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Abstract

This work is an extension of our earlier article, where a well–known integral representation of the

logarithmic function was explored, and was accompanied with demonstrations of its usefulness in obtaining

compact, easily–calculable, exact formulas for quantities that involve expectations of the logarithm of a

positive random variable. Here, in the same spirit, we derive an exact integral representation (in one or two

dimensions) of the moment of a non–negative random variable, or the sum of such independent random

variables, where the moment order is a general positive real, not necessarily an integer. The proposed

formula is applied to a variety of examples with an information–theoretic motivation, and it is shown

how it facilitates their numerical evaluations. In particular, when applied to the calculation of a moment

of the sum of a large number, n, of non–negative random variables, it is clear that integration over one

or two dimensions, as suggested by our proposed integral representation, is significantly easier than the

alternative of integrating over n dimensions, as needed in the direct calculation of the desired moment.

Index Terms: Logarithmic expectation, moment–generating function, differential Rényi entropy, jamming,

estimation errors, concentration inequalities, multivariate Cauchy distributions, randomized guessing.
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I. INTRODUCTION

In mathematical analyses associated with many problems in information theory and related

fields, one is often faced with the need to compute expectations of logarithmic functions of

composite random variables (see, e.g., [11], [13], [16], [17], [18], [22], [25], [33]), or moments

of such random variables, whose order may be a general positive real, not even necessarily an

integer (see, e.g., [1], [2], [3], [5], [6], [7], [8], [9], [10], [20], [28], [29], [31], [32]).

In the case of the logarithmic function, the common practice is either to resort approximate

evaluations, provided by upper and lower bounds on the desired expression (for example, by

using Jensen’s inequality), or to approximate the calculations by using the Taylor series expansion

of the function lnx. More recently, it has become popular to use the replica trick (see, e.g., [19,

Chapter 8]), which is a non-rigorous, but useful technique, borrowed from statistical physics.

In our earlier work [22], we have demonstrated how the following well–known integral

representation of the logarithmic function,

lnx =

∫ ∞
0

(
e−u − e−ux

) du

u
, x > 0, (1)

can be useful in a variety of application areas in the field of information theory, including both

source and channel coding, as well as other aspects of this field. To calculate the expectation,

E{lnX}, where X is a positive random variable, the idea is simply to invoke the integral

representation (1) and to commute the expectation and integration operators, i.e.,

E{lnX} =

∫ ∞
0

(
e−u − E{e−uX}

) du

u
, (2)

thereby replacing the calculation of E{lnX} by the calculation of the moment–generating

function (MGF), E{e−uX} for all u ≥ 0, which is often a lot easier to express in closed form.

Moreover, in frequently encountered situations where X is given by the sum of n independently

identically distributed (i.i.d.) random variables, the MGF of X is given by the n–th power of

the MGF of a single random variable in the sum that forms X . This reduces the dimension of

the integration from n (in the original expression) to a single dimension of the integration over

u. Interestingly, this integral representation has also been used in the statistical physics literature

(see, e.g., [12], [19, p. 140], [30]), but not as much as the replica trick.
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In this paper, we proceed in the same spirit as in [22], and we extend the scope to propose

an integral representation of a general moment of a non–negative random variable, X , namely,

the expectation, E{Xρ} for a given ρ > 0. Obviously, when ρ is integer, this moment is simply

given by the ρ–th order derivative of the MGF of X , calculated at the origin, as is very well

known. However, the integral representation we propose, in this work, applies to any non–

integer, positive ρ, and here too, it replaces the direct calculation of E{Xρ} by integration of

an expression that involves the MGF of X . We refer to this representation as an extension of

(2), as the latter can be obtained as a special case of the formula for E{Xρ}, by invoking the

identity

E{lnX} = lim
ρ→0

E{Xρ} − 1

ρ
, (3)

or alternatively, the identity,

E{lnX} = lim
ρ→0

ln[E{Xρ}]
ρ

. (4)

While the proposed integral representation of E{Xρ} can be readily obtained from [14, p. 363,

Identity (3.434.1)] in the range ρ ∈ (0, 1), the non–trivial extension we propose for ρ > 1 is

new to the best of our knowledge.

As in [22], the proposed integral representation is applied to a variety of examples with an

information–theoretic motivation, and it is shown how it facilitates the numerical evaluations. In

particular, similarly as in the case of the logarithmic function, when applied to the calculation

of a moment of the sum of a large number, n, of non–negative random variables, it is clear that

integration over one or two dimensions, as suggested by our proposed integral representation, is

significantly easier than the alternative of integrating over n dimensions, as needed in the direct

calculation of the desired moment. Furthermore, single or double-dimensional integrals can be

instantly and accurately calculated using built-in numerical integration procedures.

The outline of the remaining part of this paper is as follows. In Section II, we provide the

mathematical background associated with the integral representation in general. In Section III,

we demonstrate this integral representation in applications, including: moments of guesswork,

moments of estimation errors, differential Rényi entropies of generalized multivariate Cauchy
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distributions, and mutual information calculations of a certain model of a jammed channel. Each

one of these examples occupies one subsection of Section III. The integral representations in

this paper are not limited to the examples in Section III, and such representations can be proved

useful in other information–theoretic problems (see, e.g., [22] and references therein).

II. STATISTICAL MOMENTS OF ARBITRARY POSITIVE ORDERS

It is well known that any integer–order moment of a random variable X can be calculated

from its MGF

MX(u) := E
{
euX

}
, u ∈ R, (5)

by using its ρ–th order derivative, calculated at u = 0, i.e.,

E{Xρ} = M
(ρ)
X (0), ρ ∈ N. (6)

Quite often, however, there is a theoretical and practical interest to calculate positive non-

integral moments of non-negative random variables. We next obtain a closed–form integral

expression of the ρ–th moment of a non-negative random variable X , as a functional of its

MGF, for any positive real ρ. Before we proceed, it should be noted that for ρ ∈ (0, 1), such

an expression is available in handbooks of standard tables of integrals, for example, in [14,

p. 363, Identity (3.434.1)]. The first innovation here, however, is in a non–trivial extension of

this formula for all ρ > 0 as an expression that involves a one–dimensional integral. It should

be noted that although the definition of a non–integer moment of a RV is also given by a

one–dimensional integral (or a sum, depending on whether the RV is discrete or continuous),

the utility of our formula is, e.g., in expressing the ρ-th moment of a sum of non–negative

and independent random variables as a one–dimensional integral, instead of an n–dimensional

integral which is obtained by the direct definition. This new formula serves as the basic building

block in all our information-theoretic applications throughout this paper.

We first define the Beta and Gamma functions (see, e.g., [14, Section 8.3] and [23, Chapter 5]):

Γ(u) :=

∫ ∞
0

tu−1e−t dt, u > 0, (7)
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B(u, v) :=

∫ 1

0
tu−1(1− t)v−1 dt =

Γ(u) Γ(v)

Γ(u+ v)
, u, v > 0. (8)

Theorem 1: Let X be a non-negative random variable with an MGF MX(·), and let ρ > 0

be a non-integer real. Then,

E{Xρ} =
1

1 + ρ

bρc∑
`=0

α`
B(`+ 1, ρ+ 1− `)

+
ρ sin(πρ) Γ(ρ)

π

∫ ∞
0

1

uρ+1

( bρc∑
j=0

{
(−1)j αj

j!
uj
}
e−u −MX(−u)

)
du, (9)

where for all j ∈ {0, 1, . . . , }

αj := E
{

(X − 1)j
}

(10)

=
1

j + 1

j∑
`=0

(−1)j−`M
(`)
X (0)

B(`+ 1, j − `+ 1)
. (11)

Proof: See Appendix A.

Remark 1: The proof of (9) in Appendix A does not apply to ρ ∈ N (see (A.7), (A.8) etc.,

where the denominators vanish for ρ ∈ N). In the latter case, by referring to the second term on

the right–hand side of (9), we get sin(πρ) = 0 and also the integral diverges (specifically, for

ρ ∈ N, the integrand scales like 1
u for u that is sufficiently close to zero), yielding an expression

of the type 0 ·∞. However, taking a limit in (9) where we let ρ tend to an integer, and applying

L’Hôpital’s rule can reproduce the well–known result in (6).

