∫ ∞
0

e−(x+y)/ρ (2xy + 6x+ 6y + 10) dx dy

(x+ 1)(y + 1)(x+ 2)(y + 2)(x+ y + 1)(x+ y + 2)
. (59)

Fig. 2 depicts the ergodic capacity C as a function of the SNR, ρ, in dB (see (58), and divide

by ln 2 for conversion to bits per channel use). The same example exactly appears in the lower

graph of Fig. 1 in [9]. The variance appears in Fig. 3 (see (59), and similarly divide by ln2 2).

C. Universal Source Coding for Binary Arbitrarily Varying Sources

Consider a source coding setting, where there are n binary DMS’s, and let xi ∈ [0, 1]

denote the Bernoulli parameter of source no. i ∈ {1, . . . , n}. Assume that a hidden memoryless

switch selects uniformly at random one of these sources, and the data is then emitted by the

selected source. Since it is unknown a-priori which source is selected at each instant, a universal

lossless source encoder (e.g., a Shannon or Huffman code) is designed to match a binary
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Fig. 2. The ergodic capacity C (in bits per channel use) of the SIMO channel as a function of ρ = SNR (in dB)

for L = 2 receive antennas, with noise variances σ2
1 = 1

2
and σ2

2 = 1.
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Fig. 3. The variance of ln(1 + ρ
∑L

`=1 |h`|2) (in [bits-per-channel- use]2) of the SIMO channel as a function of

ρ = SNR (in dB) for L = 2 receive antennas, with noise variances σ2
1 = 1

2
and σ2

2 = 1.
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DMS whose Bernoulli parameter is given by 1
n

n∑
i=1
xi. Neglecting integer length constraints, the

average redundancy in the compression rate (measured in nats per symbol), due to the unknown

realization of the hidden switch, is about

Rn = hb

(
1
n

n∑
i=1

xi

)
− 1

n

n∑
i=1

hb(xi), (60)

where hb : [0, 1] → [0, ln 2] is the binary entropy function (defined to the base e), and the

redundancy is given in nats per source symbol. Now, let us assume that the Bernoulli parameters

of the n sources are i.i.d. random variables, X1, . . . , Xn, all having the same density as that of

some generic random variable X , whose support is the interval [0, 1]. We wish to evaluate the

expected value of the above defined redundancy, under the assumption that the realizations of

X1, . . . , Xn are known. We are then facing the need to evaluate

Rn = E
{
hb

(
1
n

n∑
i=1

Xi

)}
− E{hb(X)}. (61)

We now express the first and second terms on the right–hand side of (61) as a function of the

MGF of X .

In view of (5), the binary entropy function hb admits the integral representation

hb(x) =

∫ ∞
0

1

u

[
xe−ux + (1− x)e−u(1−x) − e−u

]
du, ∀x ∈ [0, 1], (62)

which implies that

E{hb(X)} =

∫ ∞
0

1

u

[
E
{
Xe−uX

}
+ E

{
(1−X)e−u(1−X)

}
− e−u

]
du. (63)

The expectations on the right–hand side of (63) can be expressed as functionals of the MGF of

X , MX(ν) = E{eνX}, and its derivative, for ν < 0. For all u ∈ R,

E
{
Xe−uX

}
= M ′X(−u), (64)

and

E
{

(1−X)e−u(1−X)
}

= M ′1−X(−u)

=
d

ds

{
esMX(−s)

}∣∣∣
s=−u

= e−u
[
MX(u)−M ′X(u)

]
. (65)
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On substituting (64) and (65) into (63), we readily obtain

E{hb(X)} =

∫ ∞
0

1

u

{
M ′X(−u) +

[
MX(u)−M ′X(u)− 1

]
e−u
}

du. (66)

Define Yn := 1
n

n∑
i=1
Xi. Then,

MYn(u) = Mn
X

(
u
n

)
, ∀u ∈ R, (67)

which yields, in view of (66), (67) and the change of integration variable, t = u
n , the following:

E
{
hb

(
1
n

n∑
i=1

Xi

)}
= E{hb(Yn)}

=

∫ ∞
0

1

u

{
M ′Yn(−u) +

[
MYn(u)−M ′Yn(u)− 1

]
e−u
}

du

=

∫ ∞
0

1

t

{
Mn−1
X (−t)M ′X(−t) +

[
Mn
X(t)−Mn−1

X (t)M ′X(t)− 1
]
e−nt

}
dt. (68)

Similarly as in the application example of the differential entropy in Section III-A, here too, we

pass from an n-dimensional integral to a one-dimensional integral. In general, similar calculations

can be carried out for higher integer moments, thus passing from n-dimensional integration for

a moment of order s to an s-dimensional integral, independently of n.

