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Abstract

It is well known that the traditional Jensen inequality is proved by lower bounding the
given convex function, f(z), by the tangential affine function that passes through the point
(E{X}, f(E{X})), where E{X} is the expectation of the random variable X. While this tan-
gential affine function yields the tightest lower bound among all lower bounds induced by affine
functions that are tangential to f, it turns out that when the function f is just part of a more
complicated expression whose expectation is to be bounded, the tightest lower bound might be-
long to a tangential affine function that passes through a point different than (E{X}, f(E{X?})).
In this paper, we take advantage of this observation, by optimizing the point of tangency with
regard to the specific given expression, in a variety of cases, and thereby derive several fam-
ilies of inequalities, henceforth referred to as “Jensen-like” inequalities, which are new to the
best knowledge of the author. The degree of tightness and the potential usefulness of these
inequalities is demonstrated in several application examples related to information theory.

1 Introduction

As is well known, the Jensen inequality is one of the most fundamental and useful mathematical
tools in a variety of fields, including information theory. Interestingly, it includes many other very

well known inequalities, which are important on their own, as special cases. Among many examples,



we mention the Shwartz-Cauchy inequality (which in turn supports uncertainty principles and the
Cramér—Rao bound), the Lyapunov inequality, the Holder inequality, and the inequalities among the
harmonic, geometric and arithmetic means. In the field of information theory, the Jensen inequality
stands at the basis of the information inequality (i.e., the non-negativity of the relative entropy),
the data processing inequality (which in turn, leads to the Fano inequality), and the inequality
between conditional and unconditional entropies. Moreover, it plays a central role in support of
the derivation of single-letter formulas in Shannon theory and in the theory of maximum entropy

under moment constraints (see, for example, Chapter 12 of [1]).

During the last two decades, there have been many research efforts around Jensen’s inequality,
which included refinements [2], [3], [4], [5], variations [6], [7], [8], improvements [9], [10], [11], and
extensions [12], just to name a few. There have also many derivations of reversed versions of the
Jensen inequality, see, e.g., [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23] and [24], for a
non—exhaustive sample of articles. In most of them, the derived inequalities are exemplified in many
applications, for instance, useful relationships between arithmetic and geometric means, converse
bounds on the entropy, the relative entropy, as well as the more general f-divergence, converse
forms of the Holder inequality, and so on. In many of these works, the main results are given in the
form of an upper bound on the difference, E{f(X)}— f(E{X}), where f is a convex function, E{-}
is the expectation operator, and X is the random variable. But those bounds, depend mostly on
global parameters associated with f, for example, its range and domain, but not particularly on the
underlying probability function (probability density function in the continuous case, or probability
mass function in the discrete case), of X. For one thing, a desirable property of a reverse Jensen
inequality would be that it is tight when X is well concentrated in the vicinity of its mean, just
like the same well known property of the ordinary Jensen inequality. In [24], there is an attempt

to address this issue.

This paper revisits the Jensen inequality from a different angel. It is based on the following
simple observation, which is rooted in the proof of Jensen’s inequality: The given convex function,
f(z), is lower bounded by the tangential affine function, ¢(x) = f(a) + f'(a)(z — a), where a is an
arbitrary number in the domain of z and f/(a) is the derivative of f at # = a (provided that f
is differentiable at = a). By selecting a = E{X} and taking expectations of both sides of the
inequality, f(X) > ¢(X), the Jensen inequality is readily proved. The point to be remembered is



that here, a, = E{X} is the optimal choice of a in the sense of maximizing E{¢(X)} over all possible
values of a, thus yielding the tightest lower bound within this class of lower bounds on E{f(X)}.
The optimal choice of a, however, might be different than E{X} when the function f(X) is only
a part of a more complicated expression whose expectation is to be lower bounded. For example,
one might be interested in lower bounding E{g[f(X)]}, where g is a monotonically non-decreasing
function, or E{f(X)g(X)}, where g is positive and/or convex function, or a combination of both,

etc.