Corollary 1: For any ρ ∈ (0, 1),

E{Xρ} = 1 +
ρ

Γ(1− ρ)

∫ ∞
0

e−u −MX(−u)

u1+ρ
du. (12)

Proof: Eq. (12) is due to Theorem 1, and by using (A.20), (A.22) (see Appendix A) and

α0 := 1, which give

Γ(ρ) Γ(1− ρ) =
π

sin(πρ)
, (13)

1

1 + ρ

α0

B(1, ρ+ 1)
=

1

1 + ρ

Γ(ρ+ 2)

Γ(ρ+ 1)
= 1. (14)

Remark 2: Corollary 1 also follows from [14, p. 363, Identity (3.434.1)] (see [22, Section 4]).
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Corollary 2: [22] Let X be a positive random variable. Then,

E{lnX} =

∫ ∞
0

e−u −MX(−u)

u
du. (15)

A proof of (15) is presented in [22, Section 2], based on the integral representation of the

logarithmic function in (1), and by interchanging the integration and the expectation. It can

be alternatively proved by using Corollary 1, and the identity lnx = lim
ρ→0

xρ−1
ρ for x > 0.

Identity (15) has many useful information–theoretic applications on its own right, as demonstrated

in [22], and here we add even some more. The current work is an extension and further

development of [22], whose main theme is in exploiting Theorem 1 and studying its information–

theoretic applications, as well as some more applications of the logarithmic expectation.

III. APPLICATIONS

In this section, we exemplify the usefulness of the integral representation of the ρ-th moment

in Theorem 1 and the logarithmic expectation in several problem areas in information theory and

statistics. These include analyses of randomized guessing, estimation errors, Rényi entropy of n-

dimensional generalized Cauchy distributions, and finally, calculations of the mutual information

for channels with a certain jammer model. To demonstrate the direct computability of the relevant

quantities, we also present graphs of their numerical calculations.

A. Moments of Guesswork

Consider the problem of guessing the realization of a random variable which takes on values in

a finite alphabet, using a sequence of yes/no questions of the form “Is X = x1?”, “Is X = x2?”,

etc., until a positive response is provided by a party that observes the actual realization of X .

Given a distribution of X , a commonly used performance metric for this problem is the expected

number of guesses or, more generally, the ρ-th moment of the number of guesses until X is

guessed successfully. When it comes to guessing random vectors, say, of length n, minimizing

the moments of the number of guesses by different (deterministic or randomized) guessing

strategies has several applications and motivations in information theory, such as sequential

decoding, guessing passwords, etc., and it is also strongly related to lossless source coding
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(see, e.g., [1], [2], [3], [5], [6], [15], [21], [27], [28], [29], [31], [32]). In this vector case, the

moments of the number of guesses behave as exponential functions of the vector dimension, n,

at least asymptotically, as n grows without bound. For random vectors with i.i.d. components,

the best achievable asymptotic exponent of the ρ-th guessing moment is expressed in [1] by

using the Rényi entropy of X of order ρ̃ := 1
1+ρ . Arikan assumed in [1] that the distribution of

X is known, and analyzed the optimal deterministic guessing strategy, which orders the guesses

according to non–increasing probabilities. Refinements of the exponential bounds in [1] with

tight upper and lower bounds on the guessing moments for optimal deterministic guessing were

recently derived in [28]. In the sequel, we refer to randomized guessing strategies, rather than

deterministic strategies, and we aim to derive exact, calculable expressions for their associated

guessing moments (as it is later explained in this subsection).

Let the random variable X take on values in a finite alphabet X . Consider a random guessing

strategy where the guesser sequentially submits a sequence of independently drawn random

guesses according to a certain probability distribution, P̃ (·), defined on X . Randomized guessing

strategies have the advantage that they can be used by multiple asynchronous agents which submit

their guesses concurrently (see [21] and [27]).

In this subsection, we consider the setting of randomized guessing, and obtain an exact

representation of the guessing moment in the form of a one–dimensional integral. Let x ∈ X

be any realization of X and let the guessing distribution, P̃ , be given. The random number, G,

of independent guesses until success has a geometric distribution:

Pr{G = k|x} =
[
1− P̃ (x)

]k−1
P̃ (x), k ∈ N, (16)

and so, the corresponding MGF is equal to

MG(u|x) =

∞∑
k=1

eku Pr{G = k|x}

=
P̃ (x)

e−u −
(
1− P̃ (x)

) , u < ln
1

1− P̃ (x)
. (17)

In view of (9)–(11) and (17), for x ∈ X and non–integer ρ > 0,

E{Gρ|x} =
1

1 + ρ

bρc∑
`=0

α`
B(`+ 1, ρ+ 1− `)

(18)
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+
ρ sin(πρ) Γ(ρ)

π

∫ ∞
0

1

uρ+1

( bρc∑
j=0

{
(−1)j αj

j!
uj
}
e−u − P̃ (x)

eu −
(
1− P̃ (x)

))du,

with α0 := 1, and for j ∈ N

αj := E
{(
G− 1

)j |X = x
}

=

∞∑
k=1

(k − 1)j
(
1− P̃ (x)

)k−1
P̃ (x)

= P̃ (x) Li−j
(
1− P̃ (x)

)
. (19)

In (19) Li−j(·) is a polylogarithm (see, e.g., [23, Section 25.12]), which is given by

Li−j(x) =
(
x

d

dx

)j x

1− x
, ∀ j ∈ N ∪ {0}, (20)

with
(
x d

dx

)j
denoting differentiation with respect to x and multiplication of the derivative by

x, repeatedly j times. In particular, we have

Li0(x) =
x

1− x
, Li−1(x) =

x

(1− x)2
, Li−2(x) =

x(1 + x)

(1− x)3
, (21)

and so on. The function Li−j(x) is a built–in function in the Matlab and Mathematica softwares,

which is expressed as polylog(−j, x). By Corollary 1, if ρ ∈ (0, 1), then (18) is simplified to

E{Gρ|x} = 1 +
ρ

Γ(1− ρ)

∫ ∞
0

e−u − e−2u

uρ+1
[(

1− P̃ (x)
)−1 − e−u] du. (22)

Let P denote the distribution of X . Averaging over X to get the unconditional ρ–th moment

using (22), one obtains for all ρ ∈ (0, 1),

E{Gρ} = 1 +
ρ

Γ(1− ρ)

∫ 1

0

1− z
(− ln z)ρ+1

∑
x∈X

P (x)
(
1− P̃ (x)

)
1− z

(
1− P̃ (x)

) dz, (23)

where (23) is obtained by using the substitution z := e−u. A suitable expression of such an

integral is similarly obtained, for all ρ > 0, by averaging (18) over X . In comparison, a direct

calculation of the ρ–th moment gives

E{Gρ} =
∑
x∈X

P (x)E{Gρ|x} =

∞∑
k=1

∑
x∈X

kρ
(
1− P̃ (x)

)k−1
P̃ (x)P (x). (24)

The double sum in (24) involves a numerical computation of an infinite series, where the

number of terms required to obtain a good approximation increases with ρ, and needs to be

determined. The right–hand side of (23), on the other hand, involves integration over [0, 1]. For
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every practical purpose, however, definite integrals in one or two dimensions can be calculated

instantly using built-in numerical integration procedures in MATLAB, Maple, Mathematica, or

any other mathematical software tools, and the computational complexity of the integral in (23)

is not affected by ρ.

As a complement to (18) (which applies to a non-integral and positive ρ), we obtain that the

ρ-th moment of the number of randomized guesses, with ρ ∈ N, is equal to

E{Gρ|x} = E
{[(

G− 1
)

+ 1
]ρ |x}

=

ρ∑
j=0

(
ρ

j

)
E
{(
G− 1

)j |x}
=

ρ∑
j=0

(
ρ

j

)
αj

= 1 + P̃ (x)

ρ∑
j=1

{(
ρ

j

)
Li−j

(
1− P̃ (x)

)}
, (25)

where (25) follows from (19) and since α0 = 1. By averaging over X ,

E{Gρ} = 1 +
∑
x∈cX

{
P (x)P̃ (x)

ρ∑
j=1

{(
ρ

j

)
Li−j

(
1− P̃ (x)

)}}
. (26)

To conclude, (18) and its simplification in (22) for ρ ∈ (0, 1) give calculable one–dimensional

integral expressions for the ρ–th guessing moment with any ρ > 0. This refers to a randomized

guessing strategy whose practical advantages were further explained in [21] and [27]. This

avoids the need of numerical calculations of infinite sums. A Further simplification for ρ ∈ N

is provided in (25) and (26), expressed in closed form as a function of polylogarithms.