For example, if X1, . . . , Xn are i.i.d. and uniformly distributed on [0,1], then the MGF of a

generic random variable X distributed like all {Xi} is given by

MX(t) =


et − 1

t
, t 6= 0,

1, t = 0.

(69)

From (68), it can be verified numerically that E
{
hb

(
1
n

n∑
i=1
Xi

)}
is monotonically increasing

in n, being equal (in nats) to 1
2 , 0.602, 0.634, 0.650, 0.659 for n = 1, . . . , 5, respectively, with

the limit hb
(
1
2

)
= ln 2 ≈ 0.693 as we let n→∞ (this is expected by the law of large numbers).

D. Moments of the Empirical Entropy and the Redundancy of K–T Universal Source Coding

Consider a stationary, discrete memoryless source (DMS), P , with a finite alphabet X of size

|X | and letter probabilities {P (x), x ∈ X}. Let (X1, . . . , Xn) be an n–vector emitted from
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P , and let {P̂ (x), x ∈ X} be the empirical distribution associated with (X1, . . . , Xn), that

is, P̂ (x) = n(x)
n , for all x ∈ X , where n(x) is the number of occurrences of the letter x in

(X1, . . . , Xn).

It is well known that in many universal lossless source codes for the class of memoryless

sources, the dominant term of the length function for encoding (X1, . . . , Xn) is nĤ , where Ĥ

is the empirical entropy,

Ĥ = −
∑
x

P̂ (x) ln P̂ (x). (70)

For code–length performance analysis (as well as for entropy estimation per se), there is therefore

interest in calculating the expected value E{Ĥ} as well as Var{Ĥ}. Another motivation comes

from the quest for estimating the entropy as an objective on its own right, and then the expectation

and the variance suffice for the calculation of the mean square error of the estimate, Ĥ . Most

of the results that are available in the literature, in this context, concern the asymptotic behavior

for large n as well as bounds (see, e.g., [1], [2], [3], [4], [6], [7], [8], [14], [16], [18], [19], [20],

[21], [27], [28], as well as many other related references therein). The integral representation

of the logarithm in (5), on the other hand, allows exact calculations of the expectation and the

variance. The expected value of the empirical entropy is given by

E{Ĥ} = −
∑
x

E{P̂ (x) ln P̂ (x)}

=
∑
x

E
{∫ ∞

0

du

u

[
P̂ (x)e−uP̂ (x) − P̂ (x)e−u

]}
(71)

=

∫ ∞
0

du

u

[∑
x

E{P̂ (x)e−uP̂ (x)} − e−u
]
. (72)

For convenience, let us define the function φn : X × R→ (0,∞) as

φn(x, t) := E
{
etP̂ (x)

}
=
[
1− P (x) + P (x)et/n

]n
, (73)

which yields,

E
{
P̂ (x)e−uP̂ (x)

}
= φ′n(x,−u), (74)

E
{
P̂ 2(x)e−uP̂ (x)

}
= φ′′n(x,−u), (75)
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where φ′n and φ′′n are the first and second order derivatives of φn w.r.t. t, respectively. From (72)

and (74), it follows that

E{Ĥ} =

∫ ∞
0

du

u

(∑
x

φ′n(x,−u)− e−u
)

(76)

=

∫ ∞
0

du

u

(
e−u

∑
x

P (x)
[
1− P (x)(1− e−u)

]n−1 − e−nu) (77)

where the integration variable in (77) was changed using a simple scaling by n.

