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ABSTRACT
This monograph offers a toolbox of mathematical techniques
that have been effective and widely applicable in information-
theoretic analyses. The first tool is a generalization of the
method of types to Gaussian settings, and then to general
exponential families. The second tool is Laplace and saddle-
point integration, which allow to refine the results of the
method of types, and can obtain various precise asymptotic
results. The third is the type class enumeration method,
a principled method to evaluate the exact random-coding
exponent of coded systems, which results in the best known
exponent in various problems. The fourth is a subset of tools
aimed at evaluating the expectation of non-linear functions
of random variables, either via integral representations, by
a refinement of Jensen’s inequality via change-of-measure,
by complementing Jensen’s inequality with a reversed in-
equality, or by a class of generalized Jensen’s inequalities
that are applicable for functions beyond convex/concave.
Various examples of all these tools are provided throughout
the monograph.
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1
Introduction

This monograph is concerned with a set of analytical tools for infor-
mation-theoretic analyses. The use of analytical methods to address
challenging combinatorial problems is a classical method in mathematics,
and includes various widely used techniques such as Stirling’s approx-
imation, Chernoff’s bound, transform methods (with interchanging
summation or integration order), among others. Analytical techniques
also formed the basis of the inception of information-theory by Shannon
[182]: On the face of it, and even at a deeper look, efficient coding
for noisy channels is a formidable combinatorial problem, in a high
dimensional space. Shannon addressed that challenge using analytical
techniques:

1. The asymptotic equipartition property, and the estimation of vol-
umes in high dimensional spaces, which allows to evaluate the size
of high-probability sets. In the proof of the noisy channel coding
theorem for discrete memoryless channels (DMCs), this allows to
show that when an n-dimensional codeword is transmitted, the
set of likely outputs has size roughly given by enH(Y |X), where
H(Y |X) is the conditional entropy of the channel output Y con-
ditioned on the input X, and the total set of likely outputs has
roughly size of enH(Y ) (where H(Y ) is the entropy of Y ).
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2. The random-coding argument, which establishes the existence of
optimal codes by evaluating the ensemble-average of randomly
chosen code, and forms the basis for achievability (direct) results.

3. Convexity of information-measures, which is used to establish
data-processing theorems, and consequently forms the basis for
impossibility (converse) results.

Combining these ideas directly led, among other results, to the analytical
formula for the capacity of DMCs, given by C = maxPX

I(X; Y ) (where
I(X; Y ) = H(Y ) − H(Y |X) is the mutual information). Since Shan-
non’s work, these ideas have been continuously extended and refined in
numerous ways.

The goal of this monograph is to follow this path and propose
a set of advanced analytical tools that are affirmed to be efficient
and widely applicable for information-theoretic problems, allowing to
obtain accurate and refined performance measure characterizations.
Sections 2 and 3 to follow address the problem of estimating volumes in
high dimensions, first, via a generalized method of types and, second,
via the more advanced saddle-point method; Section 4 describes the
type class enumeration method (TCEM), a tight analysis method of
the performance of random-coding ensembles, and Section 5 considers
various aspects of convexity and Jensen’s inequality, mostly related to
the computation of the expected values of non-linear functions. We next
describe each one of these with more detail.

In Section 2, we describe a generalization of the method of types [38],
[41], which was originally developed for finite alphabets, to Gaussian
distributions, which are distributions over a continuous alphabet, and
more generally, to distributions from exponential families. We introduce
the notion of a typical set with respect to (WRT) a given parametric
family of probability distributions. Such typical sets are defined in a way
that the probability of each vector in the set is roughly the same for all
possible distributions in the defined parametric family. This generalizes
both the notion of weak typicality (a family consisting of a single
distribution), and the notion of strong typicality for finite alphabets
(the family is the set of all possible PMFs). Moreover, it allows to define,
e.g., typical sets for the Gaussian distribution. A key property of typical
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sets is their volume, because if an event of interest can be represented
as the union over typical sets, then its probability can be accurately
determined on the exponential scale using the volumes of these sets,
and the probability of a single representative element from each of these
sets. We thus develop a general method to evaluate the volumes of
typical sets, and demonstrate its use on memoryless Gaussian sources,
on Gaussian sources conditioned on other vectors, and on Gaussian
sources with memory. We then generalize this method to distributions
from an exponential family.

While the method of types is a general and widely applicable ap-
proach that leads to useful exponential bounds, there are settings which
require more delicate analysis, and thus, more advanced tools. In Sec-
tion 3, we begin by describing the Laplace method of integration, and
exemplify its use in the problems of universal coding and extreme-value
statistics. We then discuss the closely-related saddle-point method of
integration in the complex plane, and show how it allows to accurately
evaluate the size of type classes, volumes of hyper-spheres, and large-
deviations probabilities, not only in the exact exponential rate, but also
with the exact pre-exponential factor. We show that this method is
applicable beyond parametric models. We further demonstrate its use
for the evaluation of the number of lattice points in an L1 ball, and
the evaluation of the volume of an intersection of a hyper-sphere and
hyperplane, refining the analysis of Section 2.

In Section 4, we consider coded settings and ensembles of random
codes. We introduce the TCEM, which is a principled method for
deriving the error exponent of random codes. We first describe the
standard techniques commonly used to derive bounds on the error
exponent, such as Jensen’s inequality and its implications, and various
types of union bounds. While these methods indeed turned out to
be effective in the error-exponent analysis of basic settings, such as
point-to-point channels and standard decoding rules, there is no general
guarantee that they are accurate in more advanced scenarios. Indeed,
we survey various settings in which these methods are sub-optimal,
and do not provide the exact random-coding error exponent. As an
alternative, we show that ensemble-average error probabilities (and
other related performance measures) may be expressed via type class
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enumerators (TCEs), and specifically, via their (non-integer) moments
and tail probabilities. We demonstrate this both on basic settings as
well as more involved ones. We explore the probabilistic and statistical
properties of TCEs, and then discuss a number of settings in multi-user
information theory, in distributed compression and in hypothesis testing,
for generalized decoding rules such as those allowing erasures and list
outputs, and for the analysis of the typical random code. We outline how
the TCEM is used in each of these settings, and how it allows to obtain,
among other things, exact error-exponents for optimal decoding rules.
In Appendix B we show that the exponents obtained by the TCEM can
also be computed effectively.

In Section 5, we address the problem of evaluating the expectation
of a non-linear function f(·) of a random variable (RV) X. In many
cases, this function is either convex or concave, and so a natural course
of action is to bound it using Jensen’s inequality. However, there is no
guarantee that the resulting bound is tight enough for the intended
application. We present two general and useful strategies that can be
employed in such cases. The first one is based on finding an integral
representation of the function. Then, we interchange the expectation and
integral order, and obtain an alternative expression for E{f(X)}. The
technique is useful if computing the inner expectation is simpler than
the original expectation, or if it can be evaluated more accurately. After
evaluating the inner expectation, the expectation E{f(X)} of interest
can be computed by solving a one-dimensional integral. For example,
when f(t) = ln(t), this allows to replace the evaluation of the expected
logarithm with the evaluation of its moment-generating function (MGF).
This is especially appealing since if X = ∑n

i=1 Xi is the sum of n

independent and identically distributed (IID) RVs, then its MGF is
the n-th power of the MGF of just one of them. In accordance, this
transforms the original expectation, which is an integral in Rn, to a one-
dimensional integral. We focus on the logarithmic function f(t) = ln(t)
(and its integer powers), as well as the power function f(t) = tρ for
some ρ > 0 (even non-integer), and exemplify the use of this technique
in a multitude of problems such as differential entropy for generalized
multivariate Cauchy densities, ergodic capacity of the Rayleigh single-
input multiple-output (SIMO) channel, and moments of guesswork.
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The second strategy exploits convexity or concavity properties, but
goes beyond the standard Jensen’s inequality. This strategy may come in
various flavors. First, a change of measure can be performed before using
Jensen’s inequality, and then the alternative measure can be optimized
over a given class to improve the bound. As a notable example, when
f(t) = ln(t), this reproduces the Donsker–Varadhan variational charac-
terization of the Kullback–Leibler (KL) divergence. Second, one may use
Jensen’s inequality, but accompany it with an inequality in the opposite
direction, i.e., a reverse Jensen’s inequality (RJI), in order to evaluate
its tightness. We provide a few techniques, all of which rely on a general
form of such a RJI. Third, the “supporting-line” approach used to prove
Jensen’s inequality may be generalized to cases in which the function
whose expected value is sought of is not convex/concave, but takes a
more complicated form, such as the composition or a multiplication
of a different function with a convex/concave function. A generalized
version of Jensen’s inequality can still be derived, by properly optimizing
the supporting line. We exemplify the use of this technique in various
problems involving the evaluation of data compression performance and
channel capacity.

In summary, we present a diverse toolbox of analytical techniques,
indispensable to every information-theorist aiming to obtain tight and
accurate results. We mention in passing other analytical techniques
widely used in information theory, such as central-limit theorems ex-
tensively used in non-vanishing error regimes [198], concentration of
measure bounds [169], statistical-physics methods such as the cavity and
the replica method [151], and various methods described in the recent
book [56]. These complement the tools outlined in this monograph.

This monograph was invited and written following a plenary talk
by the first author, at the 2023 IEEE International Symposium on
Information Theory (ISIT 2023), Taipei, Taiwan, June 25-30, 2023. It
should be pointed out that some of the proposed techniques (like in
Sections 2, 4, and many parts of Section 5) are original, while others
are not new (like in Section 3).
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Extension of the Method of Types to Continuous

Alphabets

2.1 Introduction

In their renowned 1981 book (with its second edition [41]), Csiszár and
Körner introduced the groundbreaking concept of the method of types.
This method has since emerged as a cornerstone within classical Shan-
non theory, offering a remarkably powerful and versatile mathematical
analytical tool-set. Its primary application is in providing a set of tools
that is predominantly used to establish achievability theorems, and
occasionally also converse results. Additionally, this method’s utility
extends to the evaluation of error probability exponential decay rates
(referred to as error exponents) and the exponential growth rates of
subsets of sequences as functions of the blocklength (or the dimension).

The method of types is a fundamental combinatorial approach, orig-
inally crafted for memoryless sources and channels with finite alphabets.
In essence, for a given finite alphabet X , this method involves parti-
tioning the space of all |X |n sequences of length n from X into distinct
equivalence classes termed type classes. Each type class encompasses
sequences that share the same empirical distribution, characterized by
a specific array of relative frequencies pertaining to the |X | alphabet
letters. An alternative perspective on type classes is that within each

7
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such class, any sequence can be derived through permutations of other
sequences. The strength of the method of types emanates from a concept
of elegant simplicity: Despite the exponential growth of the size of each
type class with n (its exponential rate being determined by the entropy
of the corresponding empirical distribution), the number of distinct type
classes experiences only a polynomial growth with n. This interplay of
growth dynamics yields a crucial outcome: The likelihood of any event
expressed as a union of type classes is dominated by the exponential
behavior driven by the most probable type class contained within the
event. Similarly, when dealing with the size of a set defined as a union
of type classes, this size experiences an exponential dominance dictated
by the largest type class within that set.

Csiszár provides a comprehensive exploration of the method of
types in [38], encompassing foundational principles, as well as numer-
ous applications. These applications span a wide spectrum, including
the derivation of error exponents for source coding, channel coding,
source-channel coding, hypothesis testing, the type covering lemma, the
packing lemma, the capacity evaluation for arbitrarily varying channels,
rate-distortion coding, as well as multi-terminal source and channel cod-
ing theorems. In addition, Csiszár also undertakes in [38] a meticulous
survey of several notable extensions to the method of types. Foremost
among these are second-order and higher-order types, with recogni-
tion attributed to prior work by Billingsley [18], Boza [22], Whittle
[221], Davisson, Longo, and Sgarro [47], as well as Natarajan [155].
Furthermore, the exploration extends to finite-state types, proposed by
Weinberger, Merhav, and Feder [214]. Csiszár’s comprehensive survey
[38] ends with a section addressing continuous alphabets. This section’s
outset acknowledges that extensions of the type concept to continuous
alphabets remain largely uncharted. It proceeds to navigate this chal-
lenge by adopting a discretization strategy through fine quantization
(see Tridenski and Somekh-Baruch [204] for a recent application of this
approach). Nonetheless, this approach reveals vulnerabilities when grap-
pling with probability density functions (PDFs) that are supported by
the entirety of the real line or half of it. In such cases, achieving arbitrar-
ily high resolution quantization, a requisite of the traditional method of
types, becomes unattainable. While acknowledging that coarsely quan-
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tizing the tails of distributions generally entails minimal impact due
to their low probability, certain technical intricacies arise, particularly
concerning the uniformity of convergence across a class of distributions.
This concern becomes particularly salient when confronted with the
need to interchange limit operations, such as the limits as n grows large
and the quantization resolution increases concurrently. Furthermore,
the cost associated with achieving high-resolution quantization mani-
fests as an escalated computational workload in the calculation of the
desired exponential rate. This is due to the fact that the number of free
parameters to optimize is equal to the number of quantization levels
minus one.

Within this section, our central proposition emerges: The extension
of type classes and the critical components of the method of types to
continuous alphabets is not only viable but also remarkably intuitive.
This assertion is particularly pertinent when considering PDFs origi-
nating from the broader exponential family [115], [146], and especially
when dealing with the Gaussian PDF, as expounded in, e.g., [9], [88],
[90], [116], [124], [138], [196]. Notably, our approach circumvents the
need for the discrete approximations proposed in [38].

Our methodology revolves around the partitioning of a suitably
chosen high probability set in the space of n-sequences into equivalence
classes, referred to as type classes, in analogy to their finite-alphabet
counterparts. This construction retains two pivotal attributes, analogous
to their roles in the customary finite-alphabet context:

1. It is possible to devise a computable expression that characterizes
the exponential growth rate of the size or volume of each type class
as a function of n. This expression, which is always a certain form
of entropy or differential entropy, remains amenable to calculation
independently of n and aligns with the concept of single-letter
expression in the jargon of information theorists.

2. The number of distinct type classes relevant to the problem at
hand exhibits sub-exponential growth WRT n. This assures that
the quantity of distinct types relevant to our problem expands in
a manner manageable for analysis.
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By “computable expression” in the first point, we refer to an expression
whose computational complexity remains fixed as n varies. In relation
to the second point, when we mention types “relevant to the problem at
hand,” we imply scenarios where the aggregate number of distinct type
classes might conceivably be boundless, yet the vast majority beyond a
sub-exponential subset hold minimal importance and can be disregarded,
given their inconsequential collective impact on the quantity of interest.
This might be due to their associated probabilities being negligibly
small.

In the upcoming sections, we embark on a concise exploration of
the fundamental concepts that underlie the extension of the method
of types to encompass continuous alphabets. Our journey begins with
the Gaussian scenario before encompassing the broader domain of
exponential families. Throughout these discussions, we will interweave
illustrative examples to provide practical context for the concepts being
elucidated.

2.2 Various Definitions of Type Classes

2.2.1 Type Classes and the Method of Types

As mentioned earlier, in the memoryless, finite-alphabet case, we define
a type class as the set of all sequences that share the same empirical
distribution. More precisely, given a sequence x = (x1, x2, . . . , xn),
with xi ∈ X , i = 1, 2, . . . , n, X being a finite alphabet of finite size
|X |, the empirical distribution, P̂x, associated with x is the vector
{P̂x(x), x ∈ X }, where P̂x(x) = nx(x)/n, and nx(x) being the number
of occurrences of the letter x ∈ X in x. Thus, the type of x ∈ X n is
defined by

Tn(x) ≜
{

x′ ∈ X n : P̂x′ = P̂x

}
. (2.1)

An alternative, equivalent, definition of Tn(x) is the set of all x′ ∈ X n

that can be obtained as permutations of x. Since Tn(x) corresponds
to a particular empirical probability distribution, say, P̂ , it would be
sometimes convenient to denote it by Tn(P̂ ). Similar notation applies to
type classes of pairs of n-vectors, (x, y) (and triples, and so on), where
in the alternative notation, P̂ is understood to be the joint empirical
distribution.
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The definition (2.1) lies at the heart of the method of types [38], [41,
Chapter 2], [36, Section 11.1], which we next succinctly describe. To this
end, let .= denote equality on the exponential scale, i.e., two positive
sequences {an} and {bn} satisfy that an

.= bn if limn→∞
1
n ln an

bn
= 0.

The method of types can be summarized by the following properties:

1. The number of possible types: For sequences of length n, a type is
equivalent to an empirical distribution of the form (n1

n , . . . ,
n|X |

n ),
where nj ∈ {0, 1, . . . , n} and ∑|X |

j=1 nj = n. The “stars-and-bars”
method shows that the number of possible types is given by (see
[41, Exercise 2.1])(

n + |X | − 1
|X | − 1

)
≤ (n + 1)|X |. (2.2)

This shows that the number of types increases polynomially with
n, as long as the alphabet is finite, i.e., |X | < ∞.