B. Moments of Estimation Errors

Let X1, . . . , Xn be i.i.d. random variables with an unknown expectation θ to be estimated,

and consider the simple estimator,

θ̂n =
1

n

n∑
i=1

Xi. (27)

For given ρ > 0, we next derive an easily-calculable expression of the ρ-th moment of the

estimation error.
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Let Dn :=
(
θ̂n − θ

)2 and ρ′ := ρ
2 . By Theorem 1, if ρ > 0 is a non-integral multiple of 2,

then

E
{∣∣θ̂n − θ∣∣ρ}

= E
{
Dρ′

n

}
(28)

=
2

2 + ρ

bρ/2c∑
`=0

α`

B
(
`+ 1, ρ/2 + 1− `

)
+

ρ

2π
sin
(πρ

2

)
Γ
(ρ

2

)∫ ∞
0

1

uρ/2+1

( bρ/2c∑
j=0

{
(−1)j αj

j!
uj
}
e−u −MDn(−u)

)
du, (29)

where

MDn(−u) = E
{

exp
(
−u
(
θ̂n − θ

)2)}
, ∀u ≥ 0, (30)

α0 := 1, and for all j ∈ N (see (11))

αj =
1

j + 1

j∑
`=0

(−1)j−`M
(`)
Dn

(0)

B(`+ 1, j − `+ 1)
. (31)

By Corollary 1 and (28), if in particular ρ ∈ (0, 2), then the right–hand side of (29) is simplified

to

E
{∣∣θ̂n − θ∣∣ρ} = 1 +

ρ

2 Γ(1− 1
2 ρ)

∫ ∞
0

u−(1+
1

2
ρ)
[
e−u −MDn(−u)

]
du, (32)

and, for all k ∈ N,

E
{
|θ̂n − θ|2k

}
= M

(k)
Dn

(0). (33)

In view of (28)–(33), obtaining a closed–form expression for the ρ-th moment of the estimation

error, for an arbitrary ρ > 0, hinges on the calculation of the right side of (30) for all u ≥ 0.

To this end, we invoke the identity

e−uz
2

=
1

2
√
πu

∫ ∞
−∞

e−jωz−ω
2/(4u) dω, ∀u > 0, z ∈ R, (34)

which is the MGF of a zero–mean Gaussian random variable with variance 1
2u . Together with

(30), it gives (see (see Appendix B.1)

MDn(−u) =
1

2
√
πu

∫ ∞
−∞

e−jωθ φnX

(ω
n

)
e−ω

2/(4u) dω, ∀u > 0, (35)
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where X is a generic random variable with the same distribution as of Xi for all i.

The combination of (29)–(33) enables to calculate exactly the ρ-th moment E
{
|θ̂n− θ|ρ

}
, for

any given ρ > 0, in terms of a two-dimensional integral. Combining (32) and (35) yields, for

all ρ ∈ (0, 2),

E
{∣∣θ̂n − θ∣∣ρ}

= 1 +
ρ

2 Γ(1− 1
2 ρ)

∫ ∞
0

∫ ∞
−∞

u−(ρ/2+1)
[
1
2 e
−u−|ω| − 1

2
√
πu

φnX

(ω
n

)
e−jωθ−ω

2/(4u)
]

dω du,

(36)

where we have used the identity
∫∞
−∞

1
2 e
−|ω| dω = 1 in the derivation of the first term of the

integral on the right–hand side of (36).

As an example, consider the case where {Xi}ni=1 are i.i.d. Bernoulli random variables with

P{X1 = 1} = θ, P{X1 = 0} = 1− θ (37)

where the characteristic function is given by

φX(u) := E
{
ejuX

}
= 1 + θ

(
eju − 1

)
, u ∈ R. (38)

Thanks to the availability of the exact expression, we can next compare the exact ρ-th moment

of the estimation error |θ̂n−θ|, with the following closed–form upper bound (see Appendix B.2)

and thereby assess its tightness:

E
{∣∣θ̂n − θ∣∣ρ} ≤ K(ρ, θ) · n−ρ/2, (39)

which holds for all n ∈ N, ρ > 0 and θ ∈ [0, 1], with

K(ρ, θ) := ρ Γ
(ρ

2

) (
2θ (1− θ)

)ρ/2
. (40)

Figures 1 and 2 display plots of E
∣∣θ̂n − θ∣∣ as a function of θ and n, in comparison to the

upper bound (39). The difference in the plot of Figure 1 is significant except for the boundaries

of the interval [0, 1], where both the exact value and the bound vanish. Figure 2 indicates that

the exact value of E
∣∣θ̂n − θ∣∣, for large n, scales like

√
n; this is reflected from the apparent

parallelism of the curves in both graphs, and by the upper bound (39).

May 13, 2020 DRAFT



12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

10 -3

10 -2

10 -1

E
|̂ θ n

−
θ
|

Exact

Upper bound

Fig. 1. The exact value of E
∣∣θ̂n − θ∣∣ (see (36) and (38)) in comparison to the upper bound (39) as functions of

θ ∈ [0, 1] with n = 1000.

10 1 10 2 10 3 10 4

10 -3

10 -2

10 -1

Exact

Upper bound

Fig. 2. A plot of E
∣∣θ̂n − θ∣∣ (see (36) and (38)) versus the upper bound (39) as functions of n with θ = 1

4
.

To conclude, this subsection provides an exact, double–integral expression for the ρ-th moment

of the estimation error of the expectation of n i.i.d. random variables. In other words, the

dimension of the integral does not increase with n, and it is a calculable expression. We

further compare our expression with an upper bound that stems from concentration inequalities.

Although the scaling of the bound as a polynomial of n is correct, the difference between the
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exact expression and the bound is significant (see Fig. 1 and 2).

C. Rényi Entropy of Extended Multivariate Cauchy Distributions

Let Xn = (X1, . . . , Xn) be a random vector whose probability density function is of the form

f(xn) =
Cn

[1 +
∑n

i=1 g(xi)]
q , xn = (x1, . . . , xn) ∈ Rn, (41)

for a certain function g : R→ [0,∞), and a positive constant q such that∫
Rn

1

[1 +
∑n

i=1 g(xi)]
q dxn <∞. (42)

We refer to this kind of density (see also [22, Section 3.1]) as a generalized multivariate Cauchy

density because the multivariate Cauchy density function is the special case pertaining to the

choices g(x) = x2 and q = 1
2(n + 1). The differential Shannon entropy of the generalized

multivariate Cauchy density was derived in [22, Section 3.1] using the integral representation of

the logarithm (1), where it was presented as a two–dimensional integral.

We next extend the analysis of [22] to differential Rényi entropies of an arbitrary positive order

α (recall that the differential Rényi entropy is specialized to the differential Shannon entropy

at α = 1 [26]). We show that, for the generalized multivariate Cauchy density, the differential

Rényi entropy can be presented as a two–dimensional integral, rather than an n–dimensional

integral. Defining

Z(t) :=

∫ ∞
−∞

e−tg(x) dx, t > 0, (43)

we get from (41) (see [22, Section 3.1]) that

Cn =
Γ(q)∫ ∞

0
tq−1e−tZn(t) dt

. (44)

For g(x) = |x|θ, with a fixed θ > 0, (43) implies that

Z(t) =
2 Γ(1/θ)

θ t1/θ
. (45)

In particular, for θ = 2 and q = 1
2(n+ 1), we get the multivariate Cauchy density from (41). In

this case, it follows from (45) that Z(t) =
√

π
t for t > 0, and from (44)

Cn =
Γ
(
n+1
2

)
π(n+1)/2

. (46)
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For α ∈ (0, 1) ∪ (1,∞), the (differential) Rényi entropy of order α is given by

hα(Xn) :=
1

1− α
log

∫
Rn
fα(xn) dxn

=
1

1− α
logE

[
fα−1(Xn)

]
. (47)

Using the Laplace transform relation,

1

sq
=

1

Γ(q)

∫ ∞
0

tq−1e−st dt, ∀ q > 0, Re(s) > 0, (48)

we obtain that, for α > 1 (see Appendix C),

hα(Xn) =
α

α− 1
log

∫ ∞
0

tq−1e−tZn(t) dt+
log Γ

(
q(α− 1)

)
α− 1

− log Γ(q)

− 1

α− 1
log

∫ ∞
0

∫ ∞
0

tq(α−1)−1uq−1e−(t+u) Zn(t+ u) du dt. (49)

Otherwise, if α ∈ (0, 1), we distinguish between the following two cases:

1) If α = 1− m
q for some m ∈ {1, . . . , q − 1}, then

hα(Xn) =
α

1− α
logCn −

1

1− α
log Γ(q)

+
1

1− α
log

(
m∑
`=0

{
(−1)m−`

∫ ∞
0

tq−1e−tϕ(`)
n (t) dt

})
, (50)

with

ϕn(t) := Zn(t), ∀ t ≥ 0. (51)

2) Otherwise (i.e., if ρ := q(1− α) /∈ N), then

hα(Xn)

= − logCn +
1

1− α
log

(
1

1 + ρ

bρc∑
`=0

β`(n)

B(`+ 1, ρ+ 1− `)

+
ρ sin(πρ) Γ(ρ)

π

∫ ∞
0

e−u

uρ+1

( bρc∑
j=0

{
(−1)j βj(n)

j!
uj
}

(52)

− Cn
Γ(q)

∫ ∞
0

tq−1e−tZn(t+ u) dt

))
,

where β0 := 1, and for all j ∈ N

βj(n) :=
Cn

Γ(q)

j∑
`=0

{
(−1)j−`

B(`+ 1, j − `+ 1)

∑̀
k=0

{
(−1)`−k

(
`

k

)∫ ∞
0

tq−1e−tϕ(k)
n (t) dt

}}
. (53)
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The proof of the integral expressions of the Rényi entropy of order α ∈ (0, 1), as given in

(49)–(53), is provided in Appendix C.

Once again, the advantage of these expressions, which do not seem to be very easy (at least

on the face of it), is that they only involve one– or two–dimensional integrals, rather than an

expression of an n–dimensional integral (as it could have been in the case of an n–dimensional

density).

D. Mutual Information Calculations for Communication Channels with Jamming

Consider a channel that is fed by an input vector Xn = (X1, . . . , Xn) ∈ X n and generates an

output vector Y n = (Y1, . . . , Yn) ∈ Yn, where X and Y are either finite, countably infinite or

continuous alphabets, and X n and Yn are their n-th order Cartesian powers. Let the conditional

probability distribution of the channel be given by

pY n|Xn(yn|xn) =
1

n

n∑
i=1

{∏
j 6=i

qY |X(yj |xj) rY |X(yi|xi)

}
, (54)

where rY |X(·|·) and qY |X(·|·) are given conditional probability distributions of Y given X ,

xn = (x1, . . . , xn) ∈ X n and yn = (y1, . . . , yn) ∈ Yn. This channel model refers to a discrete

memoryless channel (DMC), which is nominally given by

qY n|Xn(yn|xn) =

n∏
i=1

qY |X(yi|xi), (55)

where one of the transmitted symbols is jammed at a uniformly distributed random time, i, and

the transition distribution of the jammed symbol is given by rY |X(yi|xi) instead of qY |X(yi|xi).

The restriction to a single jammed symbol is made merely for the sake of simplicity, but it can

easily be extended.

We wish to evaluate how the jamming affects the mutual information I(Xn;Y n). Clearly,

when one talks about jamming, it should be worse, but this is not part of the mathematical

model, where the relation between r and q has not been specified. Let the input distribution be

given by the product form

pXn(xn) =

n∏
i=1

pX(xi), xn ∈ X n. (56)
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The mutual information (in nats) is given by

I(Xn;Y n)

= h(Y n)− h(Y n|Xn) (57)

=

∫
Xn×Yn

pXn,Y n(xn, yn) ln pY n|Xn(yn|xn) dxn dyn −
∫
Yn
pY n(yn) ln pY n(yn) dyn. (58)

For simplicity of notation, we henceforth omit the domains of integration whenever they are

clear from the context. We have,∫
pXn,Y n(xn, yn) ln pY n|Xn(yn|xn) dxn dyn

=

∫
pXn,Y n(xn, yn) ln

(
pY n|Xn(yn|xn)

qY n|Xn(yn|xn)

)
dxn dyn

+

∫
pXn,Y n(xn, yn) ln qY n|Xn(yn|xn) dxn dyn. (59)

By using the logarithmic expectation in (15), and the following equality (see (54) and (55)):

pY n|Xn(yn|xn)

qY n|Xn(yn|xn)
=

1

n

n∑
i=1

rY |X(yi|xi)
qY |X(yi|xi)

, (60)

we obtain (see Appendix D.1)∫
pXn,Y n(xn, yn) ln

(
pY n|Xn(yn|xn)

qY n|Xn(yn|xn)

)
dxn dyn

=

∫ ∞
0

1

u

[
e−u − fn−1

(u
n

)
g
(u
n

)]
du, (61)

where, for u ≥ 0,

f(u) :=

∫
pX(x) qY |X(y|x) exp

(
−
u rY |X(y|x)

qY |X(y|x)

)
dx dy, (62)

g(u) :=

∫
pX(x) rY |X(y|x) exp

(
−
u rY |X(y|x)

qY |X(y|x)

)
dx dy. (63)

Moreover, owing to the product form of qn, it is shown in Appendix D.2 that∫
pXn,Y n(xn, yn) ln qY n|Xn(yn|xn) dxn dyn

=

∫
pX(x) rY |X(y|x) ln qY |X(y|x) dx dy

+ (n− 1)

∫
pX(x) qY |X(y|x) ln qY |X(y|x) dx dy. (64)
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Combining (59), (61) and (64), we express h(Y n|Xn) as a double integral over X × Y ,

independently of n (rather than an integration over X n × Yn):

h(Y n|Xn) =

∫ ∞
0

1

u

[
fn−1

(u
n

)
g
(u
n

)
− e−u

]
du

−
∫
pX(x) rY |X(y|x) ln qY |X(y|x) dx dy

− (n− 1)

∫
pX(x) qY |X(y|x) ln qY |X(y|x) dx dy. (65)

We next calculate the differential channel output entropy, h(Y n), induced by pY n|Xn(·|·).

From Appendix D.3,

pY n(yn) =

n∏
j=1

v(yj) ·
1

n

n∑
i=1

w(yi)

v(yi)
, (66)

where, for all y ∈ Y ,

v(y) :=

∫
qY |X(y|x) pX(x) dx, (67)

w(y) :=

∫
rY |X(y|x) pX(x) dx. (68)

By (1), the following identity holds for every positive random variable Z (see Appendix D.3):

E{Z lnZ} =

∫ ∞
0

1

u

[
M ′Z(0) e−u −M ′Z(−u)

]
du (69)

where MZ(u) := E{euZ}. By setting Z := 1
n

∑n
i=1

w(Vi)
v(Vi)

where {Vi}ni=1 are i.i.d. random

variables with the density function v, some algebraic manipulations give (see Appendix D.3)

h(Y n) =

∫ ∞
0

1

u

[
tn−1

(u
n

)
s
(u
n

)
− e−u

]
du

−
∫
w(y) ln v(y) dy − (n− 1)

∫
v(y) ln v(y) dy, (70)

where

s(u) :=

∫
w(y) exp

(
−uw(y)

v(y)

)
dy, u ≥ 0, (71)

t(u) :=

∫
v(y) exp

(
−uw(y)

v(y)

)
dy, u ≥ 0. (72)

Combining (57), (65) and (70), we obtain the mutual information for the channel with jamming,

which is given by

Ip(X
n;Y n) =

∫ ∞
0

1

u

[
tn−1

(u
n

)
s
(u
n

)
− fn−1

(u
n

)
g
(u
n

)]
du
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+

∫
pX(x) rY |X(y|x) ln qY |X(y|x) dx dy −

∫
w(y) ln v(y) dy

+ (n− 1)

[∫
pX(x) qY |X(y|x) ln qY |X(y|x) dx dy −

∫
v(y) ln v(y) dy

]
. (73)

We next exemplify our results in the case where q is a binary symmetric channel (BSC) with

crossover probability δ ∈ (0, 12), and p is a BSC with a larger crossover probability, ε ∈ (δ, 12 ].