To demonstrate this fact, consider the example (to be treated in detail in Section 2) of lower

bounding E{f(X)g(X)}, where g is a positive function. In this case,

E{f{(X)9(X)} = E{[f(a) + f"(a)(X — a)lg(X)}, (1)
and by maximizing the right-hand side (r.h.s.) over a, we easily obtain that the optimal choice of
a here is a, = E{Xg(X)}/E{g(X)}, yielding the inequality,

E{Xg(X)}
E{9(X)}

which is useful as long as ¢ is such that we can easily calculate both E{g(X)} and E{Xg(X)}.

B{f(X)g(X)} > f ( ) E{g(xX)). (2)

While this particular inequality could have been obtained also by applying the (ordinary) Jensen in-
equality, E{f(X)} > f(E{X}), with respect to (w.r.t.) the density, p(z) = p(z)g(x)/ [~ p(z')g(z")dz’,
we will see in the sequel, also various examples of inequalities with no apparent simple interpre-
tations such as this. We henceforth refer to these classes of inequalities as Jensen-like inequalities
since they are derived using the same general idea that underlies the proof the classical Jensen

inequality. We will also demonstrate the usefulness of these inequalities in information theory.

Our contributions, in this work, have the following features:

1. In many cases (like the one above), the optimal value of the parameter(s) (e.g., the parameter
a in the above discussion) can be found in closed form. In other cases, the resulting expressions
may not lend themselves to closed-form optimization, and then we have two possibilities: (i)
carry out the optimization numerically, and (ii) select an arbitrary choice of a and obtain a
valid lower bound, bearing in mind that an educated guess can potentially result in a good

bound.



2. Our inequalities provide two types of bounds: (i) bounds that require the calculation of
the first two moments (or equivalently, the first two cumulants) of X, and (ii) bounds that
require the calculation of the moment generating function (MGF) of X and its derivative,
or equivalently, the cumulant generating function (CGF) of X and its derivative. All these
types of moments are often easily calculable in closed form, especially, in situations where
X is given by the sum of independent and identically distributed (i.i.d.) random variables,

which is frequently encountered in information-theoretic applications.
3. Most of our derivations extend to convex functions of more than one variable.

4. The classes of Jensen-like inequalities that we consider allow enough flexibility to obtain
derivations of lower bounds on functions that are not necessarily convex, and even for some
concave functions, and thereby open the door for another route to reverse Jensen inequalities.
This can be accomplished by representing the given function in one of the categories discussed
(e.g., a product of a convex function and a positive function, a product of two positive convex

functions, a composition of a monotone function and a convex function, etc.).

5. We demonstrate the utility of the Jensen-like inequalities in several examples of information-
theoretic relevance. We also display numerical results that exemplify the degree of tightness

of these bounds.

6. Our Jensen-like inequalities have the desirable property of becoming tighter as X becomes

more and more concentrated around its mean, just like the ordinary Jensen inequality.

7. Throughout the paper, we confine ourselves to lower bounds on expectations of expressions
that include a convex function f, but it should be understood that they all continue to apply

also if f is concave and the inequalities are reversed.

8. It should be understood that the classes of Jensen-like inequalities that we derive in this
work are just examples that demonstrate the basic underlying idea of optimizing the point of
tangency to the given convex function for the specific expression at hand. It is conceivable

that the same idea can be applied to many more situations of theoretical and practical interest.

Finally, a technical comment is in order: In all forthcoming derivations, it will be assumed that

the convex function f is differentiable at least at the optimal point, = a. It should be understood,



however, that this assumption is made mainly for convenience, not really because of necessity. As
is well known, convex functions always have at least one-sided derivatives at any point, and then
f'(ax) can be taken to be any value between the left derivative and the right derivative of f at
Z = ay. In order to show that the point of zero-derivative of the lower bound (w.r.t. a) indeed yields
a maximum (and not a minimum, etc.) of the lower bound, we will need to further assume that f
is twice differentiable, but such an assumption will not limit the applicability of the claimed lower
bound, because the lower bound applies to any value of a, including the point of zero-derivative,
even if this point cannot be proved to yield the maximum of the lower bound using the standard

methods. Similar comments apply when the lower bound will depend on more than one parameter.

In the remaining part of this article, each section is devoted to a different class of Jensen-
like inequalities, which corresponds to a different form of an expression that includes the convex

function, f.