2. The probability of a sequence: If x ∈ Tn(Q) for some Q then

P (x) =
n∏

i=1
P (xi) (2.3)

=
∏

x∈X
[P (x)]nQ(x) (2.4)

= exp
[
n
∑
x∈X

Q(x) ln P (x)
]

(2.5)

= exp
[
n
∑
x∈X

Q(x) ln Q(x) + n
∑
x∈X

Q(x) ln P (x)
Q(x)

]
(2.6)

= exp [−n(H(Q) + D(Q||P ))] , (2.7)

where
H(Q) ≜

∑
x∈X

Q(x) ln 1
Q(x) (2.8)

is the entropy, and

D(Q||P ) ≜
∑
x∈X

Q(x) ln Q(x)
P (x) (2.9)

is the KL divergence.1
1Assuming the conventions, based on continuity arguments, 0 ln 0

0 = 0, 0 ln 0
p

= 0
and q ln q

0 = ∞ for p, q ∈ (0, 1) [36, Section 2.3].
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3. The size of a type class: It can be shown [41, Lemma 2.3] that the
size of a type class is

enH(Q)(n+|X |−1
|X |−1

) ≤ |Tn(Q)| ≤ enH(Q). (2.10)

Thus, as long as |X | < ∞, it holds that

|Tn(Q)| .= enH(Q). (2.11)

Establishing this property is the main technical challenge in the
derivation of the method of types.

4. The probability of observing a type: The probability of observing
a n-length sequence of a type Q from a memoryless source with
distribution P satisfies

Pr [X ∈ Tn(Q)] .= e−nD(Q||P ). (2.12)

This is a direct consequence of (2.7) and (2.11).

The method of types can be easily extended to both joint and conditional
type classes. For joint types over finite alphabets X and Y , we consider
a pair of a sequences (x, y) ∈ (X × Y)n over X × Y, with xi ∈ X and
yi ∈ Y, i = 1, 2, . . . , n. The empirical distribution, P̂x,y, associated
with (x, y) is the vector {P̂x,y(x), x ∈ X , y ∈ Y}, where P̂x,y(x) =
nx,y(x, y)/n, nx,y(x, y) being the number of occurrences of the pair of
letters (x, y) ∈ X × Y in (x, y), and the type class of (x, y) ∈ (X × Y)n

is
Tn(x, y) ≜

{
(x′, y′) ∈ (X × Y)n : P̂x′,y′ = P̂x,y

}
. (2.13)

The properties of the method of types for this case are obtained by
replacing |X | with |X ||Y| and understanding types Q as joint types,
QXY . Thus, |Tn(Q)| .= enH(QXY ) where H(QXY ) is now a joint entropy.
A pair of sequences also leads to a conditional type class, where the
conditional type class of y ∈ Yn given a fixed x ∈ X n is defined as

Tn(y|x) ≜
{

y′ ∈ Yn : P̂x,y′ = P̂x,y

}
. (2.14)

Note that while a joint type class is a subset of (X × Y)n, a conditional
type is a subset of Yn. The size of a conditional type class is exponen-
tially on the same order as enH(QY |X |QX), that is, determined by the
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conditional entropy H(Ỹ |X̃) for (X̃, Ỹ ) ∼ QXY . These definitions and
properties can be directly generalized to multiple length-n sequences,
as long the number of sequences and all the alphabets are finite and
fixed, independent of n.

With a careful handling of a few technical aspects, the method of
types is also extended to Markov chains over finite alphabets. Consid-
ering, for simplicity, a first-order Markov chain, the empirical Markov
distribution is essentially {P̂x(x, x′), (x, x′) ∈ X 2}, where P̂x(x, x′) =
nx(x, x′)/n, and nx(x, x′) is the number of occurrences of the letter
(x, x′) ∈ X 2 as consecutive symbols in x. Thus, ignoring edge effects, this
is merely a joint type of x = (x1, . . . , xn−1) and x′ = (x2, x3, . . . , xn),
the latter being a shifted version of the former. The technical details
are related to the fact that the set of joint types is not arbitrary. Specif-
ically, upon adopting the (convenient) cyclic convention that x1 follows
xn, the number of incoming transitions to each state must be equal
to the number of outgoing transitions from that state, thus, the joint
empirical distribution P̂x(x, x′) must have identical marginals. Various
variants thus have been developed [18], [22], [47], [155], [221] (see [38,
Section VII.A] for a survey), but overall, the properties of the method
of types remain essentially the same: The number of possible types
is polynomial, and the other properties follow by replacing entropy
H(X̃) with X̃ ∼ Q with first-order conditional entropy H(X̃2|X̃1),
where (X̃1, X̃2) ∼ QX1X2 , and the KL divergence by the conditional
KL divergence

D(QX2|X1 ||PX2|X1 |QX) ≜∑
x1∈X ,x2∈X

QX(x1)QX2|X1(x2|x1) ln
QX2|X1(x2|x1)
PX2|X1(x2|x1) . (2.15)

Our goal in the rest of this section would be to generalize this
concept beyond finite alphabets, including both memoryless sources
and sources with memory. The main challenges are how to handle the
fact that infinite alphabets potentially yield infinitely many types, and
how to asses the size of these generalized type classes. We will show
that the number of types can be essentially bounded by a finite number,
which grows sub-exponentially with n, and that the sizes (or volumes)
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of various interesting definitions of generalized type classes scale as enH

for a suitable entropy term.

2.2.2 Types for General Alphabets

Our first step is to develop generalizations of the definition of the
basic type class. Clearly, the two previously provided definitions hold
specifically for finite-alphabet memoryless systems. However, when
considering the more general scenario, a broader definition becomes
necessary. The essential requirement for formulating a comprehensive
method of types is that sequences falling within the same type class
exhibit matching probabilities, at least in the exponential scale. In cases
where the data may be governed by a single probability distribution (or
PDF, in continuous scenarios) denoted as P , the definition is as follows:

Tn(P ) ≜
{

x ∈ X n : − ln P (x)
n

= H

}
. (2.16)

Here, H represents a constant, which for a discrete alphabet, typically
signifies the entropy rate of distribution P , and for a continuous alphabet,
signifies the differential entropy rate. This definition underscores the
fundamental property that all sequences within a given type class share
a consistent probabilistic behavior. It encapsulates the notion that
their probabilities, when viewed through the lens of logarithmic scaling,
converge to a common value, thereby enabling a more inclusive approach
in diverse scenarios. In certain instances, intricate technical nuances
necessitate the incorporation of a certain tolerance factor, denoted as
ϵ > 0. This becomes particularly pertinent in continuous scenarios, as
we will soon delve into.2 This leads us to introduce the notion of an
ϵ-inflated type class, represented as follows:

Tn,ϵ(P ) ≜
{

x ∈ X n :
∣∣∣∣− ln P (x)

n
− H

∣∣∣∣ ≤ ϵ

}
. (2.17)

Equations (2.16) and (2.17) define the notion of weak typicality [36,
Section 3.3]. However, there are instances where we require this property
of almost equal log-probabilities (or log-densities) not solely for one

2In the next section, when we explore the saddle-point method, we will see how
to circumvent the need for this tolerance factor.
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specific source P , but concurrently for all sources within a given class.
The most prominent case is that of the class of all memoryless sources
over a finite alphabet X . If we let P(X ) be the set of all PMFs over X ,
then we define the type class of x WRT the class P(X ) as

Tn(x) ≜
{
x′ ∈ X n : P (x′) = P (x), ∀P ∈ P(X )

}
. (2.18)

The definition in (2.18) aligns with the concept of a type class in (2.1),
as if x ∈ Tn(x) then any permutation of its letters also belongs to
Tn(x).

Now, consider a parametric family of sources, {Pθ : θ ∈ Θ}, where
θ is the parameter and Θ is the parameter space. We define the type
class of x WRT the class {Pθ : θ ∈ Θ} (see also [150]) as

Tn(x) ≜
{
x′ ∈ X n : Pθ(x′) = Pθ(x), ∀θ ∈ Θ

}
. (2.19)

Indeed, when the set {Pθ : θ ∈ Θ} encompasses all memoryless sources
with a given finite alphabet X of size |X |, the parameter vector θ can
be construed as the vector comprising |X | − 1 letter probabilities, with
the |X |-th probability completing their sum to unity. This alignment
of definitions corresponds precisely to the definition in (2.18). The
rationale underlying this correspondence stems from the fact that the
probability of a sequence x under any memoryless source depends
on x solely via the empirical distribution P̂ associated with x. As a
result, any two sequences sharing the same empirical distribution must
invariably possess identical probabilities across all memoryless sources
indexed by distinct θ values. In essence, this expansive definition of a
type class seamlessly envelops the well-established definition applicable
to memoryless sources, effectively encompassing it as a specific case.
More generally, the ϵ-inflated type class of x is defined as

Tn,ϵ(x) ≜
{

x′ ∈ X n :
∣∣∣∣ ln Pθ(x′)

n
− ln Pθ(x)

n

∣∣∣∣ ≤ ϵ, ∀θ ∈ Θ
}

(2.20)

=
⋂

θ∈Θ

{
x′ ∈ X n :

∣∣∣∣ ln Pθ(x′)
n

− ln Pθ(x)
n

∣∣∣∣ ≤ ϵ

}
. (2.21)

The definitions in (2.18)-(2.21) correspond to the notion of strong
typicality [41, Chapter 2]. It is evident that broadening the scope
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of reference sources, achieved by expanding the parametric family,
causes the type classes to contract. Indeed, then the requirement
1
n |ln Pθ(x′) − ln Pθ(x)| ≤ ϵ is imposed over a larger classes of sources,
the intersection in (2.21) is taken over more sets, and hence this intersec-
tion becomes smaller. Conversely, focusing on a subset of {Pθ : θ ∈ Θ}
results in the expansion of type classes. At the far end of this spectrum,
when the subclass of sources becomes a singleton, we are back to weak
typicality.

As a pertinent example that illustrates this, consider the class of
memoryless, zero-mean Gaussian sources parameterized by the variance,
denoted as θ = σ2. The PDF for this class is expressed as follows:

Pσ2(x) = exp
{
−
∑n

i=1 x2
i /(2σ2)

}
(2πσ2)n/2 . (2.22)

Since Pσ2(x) depends on x only via∑n
i=1 x2

i , it is clear that all sequences
{x} with a given norm (i.e., all sequences pertaining to points on the
surface of a given Euclidean hyper-sphere centered at the origin) have the
same PDF, Pσ2(x). Thus, a natural definition of type classes WRT the
class of zero-mean, memoryless Gaussian sources parameterized by their
variance, also known as Gaussian types (or “power types”), are surfaces
of n-dimensional hyper-spheres centered at the origin. Expanding this
parametric class by introducing a mean parameter µ leads us to consider
θ = (σ2, µ) (σ2 > 0, µ ∈ R). Consequently, the PDF becomes:

Pσ2,µ(x) = exp
{
−
∑n

i=1(xi − µ)2/(2σ2)
}

(2πσ2)n/2 . (2.23)

In this context, Pσ2,µ(x) depends on x exclusively through ∑n
i=1 x2

i

and ∑n
i=1 xi. Accordingly, the definition of a type class involves the

intersection of a hyper-sphere surface defined by a particular radius and
a hyper-plane defined by a specific value of ∑n

i=1 xi. This type class is
notably smaller compared to the type class relative to {Pσ2(x), σ2 >

0}, which was solely defined by the hyper-sphere surface without any
additional intersection with a hyper-plane.

More generally, consider a parametric class of memoryless sources
that form an exponential family (see, e.g., Lehmann [110, Section 1.4]).
This means that the single-letter marginal is of the form,



2.2. Various Definitions of Type Classes 17

Pθ(x) =
exp

{∑k
j=1 θjϕj(x)

}
Z(θ) , (2.24)

where θ = (θ1, . . . , θk) is the parameter vector, ϕi : X → R are given
functions, and Z(θ) is a normalization constant, given by

Z(θ) ≜
∑
x∈X

exp


k∑

j=1
θjϕj(x)

 , (2.25)

in the discrete case, or

Z(θ) ≜
∫

X
exp


k∑

j=1
θjϕj(x)

 dx, (2.26)

in the continuous case. Moving on to n-sequences, by considering the
product form,

Pθ(x) =
n∏

i=1
Pθ(xi) =

exp
{∑k

j=1 θj
∑n

i=1 ϕj(xi)
}

[Z(θ)]n , (2.27)

type classes are defined by a given combination of values of the statistics,∑n
i=1 ϕj(xi), for j = 1, . . . , k. The class of memoryless Gaussian sources

parameterized by σ2 only, is an exponential family with k = 1, a
transformed parameter, θ = θ1 = − 1

2σ2 , ϕ1(x) = x2 and accordingly,
Z(θ) =

√
2πσ2 =

√
−π/θ. The broader class, parameterized by (σ2, µ),

is also an exponential family with k = 2, θ1 = − 1
2σ2 , θ2 = µ

σ2 , ϕ1(x) = x2,
ϕ2(x) = x, and

Z(θ) =
√

2πσ2 exp
{

µ2

2σ2

}
=
√

− π

θ1
exp

{
− θ2

2
4θ1

}
. (2.28)

The class of memoryless sources from the alphabet X = {1, 2, . . . , |X |}
is yet another example of an exponential family with k = |X | − 1, a
parameter transformation,

θj = ln
(

pj

1 −
∑|X |−1

l=1 pl

)
, (2.29)

for j = 1, 2, . . . , |X | − 1,

ϕj(x) =

1, x = j

0, x ̸= j
(2.30)
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and
Z(θ) = 1

1 −
∑|X |−1

j=1 pj

. (2.31)

In summary, we observe that exponential families are general enough
to include at least two important special cases of memoryless sources:
Finite-alphabet memoryless sources and Gaussian memoryless sources,
but of course they include many more [110, Section 1.4].

The method of types for exponential families is useful for assessing
the exponential order of certain sums or integrals (depending on whether
the alphabet is discrete or continuous) of functions that depend on x

only via the set of statistics {ϕj , j = 1, 2, . . . , k}, i.e.,

∑
x

f

(
n∑

i=1
ϕ1(xi),

n∑
i=1

ϕ2(xi), . . . ,
n∑

i=1
ϕk(xi)

)
(2.32)

in the discrete alphabet case, or∫
Rn

f

(
n∑

i=1
ϕ1(xi),

n∑
i=1

ϕ2(xi), . . . ,
n∑

i=1
ϕk(xi)

)
dx (2.33)

in the continuous alphabet case. Most notably, the method is useful when
f is an exponential function of {ϕj , j = 1, 2, . . . , k}, for example, an
exponential function of a linear combination of {ϕj}, possibly multiplied
by an indicator function for the event that the vector {ϕj , j = 1, . . . , k}
lies in a certain region in Rk.

2.2.3 Markov and Conditional Type Classes

The exponential family also lends itself to handle sources with certain
structures of memory, most notably, Markov sources, where

Pθ(x) =
exp

{∑k
j=1 θj

∑n−1
i=0 ϕj(xi, xi+1)

}
Zn(θ) , (2.34)

and so, type classes are defined according to a given combination of val-
ues of the statistics ∑n−1

i=0 ϕj(xi, xi+1), as an extension of finite-alphabet
Markov types [18], [22], [47], [155], [221]. In addition, a parallel extension
of conditional type classes to the continuous alphabet case can also be
defined, either WRT an exponential family of conditional distributions
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(in the discrete case) or conditional PDFs (in the continuous case). In
the memoryless case, we define the single-letter conditional probability
function pertaining to an exponential family, as

Pθ(x|y) =
exp

{∑k
j=1 θjϕj(x, y)

}
Z(y, θ) , (2.35)

with Z(y, θ) being a normalization constant such that Pθ(x|y) sums
or integrates (over x) to unity. Here, the conditional type class of x

given y is the set of all {x′} such that for the given y, ∑n
i=1 ϕj(x′

i, yi) =∑n
i=1 ϕj(xi, yi), for all j = 1, 2, . . . , k. For example, a Gaussian condi-

tional type class is defined WRT the class

Pσ2,a(x|y) = exp
{
−(x − ay)2/(2σ2)

}
√

2πσ2
, (2.36)

which is a conditional exponential family with k = 2, θ1 = − 1
2σ2 ,

θ2 = a
σ2 , ϕ1(x, y) = x2, ϕ2(x, y) = xy, and

Z(y, θ) =
√

2πσ2 exp
{

a2y2

2σ2

}
. (2.37)

In this case, the conditional type class is defined by prescribed values
of ∑n

i=1 x2
i and ∑n

i=1 xiyi.
In the sequel, we will demonstrate the usefulness of the concepts of

type classes and conditional type classes in several applications.