We assume that the input bits are i.i.d. and equiprobable. The specialization of our analysis to

this setup is provided in Appendix D.4, showing that the mutual information of the channel

pXn,Y n , fed by the binary symmetric source, is given by

Ip(X
n;Y n) = n ln 2− d(ε‖δ)− hb(ε)− (n− 1)hb(δ) (74)

+

∫ ∞
0

{
e−u −

[
(1− δ) exp

(
− (1− ε)u

(1− δ)n

)
+ δ exp

(
−εu
δn

)]n−1
·
[
(1− ε) exp

(
− (1− ε)u

(1− δ)n

)
+ ε exp

(
−εu
δn

)]}
du

u
,

where hb : [0, 1]→ [0, ln 2] is the binary entropy function

hb(x) := −x ln(x)− (1− x) ln(1− x), x ∈ [0, 1] (75)

with the convention that 0 ln 0 = 0, and

d(ε‖δ) := ε ln

(
ε

δ

)
+ (1− ε) ln

(
1− ε
1− δ

)
, (δ, ε) ∈ [0, 1]2 (76)

denotes the binary relative entropy. By the data processing inequality, the mutual information in

(74) is smaller than that of the BSC with crossover probability δ:

Iq(X
n;Y n) = n

(
ln 2− hb(δ)

)
. (77)

Fig. 3 refers to the case where δ = 10−3 and n = 128. Here Iq(Xn;Y n) = 87.71 nats, and

Ip(X
n;Y n) is decreased by 2.88 nats due to the jammer (see Fig. 3).

To conclude, this subsection studies the change in the mutual information I(Xn;Y n) due

to jamming, relative to the mutual information associated with the nominal channel without

jamming. Due to the integral representations provided in our analysis, the calculation of the

mutual information finally depends on one–dimensional integrals, as opposed to the original

n-dimensional integrals, pertaining to the expressions that define the associated differential

entropies.
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Fig. 3. The degradation in mutual information for n = 128. The jammer–free channel q is a BSC with crossover

probability δ = 10−3, and r is a BSC with crossover probability ε ∈
(
δ, 1

2

]
. The input bits are i.i.d. and equiprobable.

The degradation in I(Xn;Y n) (nats) is displayed as a function of ε.

APPENDIX A

PROOF OF THEOREM 1

Let ρ > 0 be a non-integer real, and define the function Fρ : (0,∞)→ R as follows:

Fρ(µ) :=

∫ ∞
0

1

uρ+1

(
e−µu −

bρc∑
j=0

{
(−1)j

j!
(µ− 1)juj

}
e−u

)
du, µ > 0, (A.1)

with the convention that 00 := lim
x→0+

xx = 1. By the Taylor series expansion of e−µu as a

function of µ around µ = 1, we find that for small positive u, the integrand of (A.1) scales

like u−(ρ−bρc) with ρ − bρc ∈ (0, 1). Furthermore, for large u, the same integrand scales like

u−(ρ+1)e−min{µ,1}u. This guarantees the convergence of the integral, and so Fρ(·) is well-defined

and finite in the interval (0,∞).

From (A.1), Fρ(1) = 0 (for µ = 1, the integrand of (A.1) is identically zero on (0,∞)).

Differentiation ` times with respect to µ, under the integration sign with ` ∈
{

0, . . . , bρc
}

, gives

F (`)
ρ (µ) =

∫ ∞
0

1

uρ+1

[
(−1)`u`e−µu −

bρc∑
j=`

{
(−1)j

(j − `)!
· (µ− 1)j−`uj

}
e−u

]
du, (A.2)

which implies that

F (`)
ρ (1) = 0, ` = 0, . . . , bρc. (A.3)
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We next calculate F (k)
ρ (µ) for k := bρc+ 1 and µ > 0:

F (k)
ρ (µ) =

∫ ∞
0

1

uρ+1

∂k

∂µk

{
e−µu −

bρc∑
j=0

{
(−1)j

j!
· (µ− 1)juj

}
e−u

}
du

=

∫ ∞
0

(−u)ke−µu

uρ+1
du

= (−1)k
∫ ∞
0

uk−ρ−1e−µu du

= (−1)k
∫ ∞
0

( t
µ

)k−ρ−1
e−t µ−1 dt

= (−1)kµρ−k Γ(k − ρ). (A.4)

Hence, from (A.3) and (A.4),

Fρ(1) = . . . = F (bρc)
ρ (1) = 0, (A.5)

F (k)
ρ (µ) = (−1)kµρ−k Γ(k − ρ), k := bρc+ 1, µ > 0. (A.6)

By integrating both sides of (A.6) with respect to µ, successively k times, (A.5) implies that

Fρ(µ) =
(−1)k Γ(k − ρ) µρ

k−1∏
i=0

(ρ− i)
+

k−1∑
i=0

ci(ρ) (µ− 1)i, k := bρc+ 1, µ > 0, (A.7)

with some integration constants
{
ci(ρ)

}k−1
i=0

. Since Fρ(1) = 0 (see (A.5)), (A.7) implies that

c0(ρ) =
(−1)k+1 Γ(k − ρ)

k−1∏
i=0

(ρ− i)
, (A.8)

and since (by assumption) ρ is a non-integer, the denominator on the right–hand side of (A.8)

is non-zero. Moreover, since F (`)
ρ (1) = 0 for all ` ∈ {1, . . . k− 1} (see (A.5)), differentiation of

both sides of (A.7) ` times at µ = 1 yields

c`(ρ) :=

(−1)k+1 Γ(k − ρ)
`−1∏
i=0

(ρ− i)

`!
k−1∏
i=0

(ρ− i)
, ` = 1, . . . , k − 1. (A.9)

Substituting (A.8) and (A.9) into (A.7) gives

Fρ(µ) =
(−1)k Γ(k − ρ)

k−1∏
i=0

(ρ− i)

[
µρ − 1−

k−1∑
`=1

{
1

`!

`−1∏
i=0

(ρ− i) (µ− 1)`

}]
, µ > 0. (A.10)
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Combining (A.1) with (A.10) and rearranging terms, we obtain

µρ = 1 +

k−1∑
`=1

{
1

`!

`−1∏
i=0

(ρ− i) (µ− 1)`

}

+

(−1)k−1
k−1∏
i=0

(ρ− i)

Γ(k − ρ)

∫ ∞
0

1

uρ+1

( bρc∑
j=0

{
(−1)j

j!
(µ− 1)juj

}
e−u − e−µu

)
du. (A.11)

Setting µ := X ≥ 0, and taking expectations of both sides of (A.11) yield (see (5) and (10))

E
{
Xρ
}

= 1 +

k−1∑
`=1

{
1

`!

`−1∏
i=0

(ρ− i) α`

}

+

(−1)k−1
k−1∏
i=0

(ρ− i)

Γ(k − ρ)

∫ ∞
0

1

uρ+1

( bρc∑
j=0

{
(−1)j αj

j!
uj
}
e−u −MX(−u)

)
du.

(A.12)

We next rewrite and simplify both terms in the right side of (A.12) as follows:

1 +

k−1∑
`=1

{
1

`!

`−1∏
i=0

(ρ− i) α`

}

= 1 +

k−1∑
`=1

{
1

Γ(`+ 1)

Γ(ρ+ 1)

Γ(ρ− `+ 1)
· α`

}
(A.13)

= 1 +
1

1 + ρ

k−1∑
`=1

{
1

Γ(`+ 1)

Γ(ρ+ 2)

Γ(ρ− `+ 1)
· α`

}
(A.14)

= 1 +
1

1 + ρ

k−1∑
`=1

α`
B(`+ 1, ρ− `+ 1)

(A.15)

=
1

1 + ρ

k−1∑
`=0

α`
B(`+ 1, ρ− `+ 1)

, (A.16)

and

(−1)k−1
k−1∏
i=0

(ρ− i)

Γ(k − ρ)

=
(−1)k−1 Γ(ρ+ 1)

Γ(k − ρ) Γ(ρ− k + 1)
(A.17)

= (−1)k−1 Γ(ρ+ 1) ·
sin
(
π(k − ρ)

)
π

(A.18)

=
ρ sin(πρ) Γ(ρ)

π
. (A.19)
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Eqs. (A.13), (A.14), (A.17) and (A.19) are based on the recursion (see, e.g., [14, page 904,

Identity (8.331)])

Γ(x+ 1) = xΓ(x), x > 0, (A.20)

(A.15) relies on the relation between the Beta and Gamma functions in (8); (A.16) is based on

the following equality (see (8), (A.20), and recall that Γ(1) = 1):

B(1, ρ+ 1) =
Γ(1) Γ(ρ+ 1)

Γ(ρ+ 2)
=

1

ρ+ 1
, (A.21)

and, finally, (A.19) holds by using the identity (see, e.g., [14, page 905, Identity (8.334)])

Γ(x) Γ(1− x) =
π

sin(πx)
, ∀x ∈ (0, 1), (A.22)

with x := k − ρ = bρc+ 1− ρ ∈ (0, 1) (since, by assumption, ρ is a non-integer). Combining

(A.12)–(A.19) gives (9) (recall that α0 := 1, and k − 1 := bρc holds by (A.6)).