Before proceeding with the calculation of the variance of Ĥ , let us first compare the integral

representation in (77) to the alternative sum, obtained by a direct, straightforward calculation of

the expected value of the empirical entropy. A straightforward calculation gives

E{Ĥ} =
∑
x

n∑
k=0

(
n

k

)
P k(x) [1− P (x)]n−k · k

n
· ln n

k
(78)

=
∑
x

n∑
k=1

(
n− 1

k − 1

)
P k(x)[1− P (x)]n−k · ln n

k
. (79)

We next compare the computational complexity of implementing (77) to that of (79). For large

n, in order to avoid numerical problems in computing (79) by standard software, one may use

the Gammaln function in Matlab/Excel or the LogGamma in Mathematica (a built-in function

for calculating the natural logarithm of the Gamma function) to obtain that(
n− 1

k − 1

)
P k(x)[1− P (x)]n−k = exp

{
Gammaln(n)−Gammaln(k)−Gammaln(n− k + 1)

+ k lnP (x) + (n− k) ln
(
1− P (x)

)}
. (80)

The right–hand side of (77) is the sum of |X | integrals, and the computational complexity of each

integral depends on neither n, nor |X |. Hence, the computational complexity of the right–hand

side of (77) scales linearly with |X |. On the other hand, the double sum on the right–hand side

of (79) consists of n · |X | terms. Let α := n
|X | be fixed, which is expected to be large (α� 1)

if a good estimate of the entropy is sought. The computational complexity of the double sum

on the right–hand side of (79) grows like α |X |2, which scales quadratically in |X |. Hence, for

a DMS with a large alphabet, or when n� |X|, there is a significant computational reduction

by evaluating (77) in comparison to the right–hand side of (79).

December 5, 2019 DRAFT



20

We next move on to calculate the variance of Ĥ .

Var{Ĥ} = E{Ĥ2} − E2{Ĥ} (81)

=
∑
x,x′

E{P̂ (x) ln P̂ (x) · P̂ (x′) ln P̂ (x′)} − E2{Ĥ}. (82)

The second term on the right–hand side of (82) has already been calculated. For the first term,

let us define, for x′ 6= x,

ψn(x, x′, s, t) := E{exp{sP̂ (x) + tP̂ (x′)} (83)

=
∑

{(k,`): k+`≤n}

{
n!

k! `! (n− k − `)!
· P k(x)P `(x′)

·
[
1− P (x)− P (x′)

]n−k−`
esk/n+t`/n

}
(84)

=
∑

{(k,`): k+`≤n}

{
n!

k! `! (n− k − `)!
·
[
P (x) es/n

]k [
P (x′) et/n

]`
·
[
1− P (x)− P (x′)

]n−k−`} (85)

=
[
1− P (x) (1− es/n)− P (x′) (1− et/n)

]n
. (86)

Observe that

E{P̂ (x)P̂ (x′) exp{−uP̂ (x)− vP̂ (x′)} =
∂2ψn(x, x′, s, t)

∂s ∂t

∣∣∣∣
s=−u, t=−v

(87)

:= ψ′′n(x, x′,−u,−v). (88)

For x 6= x′, we have

E{P̂ (x) ln P̂ (x) · P̂ (x′) ln P̂ (x′)}

= E
{
P̂ (x)P̂ (x′)

∫ ∞
0

∫ ∞
0

dudv

uv
·
(
e−u − e−uP̂ (x)

)
·
(
e−v − e−vP̂ (x′)

)}
(89)

=

∫ ∞
0

∫ ∞
0

dudv

uv

[
e−u−vE

{
P̂ (x)P̂ (x′)

}
− e−vE

{
P̂ (x)P̂ (x′)e−uP̂ (x)

}
− e−uE

{
P̂ (x)P̂ (x′)e−vP̂ (x′)

}
+ E

{
P̂ (x)P̂ (x′)e−uP̂ (x)−vP̂ (x′)

}]
(90)

=

∫ ∞
0

∫ ∞
0

dudv

uv

[
e−u−vψ′′n(x, x′, 0, 0)− e−vψ′′n(x, x′,−u, 0)

− e−uψ′′n(x, x′, 0,−v) + ψ′′n(x, x′,−u,−v)

]
, (91)
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and for x = x′,

E{[P̂ (x) ln P̂ (x)]2}

= E
{
P̂ 2(x)