2.3 Simple Gaussian Types

As delineated in Section 2.2, in the finite alphabet case, the conventional
method of types hinges on an explicit formulation for the exponential
growth rate of the size of a given type class (as a function of the sequence
length n). Similarly, when dealing with the continuous Gaussian scenario,
a prerequisite is obtaining a specific, well-defined, expression for the
volume of the associated type class. Let us consider the simplest scenario–
that of typicality WRT zero-mean, Gaussian, IID sources, characterized
by their variance. In this context, the corresponding type class, as
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detailed in Section 2.2, is defined by a hyper-spherical surface, denoted,
with a slight abuse of notation, as

Tn(s) ≜
{

x ∈ Rn : 1
n

n∑
i=1

x2
i = s

}
. (2.38)

Strictly speaking, the volume of Tn(s) is zero, if viewed as an object in
the space Rn, because its real dimension is n−1, as it is the surface area
of a hyper-sphere of radius

√
ns. The surface area of an n-dimensional

hyper-sphere of radius R is given by 2πn/2Rn−1/Γ(n/2), where Γ(·) is
the Gamma function, defined as

Γ(u) ≜
∫ ∞

0
tu−1e−t dt, (2.39)

whose value for u = n/2, (n being a positive integer) is given by

Γ
(

n

2

)
=


(

n
2 − 1

)
!, n is even

2−(n−1)/2 ·
√

π × 1 × 3 × . . . (n − 2), n is odd
. (2.40)

Thus, the surface area of an n-dimensional hyper-sphere of radius
√

ns

is the volume of Tn(s) in n − 1 dimensions:

Vol {Tn(s)} = 2πn/2(
√

ns)n−1

Γ(n/2) (2.41)

(∗)∼ 2πn/2(ns)(n−1)/2√
4π/n(n/2e)n/2 (2.42)

= (2πes)n/2
√

πs
(2.43)

= enh(X)
√

πs
, (2.44)

where the notation an ∼ bn, for two positive sequences, {an} and
{bn}, means that an/bn → 1 as n → ∞, (∗) follows from Stirling’s
approximation

n! ∼
√

2πn

(
n

e

)n

, (2.45)

and X is a Gaussian RV X ∼ N(0, s), whose differential entropy is
h(X) = 1

2 ln(2πes). Hence, Vol{Tn(s)} is of the exponential order of
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enh(X) in parallel to the fact that in the finite-alphabet case, the size
of a type class is exponentially enH , where H is the empirical entropy
associated with the type (see Section 2.2.1 and [38, Section VII.A]).
This result is not a coincidence and we will encounter it repeatedly in
the sequel.

Now, if our purpose is to integrate over Rn a certain function that
depends on x only via ∑n

i=1 x2
i , we can proceed as follows:∫

Rn
f

(
n∑

i=1
x2

i

)
dx

(a)=
∫ ∞

0
dR

∫
{x:
∑

i
x2

i =R2}
f

(
n∑

i=1
x2

i

)
dx (2.46)

(b)=
∫ ∞

0
d(

√
ns) · Vol {Tn(s)} f(ns) (2.47)

(c)∼
√

n

2

∫ ∞

0

ds√
s

· (2πes)n/2
√

πs
f(ns) (2.48)

= 1
2

√
n

π
· (2πe)n/2

∫ ∞

0
ds · sn/2−1f(ns), (2.49)

where (a) follows by expressing the integral in two stages, thus combining
the contributions of all hyper-sphere surfaces, where the inner integration
WRT x in the first line is over the hyper-sphere surface, whose dimension
is n−1, (b) follows by a change of the outer integration variable R =

√
ns,

and (c) follows by substituting (2.44) for Vol{Tn(s)}. We have thus
simplified an n-dimensional integral to a one-dimensional integral.
Example 2.1. Consider the calculation of the probability of the event∑n

i=1 X2
i ≥ nA, where {Xi} are IID, zero-mean, Gaussian RVs with

variance σ2 and A > σ2. In this case, using (2.49),

Pr
{

n∑
i=1

X2
i ≥ nA

}

=
∫
Rn

(2πσ2)−n/2 exp
{

−
n∑

i=1
x2

i /(2σ2)
}

· 1
{

n∑
i=1

x2
i ≥ nA

}
dx (2.50)

∼ 1
2

√
n

π
(2πe)n/2

∫ ∞

A
sn/2−1(2πσ2)−n/2 exp

{
− sn

2σ2

}
ds. (2.51)

For A > σ2, this integral is dominated by the value of the integrand at
s = A, and therefore, the above expression is of the exponential order of

exp
{

−n

2

[
A

σ2 − ln
(

A

σ2

)
− 1

]}
. (2.52)
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At this juncture, one might inquire about the necessity of employing
the method of types for the aforementioned example, as well as for
several other instances elaborated upon in the subsequent sections
of this section. After all, the exponential rate of the aforementioned
probability can be readily derived through a straightforward application
of Chernoff’s bound, renowned for its exponential accuracy [49]. However,
the rationale for employing the method of types, not just in this simple
instance, but also in the forthcoming sections, is threefold:

• General applicability. While the chosen example was intentionally
simple, serving as an illustrative vehicle for the underlying tech-
nique, the method of types possesses a generality and adaptability
that extends to more intricate scenarios. Consider, for instance,
an event that encompasses a vector of diverse empirical statistics,
confined within a specific spatial region. Such intricate events are
beyond the capabilities of Chernoff’s bound.

• Broad utility. The capacity to gauge the volume of a type class
holds significance beyond the mere evaluation of probabilities
linked to rare events. Its utility extends to deriving universal
hypothesis testing strategies and universal decoders in instances
where the source and/or channel characteristics are unknown. For
a comprehensive understanding, refer to works such as [115], [116],
[124], [138], all of which underscore its importance. This aspect
will be elaborated upon in Section 2.8.

• Enhanced precision. Through the utilization of the Laplace method
of one-dimensional integration, we will come to realize in Section
3 that we can attain not only the accurate exponential order
found in the last integral (akin to Chernoff’s bound or general
large-deviations bounds), but also an asymptotically precise pre-
exponential factor.

It is imperative to bear these considerations in mind as we delve into
subsequent sections.
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2.4 More Refined Gaussian Types

Let us proceed to the next phase. Consider a scenario where the function
we need to integrate depends on x, not solely through ∑n

i=1 x2
i , but

also through ∑n
i=1 xi. For instance, this arises when calculating the

probability of an event like {
∑n

i=1(Xi −µ)2 ≥ nA}. In this situation, we
must engage with more refined type classes, defined by specific values of
both∑n

i=1 x2
i and∑n

i=1 xi. In simpler terms, our type class now takes the
form of an intersection between a hyper-sphere surface and a hyper-plane.
Unlike the previous case where we dealt with a simple hyper-sphere,
here, an apparent closed-form formula for the volume of this (n − 2)-
dimensional construct, defined by ∑n

i=1 x2
i = ns and ∑n

i=1 xi = nµ

for given constants s > 0 and µ ∈ R (with s > µ2), is not readily
available. At this point, an exact solution to this challenge remains
elusive. Nevertheless, we can furnish an approximation that can be
continually honed as n becomes increasingly large. This approximation
suffices to derive the precise exponential scale of the desired expression,
thereby serving our immediate purpose. Subsequently, we will acquaint
ourselves with more advanced techniques that, on occasion, enable a
significantly more accurate assessment.

Let ϵ > 0 be arbitrarily small and consider the ϵ-inflated version of
the type class described above

Tn(s, µ, ϵ) ≜
{

x :
∣∣∣∣ 1n

n∑
i=1

x2
i − s

∣∣∣∣ ≤ ϵ,

∣∣∣∣ 1n
n∑

i=1
xi − µ

∣∣∣∣ ≤ ϵ

}
. (2.53)

Further consider an auxiliary PDF of n IID Gaussian RVs of mean µ

and variance s − µ2, that is,

g(x) =
exp

{
− 1

2(s−µ2)
∑n

i=1(xi − µ)2
}

[2π(s − µ2)]n/2 . (2.54)

Then,

1
(a)
≥
∫

Tn(s,µ,ϵ)
g(x) dx (2.55)

=
∫

Tn(s,µ,ϵ)

exp
{

− 1
2(s−µ2)

∑n
i=1(xi − µ)2

}
[2π(s − µ2)]n/2 dx (2.56)
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=
∫

Tn(s,µ,ϵ)

exp
{

− 1
2(s−µ2)

[∑n
i=1 x2

i − 2µ
∑n

i=1 xi + nµ2]}
[2π(s − µ2)]n/2 dx (2.57)

(b)
≥
∫

Tn(s,µ,ϵ)

exp
{

− [n(s+ϵ)−2µ·n(µ−ϵ·sgn(µ))+nµ2]
2(s−µ2)

}
[2π(s − µ2)]n/2 dx (2.58)

= Vol {Tn(s, µ, ϵ)} ·
exp

{
−n[s+ϵ−µ2+2ϵ|µ|]

2(s−µ2)

}
[2π(s − µ2)]n/2 (2.59)

= Vol {Tn(s, µ, ϵ)} ·
exp

{
−n

2 − nϵ(2|µ|+1)
2(s−µ2)

}
[2π(s − µ2)]n/2 (2.60)

= Vol {Tn(s, µ, ϵ)} ·
exp

{
−nϵ(2|µ|+1)

2(s−µ2)

}
[2πe(s − µ2)]n/2 , (2.61)

where (a) follows since the probability of Tn(s, µ, ϵ) under g(x) must be
less than 1, (b) follows since within Tn(s, µ, ϵ) it holds that ∑n

i=1 x2
i ≤

n(s + ϵ) and |
∑n

i=1 xi − µ| ≤ nϵ, which implies that

2µ
n∑

i=1
xi ≥ 2µ [nµ − nϵ · sign(µ)] = 2nµ2 − 2nϵ|µ|. (2.62)

Consequently,

Vol {Tn(s, µ, ϵ)} ≤
[
2πe(s − µ2)

]n/2
· exp

{
nϵ(2|µ| + 1)

2(s − µ2)

}
. (2.63)

To establish a lower bound, consider the application of the weak law of
large numbers (WLLN), which asserts that as n approaches infinity, the
probability of the complement of Tn(s, µ, ϵ) under the PDF g diminishes
to zero, for any fixed ϵ > 0. Notably, we can even allow ϵ to tend towards
zero, albeit at a pace that remains gentle relative to the growth of n.
This probability can be readily bounded from above by employing either
Chebyshev’s or Chernoff’s bound. Denote the resultant upper bound
for this probability as δn. This leads us to the following expression:

1 − δn

≤
∫

Tn(s,µ,ϵ)
g(x) dx (2.64)
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=
∫

Tn(s,µ,ϵ)

exp
{

− 1
2(s−µ2)

[∑n
i=1 x2

i − 2µ
∑n

i=1 xi + nµ2]}
[2π(s − µ2)]n/2 dx (2.65)

≤
∫

Tn(s,µ,ϵ)

exp
{

− [n(s−ϵ)−2µ·n(µ+ϵ·sgn(µ))+nµ2]
2(s−µ2)

}
[2π(s − µ2)]n/2 dx (2.66)

= Vol {Tn(s, µ, ϵ)} ·
exp

{
− n

2(s−µ2)
[
s − ϵ − µ2 − 2ϵ|µ|

]}
[2π(s − µ2)]n/2 (2.67)

= Vol {Tn(s, µ, ϵ)} ·
exp

{
nϵ(2|µ|+1)

2(s−µ2)

}
[2πe(s − µ2)]n/2 , (2.68)

where the steps are justified similarly to the justification of the steps in
(2.61). Consequently,

Vol {Tn(s, µ, ϵ)} ≥

(1 − δn) ·
[
2πe(s − µ2)

]n/2
· exp

{
−nϵ(2|µ| + 1)

2(s − µ2)

}
. (2.69)

As we allow ϵ to approach infinitesimally small values, we discern that
the volume of Tn(s, µ, ϵ) essentially aligns with the exponential order
given by:

[
2πe(s − µ2)

]n/2
= (2πes)n/2 ·

(
1 − µ2

s

)n/2

. (2.70)

The first factor, (2πes)n/2, corresponds to enh, as we previously de-
duced in Section 2.3. Concurrently, the subsequent factor, (1 − µ2/s)n/2,
embodies the volume reduction attributed to the intersection with the
(ϵ-inflated) hyper-plane, namely n(µ − ϵ) ≤

∑n
i=1 xi ≤ n(µ + ϵ). Con-

sequently, it becomes evident that there is no sacrifice in terms of the
exponential order when the hyper-sphere intersects with the hyper-plane
that encompasses the origin (µ = 0). Stated differently, the majority of
volume is captured by elements within Tn(s, µ, ϵ) that exhibit a property
where the sum of their coordinates is relatively modest (in absolute
value).

As evident, the underpinning of the volume’s upper and lower
bound derivation is straightforward, yet this same concept retains its
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relevance in more intricate scenarios. When faced with an ϵ-enlarged
type class, characterized by linear and quadratic criteria on x, we
construct an auxiliary Gaussian PDF, denoted as g(·), which exhibits
two key attributes:

1. The likelihood of the type class under g(·) converges towards unity
as n approaches infinity.

2. The value of the PDF of all sequences situated within the type
class are virtually the same, differing only exponentially by a
factor that scales with ϵ. This value of the PDF is denoted as g0.

The volume of the type class then aligns with the exponential order of
1/g0. In the prior calculation, g0 equates to [2πe(s−µ2)]−n/2, leading to
an exponential volume of 1/g0 = [2πe(s − µ2)]n/2. Given that our objec-
tive is to pinpoint the correct exponential order rather than striving for
precise evaluation at this stage, the demand in the first item mentioned
earlier can actually be considerably relaxed. It is even permissible for
the type class probability to approach zero, as long as the rate of decay
remains sub-exponential in n.

Example 2.2. Consider the calculation of the probability of the event
{
∑n

i=1(Xi − A)2 ≥ nB} when {Xi} are IID, zero-mean Gaussian RVs
with variance σ2. To this end, we cover the set E ≜ {x : ∑n

i=1(xi−A)2 ≥
nB} by a finite number of ϵ-inflated types classes, {Tn(si, µj , ϵ)}, where
si = iϵ and µj = jϵ, where i and j are odd integers. Since

n∑
i=1

(xi − A)2 =
n∑

i=1
x2

i − 2A
n∑

i=1
xi + nA2, (2.71)

these are all the type classes with the property si − 2Aµj + A2 > B.
To avoid the necessity of dealing with contributions of infinitely many
such type classes, we proceed as follows. Let us partition the set E
into two disjoint subsets, E1 ≜ {x : nB ≤

∑n
i=1(xi − A)2 < nC} and

E2 ≜ {x : ∑n
i=1(xi − A)2 ≥ nC}, for some C > B arbitrarily large. The

idea is that E1 contains finitely many types, whereas the contribution
of E2 can be upper bounded by simple (crude) bound, which for large
enough C, would yield an exponential decay faster than that of E1, and
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so, the contribution of E2 can be neglected altogether. We will thus
show that Pr{E} .= Pr{E1}. Specifically, first observe that

n∑
i=1

(xi − A)2 =
n∑

i=1
x2

i − 2A
n∑

i=1
xi + nA2 (2.72)

≤
n∑

i=1
x2

i + 2|A| ·
∣∣∣∣ n∑

i=1
xi

∣∣∣∣+ nA2 (2.73)

(∗)
≤

n∑
i=1

x2
i + 2|A| ·

√√√√n
n∑

i=1
x2

i + nA2 (2.74)

= n ·

√√√√ 1
n

n∑
i=1

x2
i + |A|

2

, (2.75)

where (∗) follows from the Schwarz–Cauchy inequality. Therefore,

Pr{E2}

= Pr
{

n∑
i=1

(Xi − A)2 ≥ nC

}
(2.76)

≤ Pr

n ·

√√√√ 1
n

n∑
i=1

X2
i + |A|

2

≥ nC

 (2.77)

= Pr
{

n∑
i=1

X2
i ≥ n(

√
C − |A|)2

}
(2.78)

(∗)
≤ exp

{
−n

2

[
(
√

C − |A|)2

σ2 − ln
(

(
√

C − |A|)2

σ2

)
− 1

]}
, (2.79)

where (∗) follows from Chernoff’s bound [229, Prop. 13.1.3, p. 374].
By selecting large enough C, it becomes apparent that Pr{E2} must
decay with an arbitrarily fast exponential rate. In particular, it can
be made faster (and hence negligible) compared to the contribution of
E1. It is therefore enough to confine attention to E1. Now, within E1,
there are finitely many type classes {Tn(si, µj , ϵ)}, as i cannot exceed
C/(2ϵ) and |j| cannot exceed

√
C/(2ϵ) (because in the definition of

Tn(s, µ, ϵ), |µ| cannot exceed
√

s, or else Tn(s, µ, ϵ) would be empty for
small ϵ). It follows then that the total number of ϵ-inflated type classes
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is less than C3/2/(2ϵ2). Therefore, Pr{E1} .= Pr{E} is determined by the
probability of the dominant type class within E1. Each such type class
with E1 contributes the product Vol{Tn(si, µj , ϵ) .= [2πe(si − µ2

j )]n/2

times the PDF within that type class, g(x) .= (2πσ2)−n/2e−ns2
i /(2σ2 ,

which is given by[
2πe(si − µ2

j )
]n/2

· (2πσ2)−n/2e−ns2
i /(2σ2)

= exp
{

−1
2

[
si

σ2 − ln
(

si − µ2
j

σ2

)
− 1

]}
. (2.80)

Since there are finitely many type classes within E1, the probability of
E (or, equivalently, of E1) is then dominated by the maximum of this
expression over all type classes within E1, which in the limit of small
ϵ > 0 becomes

exp
{

−1
2 inf

{(s,µ) : s−2Aµ+A2≥B}

[
s

σ2 − ln
(

s − µ2

σ2

)
− 1

]}

= exp
{

−1
2 inf

{(s,µ) : s−2Aµ+A2≥B}

[
s − µ2

σ2 − ln
(

s − µ2

σ2

)
− 1 + µ2

σ2

]}
.