We finally prove (11). By (10), for all j ∈ N,

αj = E
{

(X − 1)j
}

=

j∑
`=0

(−1)j−`
(
j

`

)
E
{
X`
}

=

j∑
`=0

(−1)j−` Γ(j + 1) M
(`)
X (0)

Γ(`+ 1) Γ(j − `+ 1)

=
1

j + 1

j∑
`=0

(−1)j−` Γ(j + 2) M
(`)
X (0)

Γ(`+ 1) Γ(j − `+ 1)

=
1

j + 1

j∑
`=0

(−1)j−`M
(`)
X (0)

B(`+ 1, j − `+ 1)
. (A.23)

APPENDIX B

COMPLEMENTARY DETAILS OF THE ANALYSIS IN SECTION III-B

B.1 Proof of Eq. (35)

For all u > 0,

MDn(−u) = E
{

exp
(
−u
(
θ̂n − θ

)2)} (B.1)

= E
{

1

2
√
πu

∫ ∞
−∞

ejω(θ̂n−θ) e−ω
2/(4u) dω

}
(B.2)
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=
1

2
√
πu

∫ ∞
−∞

e−jωθ E
{
ejωθ̂n

}
e−ω

2/(4u) dω (B.3)

=
1

2
√
πu

∫ ∞
−∞

e−jωθ E
{

exp
(jω
n

n∑
i=1

Xi

)}
e−ω

2/(4u) dω (B.4)

=
1

2
√
πu

∫ ∞
−∞

e−jωθ φnX

(
ω

n

)
e−ω

2/(4u) dω, (B.5)

where (B.1) is (30); (B.2) relies on (34); (B.3) holds by interchanging expectation and integration;

(B.4) is due to (27), and (B.5) holds by the assumption that X1, . . . , Xn are i.i.d.

B.2 Derivation of the Upper bound in (39)

For all ρ > 0,

E
{∣∣θ̂n − θ∣∣ρ} =

∫ ∞
0

P
(∣∣θ̂n − θ∣∣ρ ≥ t) dt

=

∫ ∞
0

P
(∣∣θ̂n − θ∣∣ρ ≥ ερ) ρ ερ−1 dε

=

∫ ∞
0

P
(∣∣θ̂n − θ∣∣ ≥ ε) ρ ερ−1 dε. (B.6)

We next use the Chernoff bound for upper bounding P
(∣∣θ̂n − θ∣∣ ≥ ε) for all ε > 0,

P
(
θ̂n − θ ≥ ε

)
= P

(
n∑
i=1

(Xi − θ) ≥ nε

)

≤ inf
s≥0

{
e−snε E

{
exp

(
s

n∑
i=1

(Xi − θ)
)}}

= inf
s≥0

{
e−snε

n∏
i=1

E
{
es(Xi−θ)

}}
= inf

s≥0

{
e−snε

(
θ es(1−θ) + (1− θ) e−sθ

)n}
= inf

s≥0

{
e−nsε+nHθ(s)

}
(B.7)

with θ ∈ [0, 1], and

Hθ(s) := ln
(
θ es(1−θ) + (1− θ) e−sθ

)
, s ≥ 0. (B.8)

We now use an upper bound on Hθ(s) for every s ≥ 0. By Theorem 3.2 and Lemma 3.3 in [4]

(see also [24, Lemma 2.4.6]), we have

Hθ(s) ≤ C(θ) s2 (B.9)
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with

C(θ) :=



0, if θ = 0,

1− 2θ

4 ln
(
1−θ
θ

) , if θ ∈
(
0, 12
)
,

1
2 θ(1− θ), if θ ∈

[
1
2 , 1
]
.

(B.10)

Combining (B.7) and (B.9) yields

P
(
θ̂n − θ ≥ ε

)
≤ inf

s≥0

{
e−nεs+nC(θ)s2

}
= exp

(
− nε2

4C(θ)

)
. (B.11)

Similarly, it is easy to show that the same Chernoff bound applies also to P
(
θ̂n − θ ≤ −ε

)
,

which overall gives

P
(∣∣θ̂n − θ∣∣ ≥ ε) ≤ 2 exp

(
− nε2

4C(θ)

)
. (B.12)

Inequality (B.12) is a refined version of Hoeffding’s inequality (see [24, Section 2.4.4]), which is

derived for the Bernoulli distribution (see (B.7)) and by invoking the Chernoff bound; moreover,

(B.12) coincides with Hoeffding’s inequality in the special case θ = 1
2 (which, from (B.10),

yields C(θ) = 1
8 ). In view of the fact that (B.12) forms a specialization of [24, Theorem 2.4.7], it

follows that the Bernoulli case is the worst one (in the sense of leading to the looser upper bound)

among all probability distributions whose support is the interval [0, 1] and whose expected value

is θ ∈ [0, 1]. However, in the Bernoulli case, a simple symmetry argument applies for improving

the bound (B.12) as follows. Since {Xi} are i.i.d., Bernoulli with mean θ, then obviously,

{1−Xi} are Bernoulli, i.i.d. with mean 1− θ and (from (27))

θ̂n(1−X1, . . . , 1−Xn) = 1− θ̂n(X1, . . . , Xn), (B.13)

which implies that the error estimation is identical in both cases. Hence, P
(∣∣θ̂n − θ∣∣ ≥ ε

)
is

symmetric around θ = 1
2 . It can be verified that

min
{
C(θ), C(1− θ)

}
= 1

2 θ(1− θ), ∀ θ ∈ [0, 1], (B.14)

which follows from (B.10) and since C(θ) > C(1− θ) for all θ ∈ (0, 12) (see [24, Fig. 2.1]). In

view of (B.14) and the above symmetry consideration, the upper bound in (B.12) is improved
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for values of θ ∈ (0, 12), which therefore gives

P
(∣∣θ̂n − θ∣∣ ≥ ε) ≤ 2 exp

(
− nε2

2θ(1− θ)

)
, ∀ θ ∈ [0, 1], ε > 0. (B.15)

From (27), the probability in (B.15) vanishes if θ = 0 or θ = 1. Consequently, for ρ > 0,

E
{∣∣θ̂n − θ∣∣ρ} =

∫ ∞
0

P
(∣∣θ̂n − θ∣∣ ≥ ε) ρ ερ−1 dε (B.16)

≤
∫ ∞
0

2 exp

(
− nε2

2θ(1− θ)

)
ρ ερ−1 dε (B.17)

= ρ
(
2θ(1− θ)

)ρ/2 ∫ ∞
0

uρ/2−1 e−u du · n−ρ/2 (B.18)

= ρΓ
(ρ

2

)(
2θ(1− θ)

)ρ/2 · n−ρ/2 (B.19)

= K(ρ, θ) · n−ρ/2, (B.20)

where (B.16)–(B.20) hold, respectively, due to (B.6), (B.15), the substitution u := nε2

2θ(1−θ) , (7)

and (40).

APPENDIX C

COMPLEMENTARY DETAILS OF THE ANALYSIS IN SECTION III-C

We start by proving (49). In view of (47), for α ∈ (0, 1) ∪ (1,∞)

hα(Xn) =
1

1− α
logE

[
fα−1(Xn)

]
, (C.1)

where Xn := (X1, . . . , Xn). For α > 1, we get

E
[
fα−1(Xn)

]
= Cα−1n E

{[
1 +

n∑
i=1

g(Xi)

]q(1−α)}
(C.2)

= Cα−1n

∫
Rn
f(xn) · 1

Γ
(
q(α− 1)

) ∫ ∞
0

tq(α−1)−1 exp

{
−

(
1 +

n∑
i=1

g(xi)

)
t

}
dt (C.3)

=
Cα−1n

Γ
(
q(α− 1)

) ∫ ∞
0

tq(α−1)−1 e−t E

[
exp

(
−t

n∑
i=1

g(xi)

)]
dt. (C.4)

where (C.2) holds due to (41); (C.3) follows from (48), and (C.4) holds by swapping order of

integrations. Furthermore, from (41) and (48),

f(xn) =
Cn(

1 +
∑n

i=1 g(xi)
)q
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=
Cn

Γ(q)

∫ ∞
0

uq−1e−u exp

(
−u

n∑
i=1

g(xi)

)
du, ∀xn ∈ Rn, (C.5)

and it follows from (C.5) and by swapping order of integrations,

E

[
exp

(
−t

n∑
i=1

g(Xi)

)]

=
Cn

Γ(q)

∫ ∞
0

uq−1e−u
∫
Rn

exp
(
−(t+ u)

n∑
i=1

g(xi)
)

dxn du

=
Cn

Γ(q)

∫ ∞
0

uq−1e−u

{
n∏
i=1

∫ ∞
−∞

exp
(
−(t+ u)g(xi)

)
dxi

}
du

=
Cn

Γ(q)

∫ ∞
0

uq−1e−u
(∫ ∞
−∞

exp
(
−(t+ u) g(x)

)
dx

)n
du

=
Cn

Γ(q)

∫ ∞
0

uq−1e−uZn(t+ u) du (C.6)

where (C.6) holds by the definition of Z(·) in (43). Finally, combining (44), (C.1), (C.4) and

(C.6) gives (49).