2 A product of a convex function and a positive function

In this section, we focus on lower bounding expressions of the form E{f(X)g(X)}, where f is
convex and ¢ is non-negative. Indeed, let f : IR — IR be a convex function and let g : IR — IR be

a non-negative function. Then, for any a € IR,

E{f(X)9(X)} = E{[f(a)+ f(a)(X —a)lg(X)} (3)
= [f(a) = af' ()| E{g(X)} + f'(a) E{Xg(X)}. (4)

To find the value of a that maximizes the r.h.s., we equate the derivative to zero, and get:

[F'(a) = £(a) — af (@) B{g(X)} + f(a) E{Xg(X)} = 0 (5)
or equivalently,
£(a) [B{Xg(X)} — aB{g(X)}] = 0, (6)
which yields
0 = m ")

and it is easy to verify that the second derivative at a = a, is —f”(a.)E{g(X)} < 0, which means

that it is a maximum (at least a local one). The resulting lower bound on E{f(X)g(X)} is then



given by

B0 = 1 (08 Bl 0

This result extends straightforwardly to the case where X is a vector, provided that f is jointly
convex in all components of X. In particular, it extends to the case where f and g act of different
random variables, X and Y, with a joint distribution:

E{Xg(Y)}

E{f(X)9(V)} > f ( E{y(Y )i

) B{V)). (9)

We next consider several examples.

Ezample 1. Let f(z) = —Inx and g(x) = x, x > 0. Applying inequality (8),

E{Xx?}
E{X}

E{-XIhX}>-E{X} In = —B{X} W(E{X}) - E{X} -In (1 + Var{X}) . (10)

[E{X}]?

Note that the function —z In x is concave, rather than convex, yet we have here a lower bound (rather
than an upper bound) to its expectation, namely, a reversed Jensen inequality. The first term on
the right-most side is the (ordinary) Jensen upper bound on E{—X In X}, and the second term is
the gap, which depends not only on the expectation of X, but also on its variance, which manifests
the fluctuations around E{X}. This inequality has an immediate application for obtaining a lower
bound to the expectation of the empirical entropy of a sequence drawn by a memoryless source,
which is relevant in the context of universal source coding [25]. Each term of the empirical entropy
is of the form —X In X, where X = N(u)/N, N(u) being the number of occurrences of a letter u in
a randomly drawn N-tuple from a a memoryless source, P, with a finite alphabet, ¢. Clearly, each
N(u) is a binomial random variable with N trials and probability of success, P(u). In this case,
E{X} = P(u) and Var{X} = P(u)[1 — P(u)]/N. Thus, denoting the entropy and the empirical

entropy, respectively, by

H = - P(u)P(u (11)
ueU
0 = —%N]ifu)ln(]vjifu)>, (12)



with the convention that 01n0 = 0, we have:

Pu)[l — P(u)]/N

EW}E—ZHWMM—ZHW%H

P?(u)

ueU ueU
B B O n 1— P(u)
_H%HM<HAWM>
2H—mezﬁg

uel
= H- >0 P)
uel

_ Ul -1
= H- " (13)

where |U| is the cardinality of . The use of the ordinary Jensen inequality yields an upper bound

rather than a lower bound, E{H} < H. This completes Example 1.

Example 2. Let s and t be two real numbers whose difference, s — t, is either negative or larger

than unity. Now, let g(x) = 2!, and f(z) = 2°~. Then,

E{X°} = E{X'Xx*"}

() e

(B{X*1))

A\

T (Bx "
In particular, for ¢t = 1 and s ¢ (1,2), this becomes
o o (B s Var{X}\*™!
BIX) 2 s = OV (1 g (15)

which is, once again, a bound that depends only on the first two moments of X. For s € (0,1),
the function x® is concave, and so, this is a reversed version of Jensen inequality. For s < 0 and
s > 2, the function z* is convex, and so, this is an improved version of Jensen’s inequality: While
the first factor, [E{X}]®, corresponds to the ordinary Jensen inequality, the second factor expresses

the improvement, which depends on the relative fluctuation term, Var{X}/[E{X}]?.