(2.81)
Note that the exponential rate of the probability of E is strictly positive
as long as the set {(s, µ) : s − 2Aµ + A2 ≥ B} does not include the
pair (s, µ) = (σ2, 0), which amounts to the condition σ2 < B − A2. In
addition, the objective function of this minimization can be interpreted
as the KL divergence between two Gaussian PDFs, N (µ, s − µ2) and
N (0, σ2), in analogy to the form of exponential rates of probabilities of
rare events that are computed using the traditional method of types,
where the KL divergence between two finite-alphabet distributions is
minimized subject to a constraint (or constraints) corresponding to the
event in question (see also the fourth property of the method of types
in Section 2.2.1, and the calculation near the end of Section 2.3). This
also agrees with basic foundations in large-deviations theory [49].

2.5 Conditional Gaussian Types

In analogy to the finite-alphabet case, the notion of conditional types
exists also in the Gaussian case. Given a sequence y = (y1, y2, . . . , yn) ∈
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R
n, a conditional Gaussian type class is defined as the set of {x} with

given values of 1
n

∑n
i=1 x2

i and 1
n

∑n
i=1 xiyi. In the ϵ-inflated version, this

amounts to

Tn(s, c, ϵ|y) =
{

x :
∣∣∣∣ 1n

n∑
i=1

x2
i − s

∣∣∣∣ ≤ ϵ,

∣∣∣∣ 1n
n∑

i=1
xiyi − c

∣∣∣∣ ≤ ϵ

}
, (2.82)

where s ≥ c2/Py and Py ≜ 1
n

∑n
i=1 y2

i , due to the Schwarz–Cauchy
inequality. In fact, this is an extension of the refined Gaussian types
considered in Section 2.4, where yi = 1 for all i. To estimate the volume
of this conditional type class, consider the Gaussian channel,

g(x|y) =
exp

{
− 1

2σ2
∑n

i=1(xi − αyi)2
}

(2πσ2)n/2 , (2.83)

and let us select the parameters of this channel to be

α = c

Py
, (2.84)

and
σ2 = s − c2

Py
, (2.85)

for reasons that will become apparent shortly. It is easy to check that
the channel g(x|y) has the two desired properties: It assigns a high prob-
ability and an approximately uniform distribution within Tn(s, c, ϵ|y),
which is of the exponential order of

g0 =
[
2πe(s − c2/Py)

]−n/2
= e−nh(X|Y ), (2.86)

where h(X|Y ) is the conditional entropy of a Gaussian zero-mean, RV
X, with variance s, given a jointly Gaussian, zero-mean, RV Y with
variance Py and E{XY } = c. The expression s − c2/Py is then the
conditional variance of X given Y , which is also the minimum mean
squared error (MMSE) in estimating X based on Y .

Example 2.3. Consider a simplified version of the problem of universal
decoding of [116] for the additive white Gaussian noise (AWGN) channel,

Yi = αXi + Zi, i = 1, 2, . . . , n, (2.87)
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where {Zi} are IID, zero-mean Gaussian RVs with variance σ2, α is an
unknown fixed parameter, {Xi} are the channel inputs, and {Yi} are the
channel outputs. Consider now a random codebook for channel coding,
where M = enR codewords of length n are selected independently at
random where each codeword is drawn under a PDF, q(x), which is
uniform across the surface of a hyper-sphere of radius

√
nP . In [116], it

is shown that in the limit of small ϵ > 0,

Vol
{

Tn

(
P,

1
n

n∑
i=1

xiyi, ϵ

)}

.= exp

1
2 ln

2πe

P −

[
1
n

∑n
i=1 xiyi

]2
1
n

∑n
i=1 y2

i



 (2.88)

can serve as a universal decoding metric (independent of the unknown
α), which achieves the same random coding exponent as that of the
maximum-likelihood (ML) decoder, that is cognizant of α. This is
equivalent to a decoder that maximizes |

∑n
i=1 xiyi| among all codewords.

This is the Gaussian analogue to the well known universal minimum
entropy decoder, or, equivalently, the maximum mutual information
(MMI) decoder [41] for DMCs, which achieves the random coding error
exponent for ensembles of fixed composition codes. In [116], the problem
is more general in the sense that an interference signal may also be
present, and so, more interesting decoders are derived (see also [88],
[90] for further developments).

The notion of a conditional Gaussian type can be easily extended to
account for conditioning on more than one vector y. Let y1, y2, . . . yk

be k given vectors in Rn, where k is fixed, independently of n. Consider
the conditional type defined by

Tn

(
s, c1, . . . , ck, ϵ|y1, . . . , yk

)
≜{

x :
∣∣∣∣ 1n

n∑
i=1

x2
i − s

∣∣∣∣ ≤ ϵ,

∣∣∣∣ 1n
n∑

i=1
xiy

j
i − cj

∣∣∣∣ ≤ ϵ, ∀ j = 1, . . . , k

}
. (2.89)
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Here, we can use a conditional PDF of the form

g(x|y1, . . . , yk) =
exp

{
− 1

2σ2
∑n

i=1

(
xi −

∑k
j=1 αiy

j
i

)2
}

(2πσ2)n/2 , (2.90)

and tune the parameters (σ2, α1, . . . , αk) such that the conditional type
class Tn(s, c1, . . . , ck, ϵ|y1, . . . , yk) would have high probability for large
n. The resulting volume would then be of the exponential order of
exp{nh(X|Y1, . . . , Yk)} where

h(X|Y1, . . . , Yk) = 1
2 ln (2πe · MMSE{X|Y1, . . . , Yk}) , (2.91)

and MMSE{X|Y1, . . . , Yk} is the MMSE of estimating X based on
Y1, . . . , Yk where (X, Y1, . . . , Yk) is a zero-mean Gaussian vector with
E{X2} = s, E{XYj} = cj and a given covariance matrix of (Y1, . . . , Yk)
with E{YmYl} = 1

n

∑n
i=1 ym

i yl
i. It is not necessary to find the coefficients

of the optimal (linear) estimator of X based on (Y1, . . . , Yk) in order
to calculate MMSE{X|Y1, . . . , Yk}, as it is possible to calculate the
latter directly from the covariance matrix of (X, Y1, . . . , Yk). This is
based on the following information-theoretic consideration, similar to
[36, Section 12.6]: Let Λ(Y1, . . . , Yk) and Λ(X, Y1, . . . , Yk) denote the
covariance matrices of (Y1, . . . , Yk) and (X, Y1, . . . , Yk), respectively.
These matrices must both be positive definite, otherwise, the problem
is singular (i.e., there is a redundant constraint, such as Y3 = Y2 + Y1) .
Now, on the one hand,

h(X|Y1, . . . , Yk)
= h(X, Y1, . . . , Yk) − h(Y1, . . . , Yk) (2.92)

= 1
2 ln

[
(2πe)k+1 |Λ(X, Y1, . . . , Yk)|

]
− 1

2 ln
[
(2πe)k |Λ(Y1, . . . , Yk)|

]
(2.93)

= 1
2 ln

[
2πe · |Λ(X, Y1, . . . , Yk)|

|Λ(Y1, . . . , Yk)|

]
, (2.94)

and on the other hand, denoting by (α∗
1, . . . , α∗

k) the coefficients of the
optimal (linear) estimator, we have

h(X|Y1, . . . , Yk) = h

(
X −

k∑
i=1

α∗
i Yi

∣∣∣∣Y1, . . . , Yk

)
(2.95)
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(∗)= h

(
X −

k∑
i=1

α∗
i Yi

)
(2.96)

= 1
2 ln (2πe · MMSE {X|Y1, . . . , Yk}) , (2.97)

where (∗) follows from the orthogonality principle, which in the Gaussian
case implies independence between X −

∑k
i=1 α∗

i Yi and (Y1, . . . , Yk). By
equating the two expressions of h(X|Y1, . . . , Yk), we have

MMSE {X|Y1, . . . , Yk} = |Λ(X, Y1, . . . , Yk)|
|Λ(Y1, . . . , Yk)| . (2.98)

Thus, the volume can be calculated directly, without recourse of finding
first the optimal coefficients.

2.6 Gauss–Markov Types

So far, we have dealt with Gaussian types defined by empirical sec-
ond order statistics that correspond to memoryless Gaussian sources,
namely, the empirical mean and the empirical second moment. As we
mentioned before, in the finite-alphabet case, the method of types has
been extended to Markov-types, namely, types defined by counts of
transitions between consecutive letters along a sequence, that it, the
number of time indices {i} along an n-sequence x such that xi−1 = a

and xi = b, where a, b ∈ X [38], [47], [155]. But what would be the
corresponding Markov extension of Gaussian types?

The simplest definition of a first-order Gauss–Markov type class is
defined as the set of all x ∈ Rn with prescribed values of empirical vari-
ance, 1

n

∑n
i=1 x2

i and the empirical first autocorrelation, 1
n

∑n
i=1 xixi−1

(for a given x0). The ϵ-inflated version would then be naturally defined
as

Tn(s0, s1, ϵ) ≜{
x :
∣∣∣∣ 1n

n∑
i=1

x2
i − s0

∣∣∣∣ ≤ ϵ,

∣∣∣∣ 1n
n∑

i=1
xixi−1 − s1

∣∣∣∣ ≤ ϵ

}
, (2.99)

where |s1| ≤ s0. What is the volume of Tn(s0, s1, ϵ)?
The basic idea is the same as before: We seek a Gaussian PDF,

which assigns to Tn(s0, s1, ϵ) a high probability, and at the same time, it



2.6. Gauss–Markov Types 33

is approximately uniform (in the exponential sense) across Tn(s0, s1, ϵ).
Given s0 and s1, let

σ2 = s0 − s2
1

s0
(2.100)

and
ρ = s1

s0
, (2.101)

and consider the first-order Gauss–Markov process (also known as
first-order autoregressive (AR) process),

Xi = ρXi−1 + Zi, i = 1, 2, . . . , n, X0 = x0, (2.102)

where {Zi} are IID, zero-mean, Gaussian RVs with variance σ2, and x0
is a fixed initial condition. The joint PDF of a given sample x from this
process, conditioned on x0 is given by

g(x|x0)

=
exp

{
− 1

2σ2
∑n

i=1(xi − ρxi−1)2
}

(2πσ2)n/2 (2.103)

=
exp

{
− 1

2σ2
[
(1 + ρ2)∑n

i=1 x2
i − 2ρ

∑n
i=1 xixi−1 + ρ2(x2

0 − x2
n)
]}

(2πσ2)n/2 .

(2.104)

It is apparent that g(x|x0) depends on x only via ∑n
i=1 x2

i , ∑n
i=1 xixi−1,

and ∆ ≜ x2
0−x2

n. Assuming that the value of ∆ is fixed (i.e., independent
of n), it is readily seen that within Tn(s0, s1, ϵ), the PDF g(x|x0), with
the choices (2.100) and (2.101), is essentially [neglecting ϵ and ∆, which
do not affect the exponential rate of (2.104)], g0 = [2πe(s0 −s2

1/s0)]−n/2.
Also, by the ergodicity of the process, Tn(s0, s1, ϵ) has high probability
for large n and fixed ϵ > 0, and so, both conditions are satisfied. The
volume is, therefore, of the exponential of order of

1
g0

=
[
2πe

(
s0 − s2

1
s0

)]n/2

(2.105)

= exp
{

n

2 ln
[
2πe

(
s1 − s2

1
s0

)]}
(2.106)
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= exp
{

n

2 ln(2πeσ2)
}

(2.107)

= enh(X2|X1), (2.108)

where h(X2|X1) is the conditional differential entropy of X2 given X1,
in analogy to the parallel result for finite-alphabet Markov types, where
the size of a type class is exponentially enH(X2|X1), where H(X2|X1)
is the conditional entropy associated with the corresponding Markov
process (see Section 2.2.1).

The intuitive explanation for this expression of the volume is as
follows: Consider the linear transformation that maps a realization z =
(z1, . . . , zn) of the random vector Z = (Z1, . . . , Zn) into x = (x1, . . . , xn),
which is a realization of X = (X1, . . . , Xn). This transformation, which
is given by xt = ∑t

i=0 ρizt−i, can be represented by an n × n triangular
transformation matrix, i.e.,

x1
x2
. . .

xn

 =


1 0 0 . . . 0
ρ 1 0 . . . 0

. . . . . . . . . . . . . . .

ρn−1 ρn−2 . . . ρ 1

 ·


z1
z2
. . .

zn

 . (2.109)

Now, consider the ϵ-inflated surface of the hyper-sphere of radius√
nσ2 of z-sequences, which form the Gaussian type of the driving

noise process, {Zi}. The volume of this type class is exponentially
[2πeσ2]n/2 = [2πe(s0 − s2

1/s0)]n/2. But these typical z-sequences are
mapped into corresponding x-sequences, by the above triangular trans-
formation matrix whose diagonal terms are all equal to 1, and hence
its Jacobian is also equal to 1. In other words, the transformation from
z to x preserves volumes, and so, the volume of the ϵ-inflated surface
of a hyper-sphere of typical z-sequences is transformed by the above
matrix into a hyper-ellipsoid of typical x-sequences of exactly the same
volume.

Example 2.4. Consider the calculation of the exponential decay rate of

Pr
{

n∑
t=1

XtXt−1 ≥ ρ
n∑

t=1
X2

t

}
, (2.110)

for some ρ > 0, where {Xt} are IID zero-mean, Gaussian RVs with
variance σ2. Since the volume of the type class is of the exponential order
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of [2πe(s0 − s2
1/s0)]n/2 = [2πes0(1 − s2

1/s2
0)]n/2, and the PDF within a

type class is of the exponential scale of (2πσ2)−n/2 exp{−ns0/(2σ2)},
the exponent is given by

inf
s0≥0, s1/s0≥ρ

[
s0

2σ2 + 1
2 ln(2πσ2) − 1

2 ln(2πes0) − 1
2 ln

(
1 − s2

1
s2

0

)]

= inf
s0≥0

[
s0

2σ2 + 1
2 ln(2πσ2) − 1

2 ln(2πes0)
]

− 1
2 ln(1 − ρ2) (2.111)

= −1
2 ln(1 − ρ2). (2.112)

More generally, consider a k-th order Gauss–Markov type, defined
by

Tn(s0, s1, . . . , sk, ϵ) ≜{
x :
∣∣∣∣ 1n

n∑
i=1

xixi−j − sj

∣∣∣∣ ≤ ϵ, ∀j = 0, 1, . . . , k

}
, (2.113)

for given (s0, s1, . . . , sk) and some (x0, x−1, . . . , x−(k−1)). It is assumed
that the (k + 1) × (k + 1) matrix S whose (i, j)-th entry (i, j ∈
{0, 1, . . . , k}) is s|i−j| is a positive definite matrix. Here, we find a
matching k-th order AR process,

Xt =
k∑

i=1
aiXt−i + Zt, t = 1, 2, . . . , (2.114)

where {Zt} is again Gaussian white noise with variance σ2, such that
E{XtXt−i} = si for all i = 0, 1, . . . , k. Given (s0, s1, . . . , sk), the corre-
sponding parameter vector, (σ2, a1, . . . , ak) of the AR process is obtained
by solving the Yule–Walker equations [162, Eqs. (12-41a), (12-41b)],

k∑
i=1

ais|i−j| = sj , j = 1, 2, . . . , k, (2.115)

and

σ2 = s0 −
k∑

i=1
aisi. (2.116)
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The corresponding PDF g, which is given by

g(x) = 1
(2πσ2)n/2 exp

− 1
2σ2

n∑
t=1

(
xt −

k∑
i=1

aixt−i

)2 , (2.117)

has the two desired properties of exponential uniformity within the
Gauss–Markov type Tn(s0, s1, . . . , sk, ϵ) and assigning high probability
to Tn(s0, s1, . . . , sk, ϵ). Here too, g0 = (2πeσ2)−n/2 which implies that
the volume of the type class is essentially

1
g0

= (2πeσ2)n/2. (2.118)

The intuition is the same as before: The mapping from x to z is by a
triangular matrix whose diagonal entries are all equal to 1, and so is its
Jacobian. Therefore, it preserves volumes, and so is the inverse transfor-
mation, which maps the hyper-sphere surface of volume (2πeσ2)n/2 in
the z-domain into the typical hyper-ellipsoid of the same volume in the
x-domain. Now, let S(eiω) = σ2/|1 −

∑k
j=1 aje−jωi|2 is the spectrum

of {Xt}, where i ≜
√

−1. Since σ2 is the variance of the innovation
process, the differential entropy rate of {Xt} is given by

h = lim
n→∞

h(X)
n

(2.119)

= 1
4π

∫ π

−π
ln[2πeS(eiω)] dω (2.120)

= 1
2 ln(2πe) + 1

4π

∫ π

−π
ln S(eiω) dω (2.121)

= 1
2 ln(2πe) + 1

4π

∫ π

−π
ln

 σ2∣∣∣∣1 −
∑k

j=1 aje−jωi

∣∣∣∣2
 dω (2.122)

= 1
2 ln(2πe) + 1

2 ln σ2 − 1
2π

∫ π

−π
ln
∣∣∣∣1 −

k∑
j=1

aje−jωi

∣∣∣∣ dω (2.123)

= 1
2 ln(2πeσ2), (2.124)

where in the last equality we have used the Kolmogorov–Szegö relation
[162, p. 491] between the spectrum and the innovation variance, while
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noting that
∫ π

−π ln[1 −
∑k

j=1 aje−jωi] dω = 0 since all zeroes of the
function 1−

∑k
j=1 ajz−j must be within the unit circle. This implies that

the volume continues to be of the exponential order of enh. Similarly
as before, σ2 can be found directly from the covariance matrix of
(s0, s1, . . . , sk), as the ratio between the determinants of the covariance
matrix of order (k + 1) × (k + 1), and the covariance matrix of order
k × k.