∫ ∞
0

∫ ∞
0

dudv

uv
·
[
e−u − e−uP̂ (x)

]
·
[
e−v − e−vP̂ (x)

]}
(92)

=

∫ ∞
0

∫ ∞
0

dudv

uv

[
e−u−vE

{
P̂ 2(x)

}
− e−vE

{
P̂ 2(x)e−uP̂ (x)

}
− e−uE

{
P̂ 2(x)e−vP̂ (x)

}
+ E

{
P̂ 2(x)e−(u+v)P̂ (x)

}]
(93)

=

∫ ∞
0

∫ ∞
0

dudv

uv

[
e−u−vφ′′n(x, 0)− e−vφ′′n(x,−u)

− e−uφ′′n(x,−v) + φ′′n(x,−u− v)

]
. (94)

Therefore,

Var{Ĥ}

=
∑
x

∫ ∞
0

∫ ∞
0

du dv

uv

[
e−u−vφ′′n(x, 0)− e−vφ′′n(x,−u)− e−uφ′′n(x,−v) + φ′′n(x,−u− v)

]

+
∑
x′ 6=x

∫ ∞
0

∫ ∞
0

dudv

uv

[
e−u−vψ′′n(x, x′, 0, 0)− e−vψ′′n(x, x′,−u, 0)

− e−uψ′′n(x, x′, 0,−v) + ψ′′n(x, x′,−u,−v)

]
− E2{Ĥ}. (95)

Defining (see (75) and (88))

Z(r, s, t) :=
∑
x

φ′′n(x, r) +
∑
x′ 6=x

ψ′′n(x, x′, s, t), (96)

we have

Var{Ĥ} =

∫ ∞
0

∫ ∞
0

dudv

uv

[
e−u−vZ(0, 0, 0)− e−vZ(−u,−u, 0)

− e−uZ(−v, 0,−v) + Z(−u− v,−u,−v)
]
− E2{Ĥ}. (97)

To obtain numerical results, it would be convenient to particularize now the analysis to the

binary symmetric source (BSS). From (77),

E{Ĥ} =

∫ ∞
0

du

u

[
e−u

(1 + e−u

2

)n−1
− e−un

]
. (98)
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For the variance, it follows from (86) that for x 6= x′ with x, x′ ∈ {0, 1} and s, t ∈ R,

ψn(x, x′, s, t) =

(
es/n + et/n

2

)n
, (99)

ψ′′n(x, x′, s, t) =
∂2ψn(x, x′, s, t)

∂s ∂t
= 1

4

(
1− 1

n

)(es/n + et/n

2

)n−2
e(s+t)/n, (100)

and, from (89)–(91), for x 6= x′

E{P̂ (x) ln P̂ (x) · P̂ (x′) ln P̂ (x′)}

= 1
4

(
1− 1

n

)∫ ∞
0

∫ ∞
0

dudv

uv

[
e−u−v − e−

(
u/n+v

)(
1 + e−u/n

2

)n−2
− e−(u+v/n)

(
1 + e−v/n

2

)n−2
+ e−(u+v)/n

(
e−u/n + e−v/n

2

)n−2]
. (101)

From (73), for x ∈ {0, 1} and t ∈ R,

φn(x, t) =

(
1 + et/n

2

)n
, (102)

φ′′n(x, t) =
∂2φn(x, t)

∂t2
=
et/n

4n

(
1 + et/n

2

)n−2(
1 + net/n

)
, (103)

and, from (92)–(94), for x ∈ {0, 1},

E{[P̂ (x) ln P̂ (x)]2}

= 1
4n

∫ ∞
0

∫ ∞
0

dudv

uv

{
(n+ 1)e−u−v − e−

(
u/n+v

)(
1 + e−u/n

2

)n−2 (
1 + ne−u/n

)
− e−

(
u+v/n

)(
1 + e−v/n

2

)n−2 (
1 + ne−v/n

)
+ e−(u+v)/n

(
1 + e−(u+v)/n

2

)n−2 (
1 + ne−(u+v)/n

)}
. (104)

Combining (95), (101) and (104) gives the following closed–form expression for the variance

of the empirical entropy:

Var{Ĥ}

= 1
2

(
1 + 1

n

)∫ ∞
0

∫ ∞
0

dudv

uv

[
e−(u+v) − e−vfn

(u
n

)
− e−ufn

( v
n

)
+ fn

(u+ v

n

)]
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+ 1
2

(
1− 1

n

)∫ ∞
0

∫ ∞
0

dudv

uv

[
e−(u+v) − e−vgn

(u
n
, 0
)
− e−ugn

(
0,
v

n

)
+ gn

(u
n
,
v

n

)]

−
{∫ ∞

0

du

u

[
e−u

(1 + e−u

2

)n−1
− e−un

]}2

, (105)

where

fn(s) := e−s
(

1 + e−s

2

)n−2 1 + ne−s

n+ 1
, (106)

gn(s, t) = e−s−t
(
e−s + e−t

2

)n−2
. (107)
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Fig. 4. 1− E{Ĥ} and std(Ĥ) for a BSS (in bits per source symbol) as a function of n.

For the BSS, ln 2 − E{Ĥ} = E{D(P̂‖P )} and the standard deviation of Ĥ both decay

at the rate of 1
n as n grows without bound, according to Fig. 4. This asymptotic behavior of

E{D(P̂‖P )} is supported by the well-known result [26] (see also [3, Section 3.C] and references

therein) that for the class of discrete memoryless sources {P} with a given finite alphabet X ,

ln
P̂ (X1, . . . , Xn)

P (X1, . . . , Xn)
→ 1

2 χ
2
d, (108)

in law, where χ2
d is a chi-squared random variable with d degrees of freedom. The left–hand
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side of (108) can be rewritten as

ln

(
exp{−nĤ}

exp{−nĤ − nD(P̂‖P )}

)
= nD(P̂‖P ), (109)

and so, E{D(P̂‖P )} decays like d
2n , which is equal to 1

2n for the BSS. In Fig. 4, the base of

the logarithm is 2, and therefore, E{D(P̂‖P )} = 1− E{Ĥ} decays like log2 e
2n ≈

0.7213
n . It can

be verified numerically that 1 − E{Ĥ} (in bits) is equal to 7.25 · 10−3 and 7.217 · 10−4 for

n = 100 and n = 1000, respectively (see Fig. 4), which confirms (108) and (109).

We conclude this subsection by exploring a quantity related to the empirical entropy, which

is the expected code length associated with the universal lossless source code due to Krichevsky

and Trofimov [14]. In a nutshell, this is a predictive universal code, which at each time instant

t, sequentially assigns probabilities to the next symbol according to (a biased version of) the

empirical distribution pertaining to the data seen thus far, x1, . . . , xt. Specifically, consider the

code–length function (in nats),

L(xn) = −
n−1∑
t=0

lnQ(xt+1|xt), (110)

where

Q(xt+1 = x|x1, . . . , xt) =
Nt(x) + s

t+ s|X |
, (111)

Nt(x) is the number of occurrences of the symbol x ∈ X in (x1, . . . , xt), and s > 0 is a fixed

bias parameter needed for the initial coding distribution (t = 0).

We now calculate the redundancy of this universal code,

Rn =
E{L(Xn)}

n
−H, (112)

where H is the entropy of the underlying source. From (110), (111) and (112), we can represent

Rn as follows:

Rn =
1

n

n−1∑
t=0

E
{

ln
(t+ s|X |)P (Xt+1)

Nt(Xt+1) + s

}
. (113)

The expectation on the right–hand side of (113) satisfies

E
{

ln
(t+ s|X |)P (Xt+1)

Nt(Xt+1) + s

}
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=
∑
x

P (x)E
{

ln
(t+ s|X |)P (x)

Nt(x) + s

}

=

∫ ∞
0

[
e−us

∑
x

P (x)E{e−uNt(x)} −
∑
x

P (x)e−u(s|X |+t)P (x)

]
du

u

=

∫ ∞
0

[
e−us

∑
x

P (x)[1− P (x)(1− e−u)]t −
∑
x

P (x)e−u(s|X |+t)P (x)

]
du

u
, (114)

which gives from (113) and (114) that the redundancy is given by

Rn

=
1

n

n−1∑
t=0

E
{

ln
(t+ s|X |)P (Xt+1)