To particularize this example even further, consider the problem of randomized guessing under
a distribution @ (see, e.g., [26] and many references therein). Then, the probability of a single

success in guessing a discrete alphabet random variable, X, given that we know (but not the



guesser) that X = z, is Q(z). In sequential guessing until the first success, the number of guesses,
G, is a geometric RV with parameter p = Q(z), whose mean and variance are 1/p and (1 — p)/p?,

respectively. For s € (1,2),

B(G) > <1> (1 L —p)/p2>“ RS 100 )

p

1/p?

P Q(z)]
This completes Example 2.

ST

Ezample 3. Let f be an arbitrary convex function and let g(z) = €%, where s is a given real

number. Then, inequality (8) becomes:

E{f(X)e"*} > f(¥/(s)) - eV (17)
where
$(s) = n B{e) (18)

is the CGF of X and v/(s) is its derivative. This gives a lower bound in terms of the CGF of X
and its derivative. The ordinary Jensen inequality is obtained as the special case of s = 0, where

$(0) = 0 and ¥'(0) = E{X).
3 A composition of a monotone function and a convex function

Another family of Jensen-like inequalities corresponds to the need to lower bound an expression of
the form E{g[f(X)]}, where f is convex as before and g is a monotonically non-decreasing function.

The general idea is to carry out the optimization of the r.h.s. of the following inequality.
E{g[f(X)I} = sup E{g[f(a) + f@)(X —a)l}. (19)
In the important special case where g(z) = e, we have:
E{/X} > sup E{ef/(@H(@)(X-a)y
a

= supe/ (@@ g X @)y

exp {sgp{f(a) ~af'(a) + w[f’(a)]}} , (20)

where 9(-) is again the CGF of X. The optimal value, a,, of a, is the solution to the equation

obtained by equating the derivative of the exponent to zero, i.e.,

¥'[f'(as)] = ax, provided that f”(a.)y"[f'(a.)] <1, (21)



where ¢/(-) and 9" () are the first and the second derivatives of ¥ (-), respectively.

Ezample 4. Consider the case where f(x) = sz?/2 and X ~ N (u,0?), where 0 < 1/s, as otherwise,
E{e’X*} = 0o. In this case, the condition f”(a,)y"[f'(as)] < 1 is equivalent to o2 < 1/s, and we
have f'(a) = sa, ¥ (t) = pt+02t?/2, and so, ¥/ (t) = p+o>t, which means that ¢'[f'(a)] = p+o?sa.

The equation for the optimal a becomes then

p+o’sa = a, (22)
whose solution is
A
a:a*zl_o_Qsa (23)
which yields
sX2/2 2 2 2.2 2 (s
E{e }Zexp{sa*/Z—sa*—l—usa*—l—J s%aZ/2} =exp{ ————¢. (24)
2(1 — o2s)
The ordinary Jensen inequality yields
E {esx2/2} > exp {sE{X?}/2} = "W/, (25)

which does not capture the singularity at s = 1/02. The exact calculation yields

1 s
E SX2/2 — . _ 2
{@ } WinrsT exp{2(1_028)}7 (26)

namely, the Jensen-like bound (24) gives the correct exponential term (along with the singularity

at s = 1/0?) and differs from the exact quantity only in the pre-exponential factor.

4 A product of a convex function and a monotone-convex compo-
sition

Yet another class of Jensen-like inequalities corresponds to lower bounding the expectation of
the product of two functions, where one is convex and the other is a composition of a positive
monotonically non-decreasing function and a convex function, i.e.,

E{h[f(X)]g(X)} > s(%)E{h[f(a) + f(a)(X —a)] - [g(b) + 4 (D)(X = b)]}, (27)



where f and g are convex and h is monotonically non-decreasing and non-negative. For the case

where h(z) = €”, we end up with a bound that depends on the CGF of X and its derivative:
B{e/Mg(X)} = E{/O O g0) + g ()X - )]} (28)
= SO SO L XTO(g(0) b/ (b) + ¢'(6)X]} (20)

= exp{f(a) - af'(a) + P[f(a)]H{g(®) + ¢ O)(¥'[f'(a)] - D)} (30)

Maximizing w.r.t. b while a is kept fixed, yields b, = ¢'[f(a)], and we obtain:
E{e/Mg(X)} > sup exp{ f(a) - af'(a) +¥[f'(a)]} - g(W'[f'(a))). (31)

Ezample 5. Considering the case where f(z) = —Inz and g(z) = xInz, we may obtain a reversed