Is it possible to calculate the volume of a type class that is defined
by prescribed values of both the empirical autocorrelation and the
correlation with a given y? This turns out to be considerably harder
(see the discussion in [116]) and it requires more advanced tools that
will be provided in the next section.

2.7 Types Classes Pertaining to Exponential Families

So far, we have considered various kinds of Gaussian types, which are
defined WRT given values of first and second order empirical statistics,
like the empirical mean, the empirical second moment, the empirical
correlation and autocorrelation, and so on. We now move on to extend
the scope to deal with types associated with empirical moments or
arbitrary functions. As described in Section 2.1, consider the type class
of all sequences {x} that share the same combination of values of
statistics 1

n

∑n
i=1 ϕj(xi), j = 1, 2, . . . , k. More formally, consider the

ϵ-inflated type class

Tn(q, ϵ) ≜
{

x :
∣∣∣∣ 1n

n∑
i=1

ϕj(xi) − qj

∣∣∣∣ ≤ ϵ, ∀ 1 ≤ j ≤ k

}
, (2.125)

where q = (q1, . . . , qk). What is the volume of Tn(q, ϵ)? Using the same
general idea as before, we seek a PDF of x which would assign to all
members of Tn(q, ϵ) approximately the same PDF (in the exponential
scale), and at the same time, the probability of Tn(q, ϵ) would be large
for large n. As discussed in Section 2.1, consider the PDF

Pθ(x) =
exp

{∑k
j=1 θj

∑n
i=1 ϕj(xi)

}
[Z(θ)]n , (2.126)
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where θ = (θ1, . . . , θk) and

Z(θ) =
∫

X
exp


k∑

j=1
θjϕj(x)

 dx, (2.127)

assuming that X is a continuous alphabet, and where it is understood
that in the discrete case, the integration over X is replaced by summation.
Clearly, Pθ(x) assigns exponentially the same PDF to all members of
Tn(q, ϵ), but Tn(q, ϵ) has high probability only if θ is tuned accordingly
for the given vector, q. If we can select θ such that

E {ϕj(X)} ≡ ∂ ln Z(θ)
∂θj

= qj , (2.128)

simultaneously for all 1 ≤ j ≤ k, then by the WLLN, Tn(q, ϵ) would have
high probability. Let us assume then, that q is such that there exists
a parameter vector θ that solves the set of k simultaneous equations
(2.128), which can be presented in the vector form as

∇ ln Z(θ) = q. (2.129)

Let θ = G(q) denote solution to this vector equation. In other words,
G(q) is the inverse mapping of F (θ) ≜ ∇ ln Z(θ), provided that it exists.
The PDF of every x ∈ Tn(q, ϵ) is exponentially

exp
{

n
∑k

j=1 θjqj

}
[Z(θ)]n =

exp
{

nqT G(q)
}

[Z(G(q))]n , (2.130)

and so, the volume of Tn(q, ϵ) is of the exponential order of the reciprocal

exp
{

n
[
ln Z(G(q)) − qT G(q)

]}
. (2.131)

Note that the (differential) entropy associated with Pθ is given by

h[q] = E
{

ln 1
Pθ(X)

}
= ln Z(θ)−qT θ = ln Z(G(q))−qT G(q), (2.132)

and so, once again, the volume is of the exponential order of enh[q].
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It is interesting to relate the asymptotic evaluation of the log-volume
of a type class to the principle of maximum entropy (see, e.g., [36,
Chapter 12] and references therein). We argue that h[q] is the largest
possible differential entropy of any RV, X, that satisfies the moment
constraints, E{ϕj(X)} = qj , j = 1, 2, . . . , k. To see why this is true,
consider the following chain of equalities:

sup
{X : E{ϕj(X)}=qj , 1≤j≤k}

h(X)

= sup
X

inf
θ

h(X) +
k∑

j=1
θj (E{ϕj(X)} − qj)

 (2.133)

= sup
f

inf
θ

∫ ∞

−∞
dxf(x)

ln 1
f(x) +

k∑
j=1

θj (ϕj(x) − qj)

 (2.134)

= sup
f

inf
θ

∫ ∞

−∞
dxf(x)

ln
exp

{∑k
j=1 θjϕj(x)

}
f(x) −

k∑
j=1

θjqj

 (2.135)

= sup
f

inf
θ

∫ ∞

−∞
dxf(x)

[
ln Pθ(x) · Z(θ)

f(x) − qT θ

]
(2.136)

(a)= inf
θ

sup
f

{
−D(f∥Pθ) + ln Z(θ) − qT θ

}
(2.137)

= inf
θ

{
ln Z(θ) − qT θ

}
(2.138)

(b)= ln Z(G(q)) − qT G(q) (2.139)
= h[q], (2.140)

where (a) follows from the minimax theorem and fact that the objective
is convex in θ and concave in f , and (b) follows from the fact that
the minimizing θ is θ∗ = G(q), which is obtained by equating to zero
the gradient of the convex function ln Z(θ) − qT θ. As can be seen, the
maximizing f is exactly Pθ with θ = G(q).

Example 2.5. The volume of the “Laplacian type class,” where k = 1
and ϕ1(x) = |x| is exponentially

(2eq)n = exp(nh[q]), (2.141)
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where
h[q] = ln(2eq) (2.142)

is the differential entropy of a Laplacian RV with E{|X|} = q. More
generally, the “generalized Gaussian type class” is defined for k = 1
and ϕ1(x) = |x|m (for arbitrary m > 0), where the volume exponent is
given by the differential entropy of the generalized Gaussian RV with
E{|X|m} = q, which is given by

h[q] = 1
m

ln
(

meq

2cm

)
, (2.143)

where
cm =

[
m

21+1/mΓ(1/m)

]m

. (2.144)

The method of types for exponential families is flexible enough
to evaluate exponential rates of moments and probabilities of events
defined WRT statistics that are different from the sufficient statistics
of underlying PDF. Consider the following example.
Example 2.6. Suppose that X1, X2, . . . , Xn are IID, zero-mean, Gaus-
sian RVs with variance σ2 and we wish to assess the probability that∑n

i=1 |Xi| ≥ nA, where A ≥
√

2
π σ. In such a case, we may define type

classes as above with k = 2, ϕ1(x) = |x| and ϕ2(x) = x2, where ϕ1
is needed to support the statistics of the event in question, and ϕ2 is
for the underlying Gaussian PDF. Then, letting q = [q1, q2], each type
class, Tn(q1, q2, ϵ), contributes a probability of the exponential order of

enh[q1,q2] · (2πσ2)−n/2e−nq2/(2σ2), (2.145)
and so, the dominant type class contributes an exponential order of

inf
(q1,q2) : q1≥A, q2≥q2

1

{
q2

2σ2 − h[q1, q2]
}

+ 1
2 ln(2πσ2), (2.146)

where the constraint q2 ≥ q2
1 follows from the inequality 1

n

∑n
i=1 x2

i ≥
( 1

n

∑n
i=1 |xi|)2.

Finally, we point out that extension to conditional types and Markov
types can be carried out conceptually straightforwardly following the
same ideas described above in the context of Gaussian types. In both
cases, the main tool is corresponding the exponential family, which is
defined in (2.34) for Markov types and in (2.35) for conditional types.



2.8. Further Applications 41

2.8 Further Applications

The Gaussian method of types has found application in various contexts
and levels of generality across prior research. In this section, we provide
a brief overview of these contexts along with some of the outcomes
achieved.

In [116], the challenge of universal decoding for memoryless Gaussian
channels with unknown deterministic interference was tackled, and the
method of Gaussian types played a central role in the analysis. As
highlighted in [116, Eq. (5)], the universal decoding metric for the
Gaussian channel hinges on the volume of the conditional Gaussian
type class of a channel input vector x, given a channel output vector
y. The effectiveness of this decoding metric is contingent on having an
explicit formula for the exponential rate of this volume.

The extension from the memoryless case to Gaussian channels with
intersymbol interference remained an open question after [116], as
estimating the corresponding volume was non-trivial. The gap was
eventually bridged in [88] and [90] using more advanced methodologies
to be discussed later. A similar connection between universal decoding
metrics and volumes of conditional type classes was observed in a
broader context of universal decoding for arbitrary channels concerning
a specific class of decoding metrics [124]. Additional insights can be
found in [147, Section 4].

The method of Gaussian types has also played a pivotal role in
deducing random coding exponents for typical random codes in dis-
tinctive scenarios. For instance, in the context of the colored Gaussian
channel [138] and the dirty-paper channel [196], this method was crucial.
Both studies relied on the concept of conditional type classes and their
associated volumes, and the presence of explicit expressions played a
vital role in achieving exponentially tight results.

In [9, Section IV.A], the method of Gaussian types found application
in addressing the problem of optimal guessing subject to a fidelity con-
straint for memoryless Gaussian sources. This corresponds to a parallel
result for finite-alphabet memoryless sources, for which the conventional
method of types is employed. By leveraging outcomes pertaining to the
exponential order of the volume of both simple Gaussian types and
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conditional Gaussian types, the optimal achievable guessing exponent
was deduced. The crux of this derivation revolves around creating a
continuous version of the type-covering lemma. This lemma establishes
the capability to encompass a Euclidean hyper-sphere with a radius of√

nσ2 using exponentially exp{n
2 ln σ2

D } Euclidean hyper-spheres, each
with a radius of

√
nD, where D < σ2. This type-covering result was

reaffirmed and expanded to support successive refinement coding the-
orems in [232], also employing Gaussian types. Interestingly, it seems
that the authors of [232] were unaware of the initial version of this
result in [9]. Gaussian types were also harnessed by Kelly and Wagner
in [102] concerning the reliability of source coding with side-information
(the Wyner–Ziv problem [225]). Moreover, Scarlett [173] and Scarlett
and Tan [178] employed Gaussian types (termed “power types”) for
second-order asymptotic analyses in their respective works. Similar
methods were explored in [94] within the domain of compression for
similarity queries. Additional related references include [198] and [210].
Furthermore, an analogous type-covering lemma for Laplacian type
classes was established in [230] (also covered in [231]).

The method of types extended to general exponential families found
application in [115] within the domain of model order estimation. Just
as mentioned previously, in this context as well, the existence of an
expression for the volume of a type class played a pivotal role in deducing
the model order selection criterion. Additionally, in [146], the method
of types was employed for exponential families within the context of a
continuous-alphabet extension of widely recognized lower bounds for
mismatched capacity, utilizing random coding analysis. This showcases
the versatility of the method across diverse problem domains.



3
The Laplace Method of Integration and the

Saddle-Point Method

3.1 Introduction

The Laplace method of integration (see, e.g., [23, Chapter 4], [120,
Section 4.2]) is a powerful technique for approximating definite integrals
of the form: ∫ b

a
g(x)enf(x) dx, (3.1)

where the parameter n is large (n ≫ 1), and the functions f and g

exhibit sufficient regularity WRT the real variable x. Importantly, these
functions are assumed to remain independent of n. More generally, x

may designate a d-dimensional vector, where d is independent of the
large parameter n, whereas the integration occurs over Rd or a subset
thereof.

The significance of this method is twofold. Firstly, it offers intrinsic
utility by itself, providing accurate asymptotic approximations for inte-
grals. However, its greater importance lies in its role as the foundation
for the saddle-point method, an extension that applies the principles of
the Laplace method to the integration of complex functions along con-
tours within the complex plane. The saddle-point method finds broad
applications across diverse disciplines, including physics, probability,

43
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statistics, and engineering. Notably, this section emphasizes that the
method holds promise in information theory as well. In many instances,
the saddle-point method can serve as a viable alternative to the extended
method of types discussed in Section 2. This advantage becomes particu-
larly apparent when it comes to circumventing the need for ϵ-inflation of
type classes, a strategy employed in Section 2. The Laplace method and
the saddle-point method offer a distinct advantage by not only yielding
the accurate exponential rate, as demonstrated in Section 2, but also by
providing the correct pre-exponential term. Remarkably, this method
furnishes approximations that exhibit asymptotic precision. Specifically,
as the large parameter n grows without bound, the ratio between the
approximation and the actual value converges to unity, signifying an
increasingly faithful representation of the underlying quantity.

It is important to note that the content presented in this section
exhibits some overlap with the material found in [120, Sections 4.2
and 4.3] and in [23, Chapters 4 and 5]. As a result, several intricate
technical aspects related to the Laplace method and the saddle-point
method are either succinctly addressed or occasionally omitted (though
appropriately cross-referenced to [23], [120]). These intricate techni-
calities are associated with the assessment of the approximation error
terms pertaining to these methods and regularity conditions. Instead,
the focus here lies on considering these methods in the context of their
capacity to stand as valid alternatives to the generalized method of
types, as described in Section 2. This pertains to both its discrete and
continuous alphabet variations. For readers seeking a more compre-
hensive treatment with meticulous attention to detail and rigor, we
recommend delving into the pertinent chapters of [23] and [120].

3.2 The Laplace Method of Integration

Commencing with the Laplace method, we turn our attention to an
illustrative example tied to the domain of universal source coding (as
expounded in references such as [46] and [36, Section 13.2]). This example
serves as a compelling application that underscores the significance of
the Laplace method within information theory.
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Example 3.1 (Universal coding). Consider a family of binary memoryless
(Bernoulli) sources defined over the alphabet {0, 1}, parameterized
by θ ∈ [0, 1], which represents the probability of emitting a ′1′. The
probability mass function of this source is given by:

Pθ(x) = (1 − θ)n−n1θn1 , (3.2)

where x ∈ {0, 1}n, and n1 ≤ n is the count of occurrences of ′1′ in x.
When dealing with an unknown θ, a universal code is devised using the
Shannon code,1 designed for the weighted mixture of these sources [46]:

P (x) =
∫ 1

0
dθ · w(θ)Pθ(x) =

∫ 1

0
dθ · w(θ)enf(θ), (3.3)

where w(·) is a positive function that integrates to unity across the
interval [0, 1], and

f(θ) = ln(1 − θ) + p ln
(

θ

1 − θ

)
, (3.4)

with p ≜ n1
n . This necessitates the computation of an integral involving

an exponential function of n (in this case, across the interval [0, 1]) to
evaluate the performance of this universal code. An asymptotically exact
evaluation of such an integral is crucial in the quest of characterizing,
not only the main term of the achievable compression ratio, but also
the redundancy terms (see Example 3.2 below).

Consider first an integral of the form:

Fn ≜
∫ +∞

−∞
enf(x) dx, (3.5)

where the function f(·) is independent of n. It will be assumed that the
function f satisfies the following assumptions:

1. f is real and continuous.

2. f has a unique global maximum at x = x0: f(x) < f(x0) ∀x ≠ x0,
and ∃b > 0, c > 0 such that |x − x0| ≥ c implies f(x) ≤ f(x0) − b.

1The Shannon code for lossless source coding for a distribution P (x) is a variable
length code whose length function is given by ⌈− log2 P (x)⌉ bits [36, Section 5.9].
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3. The integral defining Fn converges for all large enough n. Without
essential loss of generality, let this sufficiently large n be n = 1,
i.e.,

∫+∞
−∞ ef(x) dx < ∞.