The proof of (50)–(53) is a straightforward calculation which follows by combining (C.1),

(C.2), (C.6) and Theorem 1 (we replace {αj} in Theorem 1 with {βj(n)} in order not to confuse

with the order α of the Rényi entropy of Xn).

APPENDIX D

CALCULATIONS OF THE n-DIMENSIONAL INTEGRALS IN SECTION III-D

D.1 Proof of Eqs. (61)–(63)∫
pXn,Y n(xn, yn) ln

(
pY n|Xn(yn|xn)

qY n|Xn(yn|xn)

)
dxn dyn

=

∫
pXn,Y n(xn, yn) ln

(
1

n

n∑
i=1

rY |X(yi|xi)
qY |X(yi|xi)

)
dxn dyn

=

∫ ∞
0

1

u

[
e−u −

∫
pXn,Y n(xn, yn) exp

(
−u
n

n∑
i=1

rY |X(yi|xi)
qY |X(yi|xi)

)
dxn dyn

]
du (D.1)

=

∫ ∞
0

1

u

[
e−u −

∫
1

n

n∑
i=1

{∏
j 6=i

qY |X(yj |xj) pX(xj) · rY |X(yi|xi) pX(xi)

}

· exp

(
−u
n

n∑
i=1

rY |X(yi|xi)
qY |X(yi|xi)

)
dxn dyn

]
du (D.2)
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=

∫ ∞
0

1

u

[
e−u −

∫
1

n

n∑
i=1

{∏
j 6=i

qY |X(yj |xj) pX(xj) exp

(
−u
n

rY |X(yj |xj)
qY |X(yj |xj)

)

· rY |X(yi|xi) pX(xi) exp

(
−u
n

rY |X(yi|xi)
qY |X(yi|xi)

)}
dxn dyn

]
du

(D.3)

=

∫ ∞
0

1

u

[
e−u − 1

n

n∑
i=1

{∏
j 6=i

∫
qY |X(yj |xj) pX(xj) exp

(
−u
n

rY |X(yj |xj)
qY |X(yj |xj)

)
dxj dyj

·
∫
rY |X(yi|xi) pX(xi) exp

(
−u
n

rY |X(yi|xi)
qY |X(yi|xi)

)
dxi dyi

}]
du

(D.4)

=

∫ ∞
0

1

u

[
e−u − 1

n

n∑
i=1

{(∫
qY |X(y|x) pX(x) exp

(
−u
n

rY |X(y|x)

qY |X(y|x)

)
dx dy

)n−1

·
∫
rY |X(y|x) pX(x) exp

(
−u
n

rY |X(y|x)

qY |X(y|x)

)
dx dy

}]
du (D.5)

=

∫ ∞
0

1

u

[
e−u −

(∫
qY |X(y|x) pX(x) exp

(
−u
n

rY |X(y|x)

qY |X(y|x)

)
dx dy

)n−1

·
∫
rY |X(y|x) pX(x) exp

(
−u
n

rY |X(y|x)

qY |X(y|x)

)
dx dy

]
du (D.6)

=

∫ ∞
0

1

u

[
e−u − fn−1

(u
n

)
g
(u
n

)]
du, (D.7)

where f(·) and g(·) are defined in (62) and (63), respectively. Consequently, f(0) = g(0) = 1,

and 0 ≤ f(u), g(u) ≤ 1 for all u > 0.

D.2 Proof of Eq. (64)∫
pXn,Y n(xn, yn) ln qY n|Xn(yn|xn) dxn dyn

=

∫
pXn,Y n(xn, yn)

n∑
j=1

ln qY |X(yj |xj) dxn dyn (D.8)

=

∫ n∏
`=1

pX(x`) ·
1

n

n∑
i=1

{∏
` 6=i

qY |X(y`|x`) rY |X(yi|xi)

}
n∑
j=1

ln qY |X(yj |xj) dxn dyn (D.9)

=

∫ n∏
`=1

pX(x`) ·
1

n

n∑
i=1

n∑
j=1

{∏
6̀=i
qY |X(y`|x`) · rY |X(yi|xi) ln qY |X(yj |xj)

}
dxn dyn (D.10)
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=
1

n

∫
Xn

n∏
`=1

pX(x`)

(
n∑
i=1

n∑
j=1

∫
Yn

∏
`6=i

qY |X(y`|x`) · rY |X(yi|xi) ln qY |X(yj |xj) dyn

)
dxn

(D.11)

We next calculate the inner integral on the right–hand side of (D.11). For i = j,∫
Yn

∏
6̀=i
qY |X(y`|x`) · rY |X(yi|xi) ln qY |X(yj |xj) dyn

=
∏
` 6=i

∫
Y
qY |X(y`|x`) dy` ·

∫
Y
rY |X(yi|xi) ln qY |X(yi|xi) dyi

=

∫
Y
rY |X(y|xi) ln qY |X(y|xi) dy, (D.12)

else, ∫
Yn

∏
6̀=i
qY |X(y`|x`) · rY |X(yi|xi) ln qY |X(yj |xj) dyn

=
∏

`/∈{i,j}

∫
Y
qY |X(y`|x`) dy` ·

∫
Y
qY |X(yj |xj) ln qY |X(yj |xj) dyj ·

∫
Y
rY |X(yi|xi) dyi

=

∫
Y
qY |X(y|xj) ln qY |X(y|xj) dy. (D.13)

Hence, from (D.11)–(D.13),∫
pXn,Y n(xn, yn) ln qY n|Xn(yn|xn) dxn dyn

=
1

n

∫
Xn

n∏
`=1

pX(x`)

(
n∑
i=1

∫
Y
rY |X(y|xi) ln qY |X(y|xi) dy

+

n∑
i=1

∑
j 6=i

∫
Y
qY |X(y|xj) ln qY |X(y|xj) dy

)
dxn

=
1

n

[
n∑
i=1

{∏
6̀=i

∫
X
pX(x`) dx` ·

∫
X×Y

rY |X(y|xi) ln qY |X(y|xi) pX(xi) dxi dy

}

+

n∑
i=1

∑
j 6=i

{∏
6̀=j

∫
X
pX(x`) dx` ·

∫
X×Y

pX(xj) qY |X(y|xj) ln qY |X(y|xj) dxj dy

}]

=
1

n

[
n∑
i=1

∫
X×Y

rY |X(y|x) ln qY |X(y|x) pX(x) dx dy

+

n∑
i=1

∑
j 6=i

∫
X×Y

pX(x) qY |X(y|x) ln qY |X(y|x) dx dy

]
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=

∫
X×Y

pX(x) rY |X(y|x) ln qY |X(y|x) dx dy

+ (n− 1)

∫
X×Y

pX(x) qY |X(y|x) ln qY |X(y|x) dx dy. (D.14)

D.3 Proof of Eqs. (66)–(72)

pY n(yn) =

∫
pY n|Xn(yn|xn) pXn(xn) dxn

=
1

n

n∑
i=1

{∏
j 6=i

∫
qY |X(yj |xj) pX(xj) dxj ·

∫
rY |X(yi|xi)PX(xi) dxi

}

=
1

n

n∑
i=1

{∏
j 6=i

v(yj) · w(yi)

}

=

n∏
j=1

v(yj) ·
1

n

n∑
i=1

w(yi)

v(yi)
, ∀ yn ∈ Yn, (D.15)

where v(·) and w(·) are probability densities on Y , as defined in (67) and (68), respectively.

This proves (66).