Jensen-like inequality, namely, a lower bound to the expectation of the concave function In X:

E{nX} = E{e—lnx-xmx} (32)

> supexp{—lna+1+y(-1/a)}- ¥'(=1/a)Iny'(—1/a) (33)

= supexp{lna+1+ P(—a) ' (—a) Ine (—a) (34)

= esup ae? "y (—a) In ' (—a) (35)

= esup aE{Xe Y} 1In m (36)

Defining the MGF ¢(s) = E{e*X} = %), we have:

E{lnX} > e-sup a¢'(—a) Iny/(—a) (37)

= .. u% ad(~a)u/(~a) ¢! (~a) (39)

_ e supad(—a)n 2= (39)

a>0 ¢(_a) .
We obtained a lower bound in terms of the MGF and its derivative (or, equivalently, the CGF and

its derivative), which is appealing in cases where X is the sum of i.i.d. random variables.

Accordingly, we now particularize this example further by examining the case where X =
1+Zf:1 YiQ, with Y; ~ N(0,02),i = 1,..., k, being independent random variables. The motivation
of assessing an expression of the form, E {ln (1 + Zle Yf) }, is two-fold. The first is that it is

useful for bounding the ergodic capacity of the single-input, multiple-output (SIMO) channel,

10



where {Y;} designate random channel transfer coefficients (see, e.g., [24], [27], [28] and references
therein). The second is that it is relevant for bounding the joint differential entropy associated
with the multivariate Cauchy density. Here, (Y7,...,Y%) are not Gaussian as defined above, but
their multivariate Cauchy density can be represented as a continuous mixture of i.i.d. zero-mean

Gaussian random variables, where the mixture is taken over all possible variances — see [24, Example
6] for the details. In this case,

k

o(s) = E{exp <s I )} (40)
=1

_ (E{esy2}>k (41)

= (1_2;2)1#2 s < %‘2 (42)
Thus,
P(s) =s— gln(l — 2507, (43)
and ,
¥(s) =141 _1“2502. (44)

It follows that

k
- ka® ko?

E{ln|1 V2|8 >e- ae® ket N ket Ly,

{n< +zz; Z)}_e ig%{(1+20602)k/2< +1—|—20z<72> n< +1+2a02>} (45)

The Jensen upper bound, In(1+k0?), and the lower bound (45) are displayed in Fig. 1 for 02 = 1 and
k=1,2,...,100. As can be seen, the bounds are quite close. Interestingly, the choice a = 1/(ko?)

yields results that are very close to those of the optimal «.

Another instance of this example is the circularly symmetric complex Gaussian channel whose
signal-to-noise ratio (SNR), Z, is a random variable (e.g., due to fading), known to both the
transmitter and the receiver. The capacity is given by C' = E{ln(1 + ¢gZ)}, where ¢ is a certain
deterministic gain factor and the expectation is w.r.t. the randomness of Z. For simplicity, let us

assume that Z is distributed exponentially, i.e.,

fe=% 2 >0
o ={ o %0 (46)
where the parameter 6 > 0 is given. In this case,
fe= @
o) = 47
6(-0) = 5o (47)

11



Bounds

Figure 1: Upper and lower bounds on E {ln <1 + Z;c:l Ylg) }, where Y; ~ N(0,02) are i.i.d., for

02=1and k=1,2,...,100. The red curve is the upper bound, In(1 + ko?), obtained by applying
the ordinary Jensen inequality. The blue curve is the lower bound of eq. (45), where the search
over @ was carried out with resolution of 0.001.

and
Y(—a) =Inf —In(0 + ga) — «a, (48)
and so,
ae™ @ g g
FE{ln(1 )Y > el - 11 In(1 . 49
(1492} = e0-sup 2 (1 (14 20 (49)

In Fig. 2, we plot this lower bound as a function of § for ¢ = 5 and compare it to the Jensen upper
bound, In(1 + g/0) (red curve) and to the lower bound of [24, Sect. 4.1, Example 1]. As can be

seen, the lower bound proposed here is considerably tighter, especially for small 6.