4. The derivative f ′(x) exists at a certain open neighborhood of
x = x0, and f ′′(x0) < 0. Thus, f ′(x0) = 0.

These assumptions pave the way to approximate f(x), at the vicinity
of x = x0, by a second-order Taylor series expansion,

f(x) ≈ f(x0) + f ′′(x0)
2 (x − x0)2 = f(x0) − |f ′′(x0)|

2 (x − x0)2, (3.6)

which renders Fn as being dominated by the constant enf(x0), multiplied
by a Gaussian integral, namely, the integral of exp{−n

2 |f ′′(x0)|(x−x0)2},
whereas the combined contribution of all the range away from x0 is
negligibly small for large n. Accordingly, as shown in [23, Chapter 4]
and [120, Section 4.2], we arrive at the Laplace method approximation,
given by ∫ +∞

−∞
enf(x) dx ∼ enf(x0) ·

√
2π

n|f ′′(x0)| , (3.7)

where the pre-exponential factor
√

2π
n|f ′′(x0)| is found by integrating a

Gaussian PDF of variance 1/[n|f ′′(x0)|] to 1, i.e.,√
n|f ′′(x0)|

2π

∫ +∞

−∞
exp

[
−n|f ′′(x0)|

2 (x − x0)2
]

dx = 1. (3.8)

This approximation continues to apply if Fn is defined as an integral
over any finite or half-infinite interval that contains the maximizer
x = x0 as an internal point. On the other hand, if the maximizer x0
falls at one of the endpoints of the integration range, and f ′(x0) does
not vanish, the Gaussian integral approximation ceases to apply, and
the local behavior around the maximum would be approximated by an
exponential exp{−n|f ′(x0)|(x − x0)} instead, which gives a different
pre-exponential factor, yet the exponential factor enf(x0) would continue
to be present. Specifically, consider, for example, the integral

Fn =
∫ ∞

x0
enf(x) dx (3.9)
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where the maximum of f(x) across the range [x0, ∞) is attained at
x = x0, and where f ′(x0) < 0. Then, Fn is approximated by a first-order
Taylor series expansion, according to

Fn ∼
∫ ∞

x0
exp

{
n
[
f(x0) + f ′(x0)(x − x0)

]}
dx (3.10)

=
∫ ∞

x0
exp

{
n
[
f(x0) −

∣∣f ′(x0)
∣∣ (x − x0)

]}
dx (3.11)

= enf(x0)

n|f ′(x0)| . (3.12)

Returning to the case when x0 is an internal point of the integration
range and both g(x0) > 0 and f ′(x0) = 0, a further extension is the
following: ∫ +∞

−∞
g(x)enf(x) dx ∼ g(x0)enf(x0) ·

√
2π

n|f ′′(x0)| , (3.13)

where g is a function that does not depend on n.
The Laplace method also has an extension to the case where the

integration variable x represents a d-dimensional vector, where d is a
positive integer that does not grow with n. The integration now takes
place over Rd or a subset thereof, with x0 positioned as an internal point
within the integration region. In this case, the Gaussian approximation
becomes multi-dimensional too, and so we must replace |f ′′(x0)| in
both (3.7) and (3.13) with the absolute value of the determinant of
the Hessian matrix ∇2f(x0) of f evaluated at x = x0. Additionally,
the factor n that multiplies |f ′′(x0)| should be substituted with nd.
This adjustment arises from a corresponding approximation involving a
multi-dimensional Gaussian integral. Overall, the approximation takes
the form∫

Rd
g(x)enf(x) dx ∼

( 2π

n|∇2f(x0)|

)d/2
g(x0)enf(x0), (3.14)

where |∇2f(x0)| is the determinant of the Hessian of f at x = x0. If
the global maximum of f is achieved by more than one point, and the
number of maximizers is finite or countable, then the contributions from
all of these maximizers should be aggregated or summed together. See
[120, Section 4.6] for additional details.
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3.3 Examples of the Laplace Method

We next demonstrate the use of Laplace method in a few examples.

Example 3.2 (Universal coding revisited). Applying the Laplace integral
approximation to Example 3.1, we have

P (x) =
∫ 1

0
w(θ) exp

{
n

[
ln(1 − θ) + p ln

(
θ

1 − θ

)]}
dθ (3.15)

∼ w(p)e−nH(p)

√
2πp(1 − p)

n
, (3.16)

where we recall that p = n1
n and H(p) ≜ −p ln p − (1 − p) ln(1 − p) is

thus the empirical entropy of x. So, the compression ratio corresponding
to the Shannon code WRT the mixture is

− ln P (x)
n

= H(p) + ln n

2n
−

ln
[
w(p)

√
2πp(1 − p)

]
n

+ o

( 1
n

)
. (3.17)

The principal component of the normalized redundancy can be ex-
pressed as ln n

2n , a well-established result (for more details, refer to [108]).
Similarly, when considering a mixture encompassing all sources with an
alphabet size of r, this entails integration over r − 1 letter probabilities,
resulting in a dominant redundancy term of (r−1) ln n

2n .

Example 3.3 (Extreme Value Statistics). Consider a set of non-negative,
IID RVs {Xi}n

i=1, each characterized by the PDF p(x). Our goal is to
evaluate the expectation of the minimum value among these variables,
E{min1≤i≤n Xi}. Let us explore the following sequence of equalities to
facilitate this assessment. Denoting the cumulative distribution function
of each Xi by F (x), we have

E
{

min
1≤i≤n

Xi

}
(a)=
∫ ∞

0
Pr
{

min
1≤i≤n

Xi ≥ x

}
dx (3.18)

=
∫ ∞

0
Pr
[

n⋂
i=1

{Xi ≥ x}
]

dx (3.19)

(b)=
∫ ∞

0
[1 − F (x)]n dx (3.20)

=
∫ ∞

0
exp{n ln[1 − F (x)]} dx, (3.21)



3.3. Examples of the Laplace Method 49

where (a) follows from the integral identity E{X} =
∫∞

0 Pr{X ≥ t} dt,
which holds for any non-negative RV,2 and (b) due to the IID assumption.
Hence, we may use the Laplace method with f(x) = ln[1−F (x)]. Let us
first assume that p(0) > 0. Then, the maximum of f(x) is obtained at
the edge-point of the integration domain, x0 = 0 and f ′(0) = −p(0) < 0.
Therefore, the approximation is not by a Gaussian integral, but a simple
exponential, ∫ ∞

0
exp{−n|f ′(0)|x} dx = 1

n|f ′(0)| , (3.22)

which yields
E
{

min
1≤i≤n

Xi

}
∼ 1

np(0) . (3.23)

However, if p(0) = 0 while p′(0) > 0, the Laplace approximation is
executed through a Gaussian integral over half of the real line. In such
a scenario, the outcome is as follows:

E
{

min
1≤i≤n

Xi

}
∼ 1

2

√
2π

np′(0) . (3.24)

The last example in this section supports the Stirling approximation.
Example 3.4 (The Stirling formula). Beginning from the identity∫ ∞

0
dx · e−sx (3.25)

and differentiating both sides n times WRT s, the left-hand side becomes
(−1)n

∫∞
0 xne−sx dx, and the right-hand side (RHS) gives (−1)nn!/sn+1,

which together yield the identity

n! = sn+1
∫ ∞

0
xne−sx dx, (3.26)

holding true for every s > 0. On substituting s = n, we get

n! = nn+1
∫ ∞

0
xne−nx dx = nn+1

∫ ∞

0
en(ln x−x) dx. (3.27)

Assessing this integral using the Laplace method, we have f(x) = ln x−x,
which is maximized at x0 = 1, with f(x0) = f ′′(x0) = −1. Thus,

n! ∼ nn+1e−n·1
√

2π

n · 1 =
(

n

e

)n √
2πn, (3.28)

which is the well-known Stirling formula for approximating n!.
2We will delve into this and other integral identities in Section 5.
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3.4 The Saddle-Point Method

We now broaden our focus to encompass integrals along paths within
the complex plane, a concept that arises more frequently than one
might anticipate. As previously mentioned, the extension of the Laplace
integration technique to complex functions is referred to as the saddle-
point method or the steepest descent method, with explanations for these
names becoming apparent in the forthcoming presentation. Specifically,
our current interest lies in evaluating an integral represented as follows:

Fn =
∫

P
g(z)enf(z) dz. (3.29)

In this context, the variable z takes on complex values and P designates
a certain path within the complex plane, originating from a point A and
concluding at a point B. Our initial focus will be on the case g(z) ≡ 1,
and we make the assumption that P exclusively lies within a region
where the function f is analytic (see, e.g., [159]).

At first glance, the reader might question the relevance of complex
integrals when dealing with quantities that are inherently real — such
as probabilities, expectations, volumes of high-dimensional objects, and
more. The answer lies in the fact that even if these quantities are real,
there are instances where expressing a certain term in a calculation as
an inverse Fourier transform or an inverse Laplace transform, or inverse
Z-transform, becomes useful and beneficial. These inverse transforms
are represented through complex integrals. To illustrate, consider the
following straightforward example: Computing the volume of an n-
dimensional hyper-sphere with radius R. This task can be approached
by interpreting the volume as the integral of U(R2 −

∑n
i=1 x2

i ) over
R

n, where U(t) signifies the Heaviside unit step function. Next, we
express U(t) as the inverse Laplace transform of 1/s, subsequently we
interchange the integration order, and finally, we apply the saddle-point
method to evaluate the complex integration. As we proceed, we will
delve into the detailed execution of this concept.

The first observation of significance is that the integral’s value
depends solely upon the endpoints, A and B, regardless of the of
the particular path P. To illustrate, let us consider an alternative
path denoted as P ′, connecting points A and B, while ensuring that
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the function f remains free of singularities within the enclosed region
formed by P ∪ P ′. Under these conditions, the integral of enf(z) across
the closed path encompassing both P and P ′ — traversing from A

to B via P and then returning from B to A through P ′ — vanishes,
indicating that the integrals along P and P ′ between A and B hold
identical values. In essence, this imparts us with the liberty to select
our preferred integration path, so long as we exercise caution to avoid
traversing too closely to the opposing side of any potential singularity
point. This consideration gains significance as we proceed with our
upcoming analyses.

Another fundamental key property of analytic complex functions
is the maximum-modulus theorem. This theorem essentially states that
the magnitude of an analytic function lacks any maxima. Although a
comprehensive proof of this theorem is beyond our scope, its essence
can be captured as follows: Consider an analytic function expressed as:

f(z) = u(z) + jv(z) = u(x, y) + jv(x, y), (3.30)

where u and v are real-valued functions. When f is analytic, the Cauchy–
Riemann conditions [86, Section 4.3] must hold for the partial derivatives
of u and v:

∂u

∂x
= ∂v

∂y
; ∂u

∂y
= −∂v

∂x
. (3.31)

Taking the second-order partial derivative of u, we arrive at:

∂2u

∂x2 = ∂2v

∂x∂y
= ∂2v

∂y∂x
= −∂2u

∂y2 , (3.32)

where the first and third equalities stem from the Cauchy–Riemann
conditions. Alternatively, we can write:

∂2u

∂x2 + ∂2u

∂y2 = 0, (3.33)

which is recognized as the Laplace equation. Consequently, any point
where ∂u

∂x = ∂u
∂y = 0 cannot be a local maximum or minimum of u. If it

were a local maximum along the x-direction, then ∂2u
∂x2 < 0, implying

that ∂2u
∂y2 must be positive, making it a local minimum along the y-

direction, and vice versa. Put simply, points where partial derivatives
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of u are zero are, in fact, saddle points. This line of reasoning applies
to the modulus of the integrand enf(z) due to:∣∣∣∣ exp{nf(z)}

∣∣∣∣ = exp [nRe{f(z)}] = enu(z). (3.34)

Furthermore, if f ′(z) = 0 at some z = z0, then u′(z0) = 0 as well,
establishing that z0 is a saddle point of |enf(z)|. Thus, points where f

exhibits zero derivatives are saddle points.
Armed with this foundational understanding, let us return to our

integral Fn in (3.29). Given the flexibility to select the path P , suppose
we can identify a trajectory that crosses a saddle point z0 (hence the
name of the method), and where the maximum value of |enf(z)| along
P is achieved at z = z0. In this scenario, much like in the Laplace
method, we anticipate that the integral’s dominant contribution would
stem from enf(z0). Naturally, this path would be suitable only if it
intersects the saddle point z0 along a direction WRT which z0 represents
a local maximum of |enf(z)| or equivalently, of u(z). Moreover, for the
application of our prior Laplace method findings, we aim to configure
P so that any point z in proximity to z0, where the Taylor expansion
reads (due to the fact that f ′(z0) = 0):

f(z) = f(z0) + 1
2f ′′(z0)(z − z0)2 + o

(
|z − z0|2

)
, (3.35)

where the second term, 1
2f ′′(z0)(z −z0)2, is exclusively real and negative,

and where the exact form of the error term o(|z−z0|2) can be determined
from f . More precisely, it can be shown by the mean value theorem
that for every ϵ > 0 there exists δ > 0 such that |z − z0| ≤ δ implies∣∣∣∣f(z) − f(z0) − f ′′(z0)

2 · (z − z0)2
∣∣∣∣ ≤ ϵ|z − z0|2, (3.36)

and the correspondence between δ and ϵ depends on the particular
smoothness properties of the function f . Consequently, it assumes a
local behavior akin to a negative parabola, mirroring the behavior
observed in the Laplace method. This implication manifests itself in
the phase of 1

2f ′′(z0)(z − z0)2, given by:

arg
{
f ′′(z0)

}
+ 2arg(z − z0) = π, (3.37)
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or equivalently:

arg(z − z0) = π − arg{f ′′(z0)}
2 ≜ θ. (3.38)

In essence, P should traverse z0 along the direction θ. This orientation
is called the axis of z0 and can be demonstrated to be the direction
of steepest descent from the summit at z0 — hence the name steepest-
descent method. Notably, it is worth mentioning that in the θ − π/2
direction, which stands perpendicular to the axis, arg[f ′′(z0)(z −z0)2] =
π − π = 0. Consequently, f ′′(z0)(z − z0)2 emerges as real and positive
in this direction, akin to a positive parabolic pattern. This indicates
that along this direction, z0 constitutes a local minimum.

Visually speaking, our strategy involves the selection of a path P
connecting A to B, constructed as three distinct segments (as depicted
in Figure 3.1): A → A′ and B′ → B form the arbitrary initial and final
sections of the integral path. The middle part, connecting A′ to B′ and
localized near z0, consists of a straight line aligned with the axis of z0.

A

A
′

B
′

B

z0
axis

Figure 3.1: A path P from A to B, passing via z0 along the axis.

Accordingly, let us decompose Fn into its three parts:

Fn =
∫ A′

A
enf(z) dz +

∫ B′

A′
enf(z) dz +

∫ B

B′
enf(z) dz. (3.39)

As for the first and the third terms,∣∣∣∣∣
∫ A′

A
enf(z) dz +

∫ B

B′
enf(z) dz

∣∣∣∣∣
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≤
∫ A′

A
|enf(z)| dz +

∫ B

B′
|enf(z)| dz (3.40)

=
∫ A′

A
enRe{f(z)} dz +

∫ B

B′
enRe{f(z)} dz, (3.41)

whose contribution is negligible compared to enf(z0), exactly like the
tails in the Laplace method. As for the middle integral,∫ B′

A′
enf(z) dz ∼ enf(z0)

∫ B′

A′
exp

{
nf ′′(z0)(z − z0)2

2

}
dz. (3.42)

By transitioning from the complex integration variable z to the real
variable x, ranging from −δ to +δ, with z = z0 +xejθ (following the axis
direction), we end up with exactly the Gaussian integral encountered
in the Laplace method, resulting in:∫ B′

A′
exp{nf ′′(z0)(z − z0)2/2} dz = ejθ

√
2π

n|f ′′(z0)| (3.43)

where the factor ejθ is due to the change of variable (dz = ejθdx). Thus,

Fn ∼ ejθ · enf(z0)
√

2π

n|f ′′(z0)| , (3.44)

and somewhat more generally,∫
P

g(z)enf(z) dz ∼ ejθg(z0)enf(z0)
√

2π

n|f ′′(z0)| . (3.45)

3.5 Examples of the Saddle-Point Method

We next demonstrate the use of the saddle-point method in a few
examples.

Example 3.5 (The size of a type class of binary sequences). To count the
number of binary sequences of length n with exactly k 1’s and (n − k)
0’s, we use the notation mk. Let us examine the complex function

M(z) = (1 + z−1)n =
n∑

k=0
mkz−k. (3.46)
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The second equality expresses the fact that M(z) can be viewed as
the Z-transform of the sequence {mk}n

k=0, and so, mk is given by the
inverse Z-transform of M(z):

mk = 1
2πj

∮
P

(1 + z−1)nzk−1dz (3.47)

= 1
2πj

∮
P

1
z

exp
{

n
[
ln(1 + z−1) + q ln z

]}
dz, (3.48)

where q = k/n and
∮

P denotes integration along an arbitrary counter-
clockwise closed path P that surrounds the origin. Here, g(z) = 1/z

and

f(z) = ln(1 + z−1) + q ln z = ln(1 + z) − (1 − q) ln z, (3.49)

whose saddle point is z0 = 1−q
q . If we choose P to be the circle |z| =

1−q
q , it intersects the point z0, situated on the real line, in a vertical

manner. Remarkably, this alignment corresponds to the axis of z0. A
straightforward calculation yields

f ′′(z0) = q3

1 − q
(3.50)

which gives

mk ∼ ejπ/2

z0
· enf(z0) · 1

2πj
·
√

2π

n|f ′(z0)| (3.51)

= ejπ/2

(1 − q)/q
· enH(q) · 1

2πj
·
√

2π(1 − q)
nq3 (3.52)

= enH(q)√
2πnq(1 − q)

, (3.53)

where, as before, H(q) ≜ −q ln q − (1 − q) ln(1 − q) is the binary entropy
function.

Our next example addresses continuous alphabets.