Nt(Xt+1) + s

}

=
1

n

∫ ∞
0

(
e−us

∑
x

P (x)

n−1∑
t=0

[1− P (x)(1− e−u)]t −
∑
x

P (x)e−us|X |P (x)
n−1∑
t=0

e−uP (x)t

)
du

u

=
1

n

∫ ∞
0

[
e−us

∑
x

1− [1− P (x)(1− e−u)]n

1− e−u
−
∑
x

P (x) e−us|X |P (x)
(
1− e−uP (x)n

)
1− e−uP (x)

]
du

u

=
1

n

∫ ∞
0

[e−us(|X | −∑
x

[1− P (x)(1− e−u)]n
)

1− e−u
−
∑
x

P (x) e−us|X |P (x)(1− e−uP (x)n)

1− e−uP (x)

]
du

u
.
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Fig. 5. The function nRn vs. lnn for the BSS and s = 1
2

, in the range 2 ≤ n ≤ 5000.

Fig. 5 displays nRn as a function of lnn for s = 1
2 in the range 1 ≤ n ≤ 5000. As can be
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seen, the graph is nearly a straight line with slope 1
2 , which is in agreement with the theoretical

result that Rn ∼ lnn
2n (in nats per symbol) for large n (see [14, Theorem 2]).

IV. SUMMARY AND OUTLOOK

In this work, we have explored a well–known integral representation of the logarithmic

function, and demonstrated its applications in obtaining exact formulas for quantities that involve

expectations and second order moments of the logarithm of a positive random variable (or the

logarithm of a sum of such random variables). We anticipate that this integral representation

and its variants can serve as a useful tool also in many additional applications, as a rigorous

alternative to the replica method in some situations.

Our work in this paper focused on exact results. In future research, it would be interesting to

explore whether the integral representation we have used is useful also in obtaining upper and

lower bounds on expectations (and higher order moments) of expressions that involves logarithms

of positive random variables. In particular, could the integrand of (1) be bounded from below

and/or above in a non–trivial manner, that would lead to new interesting bounds? Moreover, it

would be even more useful if the corresponding bounds on the integrand would lend themselves

to closed–form expressions of the resulting definite integrals.

Another route for further research relies on [13, p. 363, Identity (3.434.1)], which states that∫ ∞
0

e−µu − e−νu

uρ+1
du =

µρ − νρ

ρ
· Γ(1− ρ), Re(µ) > 0, Re(ν) > 0, Re(ρ) < 1. (115)

Let ν := 1, and µ :=
n∑
i=1
Xi where {Xi}ni=1 are positive i.i.d. random variables. Taking

expectations of both sides of (115) and rearranging terms, gives

E
{( n∑

i=1

Xi

)ρ}
= 1 +

ρ

Γ(1− ρ)

∫ ∞
0

e−u −Mn
X(−u)

uρ+1
du, ∀ ρ ∈ (0, 1), (116)

where X is a random variable having the same density as of the Xi’s, and MX(u) := E
{
euX

}
(for u ∈ R) denotes the MGF of X . Since lnx = lim

ρ→0

xρ−1
ρ for x > 0, it follows that (116)

generalizes (3) for the logarithmic expectation. Identity (116), for the ρ-th moment of a sum

of i.i.d. positive random variables with ρ ∈ (0, 1), may be used in some information-theoretic

contexts rather than invoking Jensen’s inequality.
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information in a generalized Szilárd engine,” arXiv:1910.0419v1, October 9, 2019.

[25] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press,

2005.

[26] A. Wald, “Tests of statistical hypotheses concerning several parameters when the number of

observations is large,” Trans. American Mathematical Society, vol. 54, pp. 426–482, November

1943.

[27] M. J. Weinberger, J. Rissanen, and M. Feder, “A universal finite memory source,” IEEE Trans.

Inform. Theory, vol. 41, no. 3, pp. 643–652, May 1995.

[28] Q. Xie and A. R. Barron, “Asymptotic minimax regret for data compression, gambling and

prediction,” Proc. 1997 IEEE International Symposium on Information Theory, Ulm, Germany,

p. 315, June 29–July 4, 1997.

December 5, 2019 DRAFT