Ezxample 6. Yet another example of this family of Jensen-like inequalities, applies to obtaining a

lower bound to E{X'}, where t is an arbitrary real. For a given t, let s > 0 be either larger than

12



capacity bounds

Figure 2: Upper and lower bounds on E {In(1 + ¢gZ)}, where Z is distributed exponentially with
parameter 6, as functions of 6, for g = 5. The red curve is the upper bound, In(1 + g/f), obtained
by applying the ordinary Jensen inequality. The blue curve is the lower bound of of eq. (49), where
the search over o was carried out with resolution of 0.001. The green curve is the lower bound of
[24, Example 1].

1 —t or smaller than —¢, consider the case where f(x) = /™%, g(x) = —slnx and h(z) = e®. Then,
E{Xt} _ E{e—slnXXt-‘rs} (50)
> FE {exp [s (—lna - 1(X — a))} [P+ (t+ sV (X — b)]} (51)
a
s[1-Ina] _s t+s t+s—1 r(_3Y _
el (22 [ps 4 (4 st (v (<2) —b) | (52)

Choosing b = 9)'(—s/a), and changing the optimization variable a into a = 1/a, we get
E{X'} > sup(ae)*p(—as)[¢(—as)]" ™. (53)
a>0

More specifically, if X = >, Y;, where {Y;} are Bernoulli i.i.d., with parameter p, then ¢(s) =
(pe® + q)™, where ¢ = 1 — p. We then obtain
_ t+s
3 npe =
E{X" > sup(ae)®(pe™* + "() . 54
(X'} 2 sup(ae) (e 40" (S0 54
Selecting a = 1/(np), we obtain
e (pe=3/ () 4 g)ne=s(t+s)/(np)
(pe_s/(”p) + q)t+5

E{X'} > (np)"- (55)

13



The first factor is (EX)!. The second factor tends to unity as n grows, because pe =S/ 4 g ~

p(1—s/(np)) +q=1—s/n, and so, (pe~*/"P 4+ q)" ~ (1 — s/n)" ~ e~*. For t > 1 and t < 0, the

t

function f(x) = x! is convex, and so, (EX)! is the ordinary Jensen lower bound. In this case, the

bound is valuable if the multiplicative factor,

68 (pefs/(np) + q)nefs(t“i’s)/(np)
(pefs/(np) + q)t—l-s

)

is larger than unity. If 0 < ¢ < 1, the function f(x) = !

is concave, and then (EX)! is an upper
bound. Of course, the parameter s can be optimized too. Some numerical results for t = 0.5 are

depicted in Fig. 3. As can be seen, the upper and the lower bounds are fairly close.

4.5

moment bounds
= N
t3;] [ o w
T T T T

o
(3,1

0 L L L L L L L L L
0 10 20 30 40 5 60 70 80 9 100

n

Figure 3: Upper and lower bounds on E{\/) ;" ,Y;} as functions of n, where {Y;} are ii.d.,
Bernoulli(0.2). The red curve is the Jensen upper bound, ,/np, and the blue curve is the proposed
lower bound where « is optimized in the range [0, 10] and s is optimized in the range [0.5, 10], both
with resolution of 0.01.

Another application of this example is related to estimation theory. Let 6 € IR and let

Y1,...,Y, be iid., with mean @ and variance o?. Consider the t-th moment of the estimation

error, Eg|+ S . Y; — |*. Defining X = (£ 37 . Y; — 0 ? we have
n =1 n =1

14



and so,

— 1 . / _ a’/n
¢(—as) - \/mv w ( OZS) - 1 4 20(80'2/71. (57)
- - _ t
Ey|~ ; Y; — 6 EgX (58)

(ce)® ( o?/n >t/2+s
V14 2as02/n \1+ 2aso?/n

2\ t/2+s (ae>s
- ( n ) (14 2as02/n)EHD/2+s° (59)

with either s > 1 —¢/2 or s < —t/2. For a = (n/o? ({ > 0 being a constant), we have:

1 n t O't (Ce)s
Eyl-> V-0 >—- 60
I zz; Z Tt C>0,Sslg—t/2 (14 2¢s)t+1)/2+s (60)
where for ¢ € [0,2], the first factor, o*/ n'/2 is the Jensen upper bound. The second factor,
e S
Mt = sup (Ce) (61)