Example 3.6 (Surface area of a hyper-sphere). This example is closely
connected to the concept of simple Gaussian-type classes, as discussed
in Section 2. While there exists an exact closed-form expression for the
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surface area of an n-dimensional Euclidean hyper-sphere [see (2.44)],
we explore this example to illustrate the asymptotic accuracy of the
saddle-point method. Our starting point is the representation of the
surface area of an n-dimensional Euclidean hyper-sphere with radius r

as follows:
Sn(r) = 2r

∫
Rn

δ

(
r2 −

n∑
i=1

x2
i

)
dx, (3.54)

where δ(·) designates the Dirac delta function. To see why this true,
observe that Sn(r) integrates to

Vn(R) =
∫ R

0
Sn(r) dr (3.55)

=
∫ R

0
2r

∫
Rn

δ

(
r2 −

n∑
i=1

x2
i

)
dxdr (3.56)

=
∫
Rn

[∫ R

0
2rδ

(
r2 −

n∑
i=1

x2
i

)
dr

]
dx (3.57)

=
∫
Rn

[∫ R2

0
δ

(
r2 −

n∑
i=1

x2
i

)
d(r2)

]
dx (3.58)

=
∫
Rn

U

(
R2 −

n∑
i=1

x2
i

)
dx (3.59)

= Vol
{

x :
n∑

i=1
x2

i ≤ R2
}

, (3.60)

where U(·) is the unit step function. Thus, the integral of Sn(r) across
the interval [0, R] yields the volume of a hyper-sphere of radius R, and
so, Sn(r) is the surface area of a hyper-sphere of radius r. We next
represent the Dirac delta function as the inverse Fourier transform of
the unit function, i.e.,

δ(t) = 1
2π

∫ ∞

−∞
ejωt dω, (3.61)

and so, referring to Section 2, the surface area of sphere of radius
√

ns

is given as follows. Let ϑ > 0 be some positive real, to be chosen shortly.
Then,
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Sn(
√

ns)

= 2
√

ns

∫
Rn

dx · δ

(
ns −

n∑
i=1

x2
i

)
(3.62)

(a)= 2
√

nsenϑs
∫
Rn

dx · exp
{

−ϑ
n∑

i=1
x2

i

}
· δ

(
ns −

n∑
i=1

x2
i

)
(3.63)

= 2
√

nsenϑs
∫
Rn

dx · exp
{

−ϑ
n∑

i=1
x2

i

}
×

∫ +∞

−∞

dω

2π
· exp

{
jω

(
ns −

n∑
i=1

x2
i

)}
(3.64)

=
√

nsenϑs
∫ +∞

−∞

dω

π
· ejωns

∫
Rn

dx · exp
{

−(ϑ + jω)
n∑

i=1
x2

i

}
(3.65)

=
√

nsenϑs
∫ +∞

−∞

dω

π
· ejωns

[∫
R

dx · e−(ϑ+jω)x2
]n

(3.66)

(b)=
√

nsenϑs
∫ +∞

−∞

dω

π
· ejωns

(
π

ϑ + jω

)n/2
(3.67)

=
√

nsπn/2−1
∫ +∞

−∞
dω · exp

{
n

[
(ϑ + jω)s − 1

2 ln(ϑ + jω)
]}

(3.68)

=
√

ns · πn/2−1 · 1
j

·
∫ ϑ+j∞

ϑ−j∞
dz · exp

{
n

[
zs − 1

2 ln z

]}
, (3.69)

where in (a) we have multiplied the expression by enϑs outside the
integral and by e−ϑ

∑
i

x2 inside the integral, but e−ϑ
∑

i
x2 = e−nϑs

wherever the delta function of the integrand does not vanish, and so,
these two multiplications cancel each other. This step is crucial for the
subsequent steps. In (b) we have applied complex Gaussian integration.
In this case, we have

f(z) = zs − 1
2 ln z, (3.70)

and the integration is along an arbitrary vertical straight line Re{z} = ϑ.
We select this straight line to cross the saddle-point, that is, ϑ = z0 = 1

2s ,
where

f(z0) = 1
2 ln(2es) (3.71)

and
f ′′(z0) = 2s2. (3.72)
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Once again, the axis is vertical, and so,

Sn(
√

ns) ∼
√

ns · πn/2−1 · 1
j

· ejπ/2 · exp
{

n

2 ln(2es)
}

·
√

2π

2s2n
(3.73)

= (2πes)n/2
√

πs
, (3.74)

which agrees with (2.44) from Section 2. Note that the representation of
δ
(
ns −

∑n
i=1 x2

i

)
as an inverse Fourier transform converted the integrand

into an exponential function of (ns −
∑n

i=1 x2
i ), which is a product form

and hence can be represented as a product of identical integrals, which
is actually one-dimensional integral raised to the power of n.

In the above derivation, when we shifted the vertical integration
path from the imaginary axis, {z : Re{z} = 0}, to the parallel vertical
line {z : Re{z} = ϑ}, we have actually replaced the inverse Fourier
transform by the inverse Laplace transform. By the same token, we can
handle the volume of the n-dimensional hyper-sphere as

Vn(ns) =
∫
Rn

U

(
ns −

n∑
i=1

x2
i

)
dx (3.75)

with the representation of the unit step function as the inverse Laplace
transform of 1/z, which amounts to substituting

U

(
ns −

n∑
i=1

x2
i

)
= 1

2πj

∫
Re{z}=ϑ

dz

z
· exp

{
z

(
ns −

n∑
i=1

x2
i

)}
, (3.76)

and interchanging the order of the integration. The saddle-point approx-
imation of this expression is very similar to the above, and is simply
obtained by multiplying (3.74) by 1/z0 = 2s. We next demonstrate how
this is done in the context of assessing a probability of a large-deviations
event.

Example 3.7 (Large deviations). This example delves into a topic that
was extensively studied by Bahadur and Rao [13]. Here, we offer a partial
exposition to illustrate the application of the saddle-point method.
Consider a set of IID RVs X1, X2, . . . , Xn, all of which are independent
copies of a real RV X with a PDF p(x). Additionally, let A be a
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constant greater than the expected value of X. We aim to evaluate
the probability of a large-deviations event, namely, {

∑n
i=1 Xi ≥ nA},

utilizing the saddle-point method. Introducing θ as an arbitrary positive
real number, we have from (3.76):

Pr
{

n∑
i=1

Xi ≥ nA

}

=
∫
Rn

U

(
n∑

i=1
xi − nA

)
n∏

i=1
p(xi) dx (3.77)

=
∫
Rn

1
2πj

∫
Re{z}=θ

dz

z
· exp

{
z

(
n∑

i=1
xi − nA

)}
·

n∏
i=1

p(xi) dx (3.78)

= 1
2πj

∫
Re{z}=θ

e−znA

z
· dz

∫
Rn

n∏
i=1

[p(xi)ezxi ] dx (3.79)

= 1
2πj

∫
Re{z}=θ

e−znA

z
· dz

[∫
R

p(x)ezx dx

]n

(3.80)

= 1
2πj

∫
Re{z}=θ

dz

z
· exp

{
n

[
ln
(∫
R

p(x)ezx dx

)
− zA

]}
, (3.81)

and we can apply3 the saddle-point method with g(z) = 1/z and

f(z) = ln
(∫
R

p(x)ezx dx

)
− zA. (3.82)

Consider the function f confined to the reals, namely, f(s), where
s ∈ R. Since f(s) is a convex function, it can be shown that its
derivative vanishes uniquely at some finite real s = s⋆ > 0, provided
that A < xmax ≜ sup{x : p(x)>0} x. Then, z = s⋆ is a saddle-point of f .

At this point, we have to distinguish between two cases — non-lattice
and lattice RVs.

Non-lattice RVs: Let us first assume that p is such that z = s⋆

is the only saddle-point of f in the entire complex plane (shortly, we
3There is a non-trivial issue concerning the non-analyticity of the logarithmic

function, whose argument,
∫
R

p(x)ezx dx, may surround the origin infinitely many
times while z exhausts the vertical line Re{z} = θ, because the origin is a singular
point of the logarithmic function. This requires to pass among different branches
of the logarithmic function along the journey from θ − j∞ to θ + j∞. This issue is
discussed in detail in [143].
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also address situations where this is not the case). In this case, a simple
application of the saddle-point method suggests to select θ = s⋆, where
the axis is vertical, and so,

Pr
{

n∑
i=1

Xi ≥ nA

}

∼ 1
s⋆

· ejπ/2

2πj
· exp

{
n

[
ln
(∫
R

p(x)es⋆x dx

)
− s⋆A

]}
·
√

2π

nV (s⋆)
(3.83)

= exp {n [ln (
∫
R

p(x)es⋆x dx) − s⋆A]}
s⋆

√
2πnV (s⋆)

, (3.84)

where V (s) = f ′′(s) = Vars{X}, with the latter being defined as the
variance of X WRT the PDF that is proportional to p(x)esx, i.e., the
tilted PDF. It is worth highlighting the intriguing similarity between
the exponential term

exp
{

n

[
ln
(∫
R

p(x)es⋆x dx

)
− s⋆A

]}
, (3.85)

and Chernoff’s bound, as s⋆ minimizes f(s) over the real numbers. At
the same time, z = s⋆ is determined as the saddle-point that domi-
nates the integration along the vertical line defined by Re{z} = s⋆.
This observation aligns with the modulus theorem: Given that z = s⋆

minimizes |enf(z)| = enf(s) horizontally along the real line, it maximizes
|enf(z)| along the vertical direction of the integration path. While the
exponential behavior of the saddle-point approximation mirrors that of
Chernoff’s bound, known for its exponential tightness [49], it is notewor-
thy that the former provides a more refined characterization, including
the correct pre-exponential factor, which is given by 1/[s⋆

√
2πnV (s⋆)].

In Appendix A we provide an alternative justification of the tightness
of Chernoff’s bound, which is based on the method of types and the
minimax theorem (though, without the correct pre-exponential factor).

Lattice RVs: As previously mentioned, in the earlier derivation, we
made the assumption that z = s⋆ represents the sole saddle-point of the
function f across the entire complex plane. However, this assumption
does not hold universally. Let us consider a scenario in which X is a
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lattice RV, implying that X can only assume values that are integer
multiples of a constant ∆ > 0, that is,

p(x) =
∞∑

i=−∞
αiδ(x − i∆), (3.86)

where δ(·) is the Dirac delta function and {αi} are non-negative reals
which sum up to unity. Consider the vertical line of integration, z =
s⋆ + jω, −∞ < ω < ∞. In this scenario, it becomes evident that if s⋆ is
a saddle-point of enf(z), then so are the points s⋆ + jΩk, where k ranges
over all integers (k = 0, ±1, ±2, ...), and Ω is defined as Ω = 2π/∆. This
is due to the periodic nature of |enf(z)|, which is equivalent to enRe{f(z)},
along the vertical direction with a period of Ω. Indeed,

Re {f(s⋆ + jkΩ)}

= Re
{

ln
[∫
R

p(x)e(s⋆+jkΩ)x dx

]
− (s⋆ + jkΩ)A

}
(3.87)

= Re

ln

 ∞∑
i=−∞

αie
(s⋆+jkΩ)i∆

− s⋆A (3.88)

= Re

ln

 ∞∑
i=−∞

αie
s⋆i∆ejkiΩ∆

− s⋆A (3.89)

= Re

ln

 ∞∑
i=−∞

αie
s⋆i∆ej2πik

− s⋆A (3.90)

= Re

ln

 ∞∑
i=−∞

αie
s⋆i∆

− s⋆A (3.91)

= Re{f(s⋆)}. (3.92)
In such a situation, during the integration along the line Re{z} = s⋆,
the contributions from all saddle-points, s⋆ + jkΩ for k = 0, ±1, ±2, . . .,
carry equal significance, collectively dominating the exponential rate of
the integral. This has a notable impact on the pre-exponential factor,
which now needs to be adjusted to reflect this collective contribution.
Therefore, the modified pre-exponential factor is given by:

1√
2πnV (s⋆)

·
∞∑

k=−∞

e−jkΩAn

s⋆ + jkΩ
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=
√

2π

nV (s⋆) · 1
2π

∫ ∞

−∞
e−jωnA · 1

s⋆ + jω
·

 ∞∑
k=−∞

δ(ω − kΩ)

dω

(3.93)

(∗)=
√

2π

nV (s⋆) ·

[e−s⋆tU(t)
]

⋆

 1
Ω

∞∑
k=−∞

δ

(
t − 2πk

Ω

)
∣∣∣∣∣
t=−nA

(3.94)

= 1
Ω

√
2π

nV (s⋆)

∞∑
k=−∞

e−s⋆(−nA−2πk/Ω)U

(
−nA − 2πk

Ω

)
(3.95)

= 1
Ω

√
2π

nV (s⋆) · exp
{

−s⋆

[
(−nA) mod

(2π

Ω

)]}
·

∞∑
k=0

e−s⋆·2πk/Ω

(3.96)

=
√

2π

nV (s⋆) ·
exp

{
−s⋆

[
(−nA) mod

(
2π
Ω

)]}
Ω(1 − e−2πs⋆/Ω)

(3.97)

=
√

2π

nV (s⋆) · ∆ exp{−s⋆[(−nA) mod ∆]}
2π(1 − e−s⋆∆) (3.98)

=
√

1
2πnV (s⋆) · ∆ exp{−s⋆[(−nA) mod ∆]}

1 − e−s⋆∆ , (3.99)

where in (∗) we have used the fact that the inverse Fourier transform of
the product of two frequency-domain functions is equal to the convolu-
tion between the individual inverse Fourier transforms. The oscillatory
factor in the numerator, exp{−s⋆[(−nA) mod ∆]}, illustrates the gran-
ularity inherent in the probability quanta related to the lattice-like
nature of the involved RVs (also discussed in [143]). It is worth noting
that the non-lattice scenario can be considered as a specific case of the
lattice scenario, where ∆ → 0.

Our final example pertains to the enumeration of codewords within a
hyper-cubical lattice subject to an L1 power constraint. The motivation
here is to evaluate the coding rate of a hyper-cubical lattice code (defined
below). In a nutshell, when the hyper-cubes are exceptionally small,
this count approximates the ratio between the volume of the L1 hyper-
sphere defining the power constraint and the volume of the hyper-cube.
However, the saddle-point method provides a more precise estimation.
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Example 3.8 (Number of codewords of a power-limited lattice code). Let
us examine a hyper-cubical lattice code, where the codewords take the
form of (k1∆, k2∆, . . . , kn∆), with ∆ > 0 given, {ki} being integers,
and adhering to the L1 power constraint ∆∑n

i=1 |ki| ≤ nQ. What is the
number M of lattice codewords that can be found? We can establish
the following sequence of equalities:

M =
∞∑

k1=−∞
. . .

∞∑
kn=−∞

U

[
nQ − ∆

n∑
i=1

|ki|
]

(3.100)

=
∞∑

k1=−∞
. . .

∞∑
kn=−∞

1
2πj

∫
Re{z}=θ

dz

z
exp

{
z

[
nQ − ∆

n∑
i=1

|ki|
]}

(3.101)

= 1
2πj

∫
Re{z}=θ

dz
enQz

z

∞∑
k1=−∞

. . .
∞∑

kn=−∞
exp

{
−∆z

n∑
i=1

|ki|
}
(3.102)

= 1
2πj

∫
Re{z}=θ

dz
enQz

z

 ∞∑
k=−∞

exp{−∆z|k|}

n

(3.103)

= 1
2πj

∫
Re{z}=θ

dz
enQz

z

[
e∆z + 1
e∆z − 1

]n

(3.104)

= 1
2πj

∫
Re{z}=θ

dz

z
exp

{
n

[
Qz − ln tanh

(∆z

2

)]}
. (3.105)

Thus, the saddle-point method can be applied with g(z) = 1/z and

f(z) = Qz − ln tanh
(∆z

2

)
(3.106)

= Qz − ln sinh
(∆z

2

)
+ ln cosh

(∆z

2

)
. (3.107)

The derivative of f vanishes at

z = s⋆ = 1
∆ ln

∆
Q

+
√

∆2

Q2 + 1

 , (3.108)

but similarly as in Example 3.7, here too, Re{f(z)} is periodic in the
vertical direction with period Ω = 2π/∆, and so, there are infinitely
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many saddle-points {s⋆ + jkΩ, k = 0, ±1, ±2, . . .}, and M is exponen-
tially enf(s⋆) with the same pre-exponential factor as in the lattice case
of Example 3.7, except that (−nA) mod ∆ is replaced by (nQ) mod ∆
and V (s⋆) is replaced by |f ′′(s⋆)|. Therefore, the coding rate (in nats
per channel use) is of the form,

R = ln M

n
= f(s⋆) − ln n

2n
+ o

( ln n

n

)
, (3.109)

with

f(s⋆) = Q

∆ ln

∆
Q

+
√

∆2

Q2 + 1

+ ln

∆
Q

+
√

∆2

Q2 + 1 + 1


− ln

∆
Q

+
√

∆2

Q2 + 1 − 1

 . (3.110)

It is easy to verify that when ∆/Q ≪ 1, the exponential factor, enf(s⋆) is
approximately (2eQ)n

∆n , which is exponentially the ratio between volume
of the L1-hyper-sphere of ‘radius’ nQ and the volume of the hyper-cube,
∆n. We skip the details of calculating f ′′(s⋆) for the pre-exponent.

In conclusion, we note that a similar calculation for the more tradi-
tional L2 power constraint involves dealing with the infinite summation∑

k e−z∆2k2 (instead of∑k e−∆z|k| as in our previous analysis). Although
this expression lacks an apparent closed-form representation, the same
fundamental behavior persists: The rate remains primarily determined
by the log-volume ratio, subtracting ln n

2n , with some negligible terms.