We next prove (69), which is used to calculate the entropy of Y n with the density pY n(·)

in (D.15). In view of the integral representation of the logarithmic function in (1), and by

interchanging the order of the integrations, we get that for a positive random variable Z

E
{
Z lnZ

}
=

∫ ∞
0

1

u
· E
{
Z
(
e−u − e−uZ

)}
du

=

∫ ∞
0

E
{
Z
}
e−u − E

{
Ze−uZ

}
u

du

=

∫ ∞
0

M ′Z(0) e−u −M ′Z(−u)

u
du, (D.16)

which proves (69). Finally, we prove (70). In view of (D.15),

h(Y n) = −
∫
pY n(yn) ln pY n(yn) dyn

= −
∫ n∏

j=1

v(yj) ·
1

n

n∑
i=1

w(yi)

v(yi)
·

[
ln

(
n∏
j=1

v(yj)

)
+ ln

(
1

n

n∑
i=1

w(yi)

v(yi)

)]
dyn

= −
∫ n∏

j=1

v(yj) ·
1

n

n∑
i=1

w(yi)

v(yi)
·

[
n∑
j=1

ln v(yj) + ln

(
1

n

n∑
i=1

w(yi)

v(yi)

)]
dyn

= −
∫ n∏

`=1

v(y`) ·
1

n

n∑
i=1

n∑
j=1

w(yi) ln v(yj)

v(yi)
dyn
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−
∫ n∏

j=1

v(yj) ·
1

n

n∑
i=1

w(yi)

v(yi)
· ln

(
1

n

n∑
i=1

w(yi)

v(yi)

)
dyn. (D.17)

A calculation of the first integral on the right–hand side of (D.17) gives∫ n∏
`=1

v(y`) ·
1

n

n∑
i=1

n∑
j=1

w(yi) ln v(yj)

v(yi)
dyn

=
1

n

n∑
i=1

n∑
j=1

∫ n∏
`=1

v(y`) ·
w(yi) ln v(yj)

v(yi)
dyn

=
1

n

n∑
i=1

n∑
j=1

∫ ∏
`6=i

v(y`) · w(yi) ln v(yj) dyn. (D.18)

For i = j, the inner integral on the right–hand side of (D.18) satisfies∫ ∏
6̀=i
v(y`) · w(yi) ln v(yj) dyn

=
∏
` 6=i

∫
v(y`) dy` ·

∫
w(yi) ln v(yi) dyi

=

∫
w(y) ln v(y) dy, (D.19)

and for i 6= j, ∫ ∏
6̀=i
v(y`) · w(yi) ln v(yj) dyn

=
∏
6̀=i,j

∫
v(y`) dy` ·

∫
w(yi) dyi ·

∫
v(yj) ln v(yj) dyj

=

∫
v(y) ln v(y) dy. (D.20)

Therefore combining (D.18)–(D.20) gives∫ n∏
`=1

v(y`) ·
1

n

n∑
i=1

n∑
j=1

w(yi) ln v(yj)

v(yi)
dyn

=

∫
w(y) ln v(y) dy + (n− 1)

∫
v(y) ln v(y) dy. (D.21)

Finally, we calculate the second integral on the right–hand side of (D.17). Let µn be the

probability density function defined as

µn(yn) :=

n∏
j=1

v(yj), yn ∈ Yn, (D.22)
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and let

Z :=
1

n

n∑
i=1

w(Vi)

v(Vi)
(D.23)

where {Vi}ni=1 are i.i.d. Y-valued random variables with a probability density function v. Then,

in view of (69), the second integral on the right–hand side of (D.17) satisfies∫ n∏
j=1

v(yj) ·
1

n

n∑
i=1

w(yi)

v(yi)
· ln

(
1

n

n∑
i=1

w(yi)

v(yi)

)
dyn

= E
{
Z lnZ

}
=

∫ ∞
0

M ′Z(0) e−u −M ′Z(−u)

u
du. (D.24)

The MGF of Z is equal to

MZ(u) =

∫
Yn

n∏
i=1

v(ri) exp

(
u

n

n∑
i=1

w(ri)

v(ri)

)
dr

=

n∏
i=1

∫
Y
v(ri) exp

(
u

n

w(ri)

v(ri)

)
dri

= Kn
(u
n

)
, (D.25)

where

K(u) :=

∫
Y
v(y) exp

(
uw(y)

v(y)

)
dy, ∀u ∈ R, (D.26)

and consequently, (D.26) yields

M ′Z(u) = Kn−1
(u
n

)
K ′
(u
n

)
=

(∫
v(y) exp

(
uw(y)

v(y)

)
dy

)n−1 ∫
w(y) exp

(
uw(y)

v(y)

)
dy, (D.27)

and

M ′Z(0) = 1. (D.28)

Therefore, combining (D.24)–(D.28) gives the following single-letter expression for the second

multi-dimensional integral on the right–hand side of (D.17):∫ n∏
j=1

v(yj) ·
1

n

n∑
i=1

w(yi)

v(yi)
· ln

(
1

n

n∑
i=1

w(yi)

v(yi)

)
dyn =

∫ ∞
0

1

u

[
e−u − tn−1

(u
n

)
s
(u
n

)]
du,

(D.29)
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where the functions s(·) and t(·) are defined in (71) and (72), respectively. Combining (D.17),

(D.21) and (D.29) gives (70).

D.4 Specialization to a BSC with Jamming

In the BSC example considered, we have X = Y = {0, 1}, and

rY |X(y|x) = ε 1{x 6= y}+ (1− ε) 1{x = y}, (D.30)

qY |X(y|x) = δ 1{x 6= y}+ (1− δ) 1{x = y}, (D.31)

where 1{relation} is the indicator function that is equal to 1 if the relation holds, and to zero

otherwise. Recall that we assume 0 < δ < ε ≤ 1
2 . Let

pX(0) = pX(1) = 1
2 , (D.32)

be the binary symmetric source (BSS). From (62) and (63), for u ≥ 0,

f(u) =
∑
x,y

pX(x) qY |X(y|x) exp

(
−
u rY |X(y|x)

qY |X(y|x)

)

= (1− δ) exp

(
−(1− ε)u

1− δ

)
+ δ exp

(
−εu
δ

)
, (D.33)

g(u) =
∑
x,y

pX(x) rY |X(y|x) exp

(
−
u rY |X(y|x)

qY |X(y|x)

)

= (1− ε) exp

(
−(1− ε)u

1− δ

)
+ ε exp

(
−εu
δ

)
. (D.34)

Furthermore, we get from (D.30), (D.31) and (D.32) that

−
∑
x,y

pX(x) rY |X(y|x) ln qY |X(y|x) = −ε ln δ − (1− ε) ln(1− δ)

= d(ε‖δ) + hb(ε), (D.35)

and

−
∑
x,y

pX(x) rY |X(y|x) ln qY |X(y|x) = hb(δ). (D.36)

Substituting (D.33)–(D.36) into (65) (where integrals in (65) are replaced by sums) gives

H(Y n|Xn) = d(ε‖δ) + hb(ε) + (n− 1)hb(δ) +

∫ ∞
0

[
fn−1

(u
n

)
g
(u
n

)
− e−u

] du

u
. (D.37)
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Since the input is a BSS, due to the symmetry of the channel (54), the output is also a BSS.

This implies that (in units of nats)

H(Y n) = n ln 2. (D.38)

As a sanity check, we verify it by using (70). From (67) and (68), for y ∈ {0, 1},

v(y) = pX(0) qY |X(y|0) + pX(1) qY |X(y|1) = 1
2 , (D.39)

w(y) = pX(0) rY |X(y|0) + pX(1) rY |X(y|1) = 1
2 , (D.40)

and, from (71) and (72), it consequently follows that

s(u) = w(0) exp

(
−uw(0)

v(0)

)
+ w(1) exp

(
−uw(1)

v(1)

)
= e−u, ∀u ≥ 0, (D.41)

and also

t(u) = e−u, ∀u ≥ 0. (D.42)

It can be verified that substituting (D.39)–(D.42) into (70) reproduces (D.38). Finally, subtracting

(D.37) from (D.38) gives (74).
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Mathematical Letters, vol. 11, no. 2, pp. 69–74, 1998.

[17] A. Lapidoth and S. Moser, “Capacity bounds via duality with applications to multiple-antenna systems on flat

fading channels,” IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 24262467, October 2003.

[18] A. Martinez, “Spectral efficiency of optical direct detection,” Journal of the Optical Society of America B,

vol. 24, no. 4, pp. 739–749, April 2007.
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