>0, s>1—t/2 (14 2¢s)(tH1D/24s’
is the gap between the Jensen upper bound and the proposed lower bound. In Fig. 4, we display
this factor. The result uo = 1 is expected, because for t = 2 and s = 0, the calculation of is trivially
exact. Note that the maximization over (, for a given s, can be carried out in closed form, by
equating to zero the partial derivative of In[(Ce)®/(1 4+ 2¢s)#+1/245] w.r.t. ¢. The optimal ¢ turns

out to be equal to 1/(t + 1) (independently of s), and so,

41 (t+1)/2 e s
_ N 62
He s>slu§/2<t+2s+1> <t+25+1> (62)

Finally, it should be pointed out that this family of Jensen-like bounds, opens the door also to
lower bound calculations on the form E{f(X)/g(X)}, where f is positive convex and g is positive

and concave. Using the fact the identity, 1/s = fooo e~stdt, we have:

E{ggi} = E{f(X)-/OOOe_tg(X)dt} (63)

_ /oo E {e*tg(X)f(X)} dt (64)

0
and we can apply the same ideas as before to the integrand, having the freedom to optimize the

bound parameters with possible dependence on t.
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Figure 4: The gap factor, u, as a function of t¢.

[1 —t/2,10] with resolution of 0.001.

5 A product of two positive convex functions

0 02 04 06 08 1

t

1 1 1 1
12 14 16 18 2

The parameter s is optimized in the range

The last family of Jensen—like bounds that we present in this work is associated with the product

of two non-negative convex functions. Let both f and g be non-negative convex functions of x > 0.

Then,

E{f(X)g9(X)} =

The optimal b and ¢ are b* =

E{f(X)g(X)} = [f(a) — af'(a)] - g(E{X}) + f'(a) E{X} - g <

E{[f(a) + f'(a)(X = a)] - g(X)}
()] E{g(X)} + f'(a) E{Xg(X))}
(@) E{[g(b) + ' (0)(X — b)]} +

l9(c) + g'(e)(X = )]}

fla) 2 af'(a) 20

[f(a) = af'(a)] - [9(b) — bg'(b) + ¢’ (D) E{X}] +

F(@)l(g(c) = cg' (€)) B{X} + g (c) E{X?}}].

[f(a) —af

[f(a) — af’

f'(a) E{X
(a) —af
(a)
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E{X} and ¢* = E{X?}/E{X}, respectively. Thus,

E{X?}
E{X} ) '

(65)

(66)

(67)

(68)



Let
- BX} - g(BOCY/B(X))

J(B(X)) 7
and assume that f(a*) > a*f’(a*) > 0. Then a* is the optimal value of a, which yields
. 2
BUC0g00) = g (PELIEEIEED) o pixy) ()

More generally, when X and Y are two random variables with a joint distribution, the above

derivation easily extends to

E{X} g(E{XY}/E{X})
g(E{Y})

If f and g are both concave, rather than convex, then the inequalities are reversed.

B{/(X)g()} > | ( ) g(B(YY). (72)

Example 7. Consider again the example of the capacity of the AWGN with a random SNR,
c¢(Z) = In(1 + gZ), and suppose that we wish to bound the variance of ¢(Z) in order to assess

the fluctuations (e.g., for the purpose of bounding the outage probability). Then, obviously,
Var{c(2)} = E{c*(2)} — [E{c(2)})* = E{ln’(1 + ¢Z)} — [E{ln(1 + g2)}]*. (73)

To upper bound Var{c(Z)}, we may derive an upper bound to E{In*(1 + gZ)} and a lower bound
to E{In(1+ gZ)}. For the latter, a lower bound was already proposed earlier in Example 5. For
the former, we may use the present inequality with the choice f(z) = g(z) = In(1 + gz), which
can easily be shown to satisfy the requirements. We then obtain the following upper bound, which

depends merely on the first two moments of Z:

(74)

E{ln(1+¢2)} < (1 +gE{Z}) - In <1 y 9E{Z I+ 9E{Z2}/E{Z})> |

In(1+ gE{Z})
Interestingly, the function In?(1 4 gx) is neither convex nor concave, yet our approach offers an

upper bound, which is fairly easy to calculate provided that one can compute the first two moments

of Z.
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