3.6 Discussion — Extension to the Multivariate Case

In Example 3.6, we witnessed the powerful capability of the saddle-
point method in assessing type class measures without the need for the
ϵ-inflation technique employed in Section 2. When confronted with the
task of integrating over x a function of the form f(∑n

i=1 x2
i ), we can

conveniently rewrite this as an equivalent integral over f(r)Sn(r) WRT
r. This transformation effectively replaces the n-dimensional integration
with a one-dimensional integration, which, in certain cases, can be
well-approximated using either the Laplace method or the saddle-point
method.
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In Section 2, we explored more intricate type classes defined as
intersections between hyper-sphere surfaces and hyper-planes, such as∑n

i=1 xi = nc. Evaluating the Lebesgue measure of such objects involves
integrating a product of delta functions, specifically δ(ns−

∑
i x2

i )·δ(nc−∑
i xi). To compute this measure, we represent each delta function as

an inverse Laplace transform separately, each with its own complex
integration variable, i.e.,∫

Rn

δ

(
ns −

n∑
i=1

x2
i

)
· δ

(
nc −

n∑
i=1

xi

)
dx

= 1
(2πj)2

∫
Rn

∫ θ+j∞

θ−j∞

∫ ν+j∞

ν−j∞
dz1dz2 · ez1(ns−

∑n

i=1
x2

i )+z2(nc−
∑n

i=1
xi) dx

(3.111)

= 1
(2πj)2

∫ θ+j∞

θ−j∞

∫ ν+j∞

ν−j∞
dz1dz2 ·

∫
Rn

ez1(ns−
∑n

i=1
x2

i )+z2(nc−
∑n

i=1
xi) dx

(3.112)

= 1
(2πj)2

∫ θ+j∞

θ−j∞

∫ ν+j∞

ν−j∞
dz1dz2 · en(zs+z′c)

[∫
R

e−(z1x2+z2x)dx

]n

(3.113)

= 1
(2πj)2

∫ θ+j∞

θ−j∞

∫ ν+j∞

ν−j∞
dz1dz2 · en(z1s+z2c)

[
exp

{
z2

2
4z2

1

}√
π

z1

]n

(3.114)

= πn/2

(2πj)2

∫ θ+j∞

θ−j∞

∫ ν+j∞

ν−j∞
dz1dz2 · exp

{
n

[
z1s + z2c + z2

2
4z2

1
− ln z1

2

]}
,

(3.115)

where θ and ν are arbitrary positive reals. In cases like this, an exten-
sion of the saddle-point method to the multivariate setting is required.
As outlined in [158], the extension of the saddle-point method to in-
tegration over more than one complex variable is analogous to the
previously mentioned extension of the Laplace integration method to
the d-dimensional case. Namely, it is based on an approximation by an
integral of a d-dimensional Gaussian integral with an inverse covariance
matrix given by the Hessian of f at the saddle-point z0. Conceptually,
it can also be thought of as a succession of d univariate integration
operations of one coordinate at a time. In [158, Theorem 2.1], an explicit
theorem is provided to this end, where the result is the same as in (3.14),
except that x0 should be replaced by z0 (under proper conditions).
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Building on these insights, if we encounter the need to integrate a
function of the form f(∑n

i=1 x2
i ,
∑n

i=1 xi), we can transform it into a
two-dimensional integration of f multiplied by the Lebesgue measure of
the corresponding type class, following a similar procedure to what was
just described. These considerations are applicable to types defined by
any fixed number of constraints, including those related to conditional
types (e.g., constraints involving ∑n

i=1 xiyi) and constraints associated
with Gauss–Markov types (such as constraints specifying values of∑n

i=1 xixi−ℓ for ℓ = 1, 2, . . . , k). Notably, the saddle-point method allows
for the combination of constraints, even those involving ∑n

i=1 xiyi and∑n
i=1 xixi−ℓ. This capability resolved an outstanding challenge posed in

[116] and was successfully addressed in [90], particularly in the context of
the Gaussian intersymbol interference channel, thanks to the versatility
of the saddle-point method.

Extending this generality further, instead of linear and quadratic
constraints, situations may arise with constraints involving combinations
of empirical means of arbitrary functions, denoted as ∑n

i=1 ϕj(xi) for
j = 1, 2, . . . , k. The associated saddle-point integration in these cases will
involve exponential functions of linear combinations of these statistics. It
is important to note that the coefficients of these linear combinations can
be complex in general. In essence, this entails working with exponential
families characterized by complex parameters.

3.7 Further Applications

The saddle-point method has found extensive applications in various
disciplines, including probability theory, mathematical statistics, and
physics, with notable usage in statistical physics. While less common in
the information theory community, there have been exceptions in the
last two decades.

In Example 3.1, we demonstrated how the Laplace integration
method can be effectively employed to approximate Bayesian mixtures
of memoryless sources, particularly relevant to universal source coding
[46], [108]. Schwartz also utilized this approximation to derive a model
order estimator from a Bayesian perspective within a sequence of nested
parametric families [181].
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Several researchers have applied the Laplace and saddle-point meth-
ods to obtain more refined bounds on the error probability of channel
coding and decoding, including characterizations of the pre-exponential
factor, in addition to the exponential one. Notable contributors to this
area include Atluğ and Wagner [6], Font-Segura, Vázquez-Vilar, Mar-
tinez, and Guillén i Fàbregas [67], Honda [87], Martinez and Guillén
i Fàbregas [114], [113], and Scarlett, Martinez and Guillén i Fàbregas
[174]. These methods have also been applied to derive sharper bounds
on the probability of error in binary hypothesis testing [211].

Furthermore, the saddle-point and Laplace methods have been ap-
plied to finite blocklength analysis and higher-order asymptotics of
achievable coding rates. Researchers like Anade, Gorce, Mary, and
Perlaza [7], Erseghe [62], Moulin [153], Polyanskiy [166], Tan and
Tomamichel [199], Yavas, Kostina, and Wigger [228], and Lancho, Öst-
man, Durisi, Koch and Vázquez-Vilar [109] have contributed to this
area.

In the work by Huleihel, Salamatian, Merhav, and Médard [90], the
saddle-point approximation was applied to assess the log-volume of a
conditional Gaussian type class related to the Gaussian intersymbol in-
terference channel, with implications for mismatched universal decoding.
This addressed an open problem from [116].

In [143], the saddle-point approximation was used to refine the
evaluation of the probability that a randomly selected codeword would
fall within a sphere of a specified radius from a given source vector,
based on a given distortion measure. The precise pre-exponential factor
allowed for the characterization of redundancy rates. In [122], the
method was applied to lossless data compression in the context of the
set partitioning problem.

Lastly, in [151, Section 4.7], Mézard and Montanari establish a
valuable link between the saddle-point method, Sanov’s theorem, and
the method of types, providing further insights into the connections
between these powerful techniques.



4
The Type Class Enumeration Method

4.1 Introduction

In Section 2, we considered probabilistic properties of a single random
vector, or a finite collection of vectors, and developed a generalized
version of the method of types [38], [41]. In this section, we ascend
one hierarchical level and consider analysis of coding problems, and
specifically the problem of evaluating the error exponent in coded
systems. Such problems involve an exponential number of random
vectors, and so, the method we propose in this section will require
additional analytical tools.

Starting from Shannon [182], the common method of proving achiev-
ability results in information theory is via random-coding analysis, in
which the error probability is averaged over an ensemble of randomly
selected codebooks. While the random-coding argument was originally
invoked to find the capacity C of noisy channels [36], it was broadly
adapted to other settings as well. In this section, we will focus on error
exponent analysis [60], [65, Chapters 7-9], [71, Chapter 5], [40], [42],
which is a refined performance measure of coded systems. The error
exponent refers to the largest exponential decay rate of the error prob-
ability of a sequence of codes at increasing blocklength n, for a given

68
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rate R below the capacity C. Since the error probability of the optimal
codebook can be upper bounded by the average of the error probability
over an ensemble of random codebooks, the error exponent can be lower
bounded by the random-coding error exponent — the exponential decay
rate of the ensemble-average error probability.

Moreover, the random-coding error exponent is interesting as a
paradigm on its own right, since it is by now well-established that
random codes, or random-like codes (e.g., turbo codes [17] and low-
density parity-check (LDPC) codes [69]; see [171]) are highly efficient
[31]. In fact, in some applications, the codebook is routinely redrawn at
random, for example, in order to preserve the security of the transmitted
information. So, when a communication system uses such a random
code, it is the random-coding error probability (or exponent) that is a
relevant measure to the long-term performance of the system, rather
than just serving as a lower bound to the best achievable exponent.

The analysis of the random-coding error exponent has lead to the
proposal and usage of a large number of analytical bounding methods.
We next outline several of them, in order to contrast them later on with
our type of techniques.

First, the error probability of the optimal ML decoder can be upper
bounded by the error probability of simpler, sub-optimal decoder. For
example, the error probability of the typicality decoder [36, Chapter 7]
decays to zero at all rates below capacity, just as the ML decoder. So,
analyzing the typicality decoder can be used to prove lower bounds on
the capacity. However, this decoder has poor performance in terms of
the error exponent.

Second, as popularized by Gallager [70], Jelinek [99] and Forney
[68], the use of convexity properties and Jensen-style inequalities. These
include, for example, the inequality E[Zρ] ≤ (E[Z])ρ for a non-negative
RV and 0 ≤ ρ ≤ 1, or the power distribution inequality(∑

j

aj

)ρ
≤
∑

j

aρ
j (4.1)

(see [212, Appendix 3A] for a comprehensive list of such inequalities).
Third, the use of Chernoff-style bounds, in which an indicator of an

error event, based on likelihoods, is replaced by their ratio. For example,
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a pairwise error event of an ML decoder over the channel W from x to
y is upper bounded as

1 {W (y|xj) ≥ W (y|xi)} ≤
[

W (y|xj)
W (y|xi)

]λ

(4.2)

for any λ ≥ 0.
Fourth, refined union bounds, in which the simple union bound over

events {Aj} is replaced by a quantity lower than the sum of probabilities
of each event. These bounds include, a truncated union bound

Pr

⋃
j

Aj

 ≤ min

1,
∑

j

Pr[Aj ]

 , (4.3)

a union bound with a power parameter 0 ≤ ρ ≤ 1 (also known as
Gallager’s union bound [71, p. 136])

Pr

⋃
j

Aj

 ≤

∑
j

Pr[Aj ]

ρ

, (4.4)

or a union bound with intersection of an event G

Pr

⋃
j

Aj

 ≤
∑

j

Pr [Aj ∩ G] + Pr [Gc] , (4.5)

where Gc is the complement of G. As an illustrative example, such a
union bound can be used to bound the probability of an error event in
channel coding, since this event is a union of the events that one of the
alternative codewords is decoded. The above bounding methods then
lead to tractable, computable, bounds on the random-coding exponent,
and other quantities of interest.

Nonetheless, in typical channel coding problems, codebooks with a
positive coding rate R have an exponential number of codewords enR,
and so, the analysis of the error probability involves evaluation of the
probability of a union of an exponential number of events. In some cases,
it can be shown that a bound obtained via these methods is actually
tight. For example, in the simple case of a point-to-point DMC, Gallager
has shown that its random-coding error exponent, obtained using (4.4),
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is tight, by lower bounding the error probability [72]. However, there
is no general claim that these bounding methods lead to the exact
random-coding error exponent, that is, that the final result is the true
exponential decay rate of the expected error probability over the random
ensemble of codebooks. In fact, in various scenarios they are strictly
loose.

In this section, we introduce the type class enumeration method
(TCEM) for the analysis of random codes, which is an original viable
alternative or complement to the aforementioned techniques. It is a
principled method, whose main virtue is that it preserves exponential
tightness along all steps of the derivation of the exponent. It is therefore
guaranteed to obtain the exact exponent. The TCEM achieves that
by refraining from using the various bounding techniques mentioned
above, and thus avoids the need to optimize over various parameters
(which cannot always be done in a closed-form), and leads to explicit
expressions. More often than not, it does so in a “single-pass”, i.e.,
without separately lower and upper bounding the random-coding error
exponent. Consequently, ensemble-tight random-coding exponents can
be obtained in a multitude of coding problems. Moreover, as mentioned,
and as we shall survey, in coding problems that go beyond basic ones,
the error exponents obtained by the TCEM are oftentimes strictly larger
than those achieved using the above bounding techniques.

For this section, we recall the usual notation convention for an equal-
ity or an inequality in the exponential scale: For two positive sequences
{an} and {bn}, the notation an

.= bn means that limn→∞
1
n ln an

bn
= 0,

and an ≤̇ bn means that limn→∞
1
n ln an

bn
≤ 0. Accordingly, an

.= 1 means
that an is sub-exponential, and an

.= e−n∞ means that an decays at a
super-exponential rate (e.g., double-exponentially).

The main idea of the TCEM is that each codeword can be categorized
according to a joint type (empirical distribution) with an additional
length-n vector, and that and the union bound is exponentially tight
for a union of the polynomial number of events. Indeed, for kn events
{Ei}kn

i=1

max
1≤m≤kn

Pr [Em] ≤ Pr

 kn⋃
m=1

Em

 ≤ kn · max
1≤m≤kn

Pr [Em] , (4.6)
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and so if kn
.= 1 then

Pr

 kn⋃
m=1

Em

 .= max
1≤m≤kn

Pr [Em] . (4.7)

Therefore, the analysis of a coding problem can be based on a type
class enumerator (TCE), which counts the number of randomly selected
codewords in a suitably defined type class. For illustration, one may
recall that for binary symmetric channels (BSCs), the distance spectrum
of a codebook, namely, the number of pairs of codewords at each of the
n+1 possible Hamming distances, plays an important role in determining
its error probability (e.g., [112, Chapter 2]). Indeed, a specific form
of TCEs for BSCs was used by [14] to analyze various random-coding
exponents. The TCEM can be thought of as a considerable generalization
of this fundamental idea.

In the TCEM, the codebook is drawn at random, and consequently,
the TCEs are RVs. The random-coding error exponent thus depends on
their probabilistic and statistical properties, such as moments or tail
bounds. Each TCE is typically a binomial RV N ∼ Binomial(enA, e−nB)
(or a close variant of such variables), defined by enA independent trials
for belonging to a type class, each with success probability e−nB. It
exhibits an interesting phase transition at A = B: If the number of
trials dominates the success rate, A > B, then the TCE is tightly
concentrated around its exponentially large expected value en(A−B)

(double-exponential concentration). We refer to these as typically pop-
ulated types (as coined in [197]). Otherwise, if B > A, then the TCE
is typically zero, and the probability that it is strictly positive is ex-
ponentially less than e−n(B−A). We refer to these as typically empty
types. The transition between these regimes is sharp, and is rooted in a
statistical-mechanical perspective on random coding. This perspective is
based on an analogy to Derrida’s random energy model (REM) [50]–[52],
[151, Chapters 5 and 6], which is a spin glass model with high degree of
disorder, and which is well known in the literature of statistical physics
of magnetic materials. The phase transition in the REM is analogous
to the one exhibited for the TCEs, and we refer the reader to [119] and
[120, Chapter 6] for a thorough exposition.
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The TCEM hence involves the following steps: (1) Expressing the
error probability (or other quantity of interest) using suitably defined
TCEs. (2) Evaluating the necessary probabilistic and statistical proper-
ties of the TCEs (moments or tail probabilities). (3) Plugging in these
properties in the expression for the error probability, and evaluating
the resulting expression. (4) Developing an efficient procedure to com-
pute the exponent. This last step is equally important, since in some
cases, the resulting expression for the exponent may appear involved or
challenging to compute. We show in Appendix B how efficient methods
can be developed.

For the sake of simplicity of the exposition, we focus in this section
on DMCs, for which the standard method of types [38], [41] is applicable.
However, given the generalized method of types described in Section
2, these ideas can be extended to other channels, including Gaussian
channels (which have continuous alphabets) and channels with memory,
without requiring a substantial modification, e.g., [138], [196].

The outline of this section is as follows. For methodological reasons,
our first step will invoke the TCEM for problems in which error expo-
nents are already well-established, namely, error exponents for DMCs
(random-coding [40], [42], expurgated [70, Section V], [98]) and the
correct decoding exponent for rates above capacity [10], [57]. This will
exemplify the technique of the TCEM in a familiar setting, and serve
as a basis for the rest of the section. We will then derive the basic
statistical and probabilistic properties of TCEs, to wit, tail probabilities
and moments. Later, we will demonstrate the TCEM in more advanced
settings, namely: (1) The error exponent of superposition coding in
a broadcast asymmetric DMC for the optimal bin-index decoder. (2)
The random-binning error exponent of distributed compression [189].
(3) The random-coding error exponents of generalized decoders, such
as Forney’s erasure/list decoder [68] and a generalized version of the
likelihood decoder [227]. (4) The error exponent of the typical random
code [14].

In the last subsection, we will survey the wide applicability of the
TCEM, and its ability to provide exact random-coding exponents in a
multitude of information-theoretic problems: The problem could be a
channel coding or a source coding problem; the problem could involve
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a single user and point-to-point channels, or multiple users operating
in a distributed manner over a network [59]; the code could have a
fixed length, be a convolutional/trellis code [100], [209], [212], or have
variable encoding length (with feedback) [26]; the decoder could be the
optimal ML decoder, the universal MMI decoder [77], a mismatched
decoder [179], an erasure/list decoder [68] that is allowed to output an
erasure or more than a single codeword, a list decoder that outputs a
list of possible codewords [61], [223], a bin-index decoder, which is the
optimal ML decoder in which the codeword is only known to belong to
a bin; a likelihood decoder which randomly decodes a message based
on a posterior probability distribution [227]; a joint detector-decoder
that is required to make a decision in addition to decoding the message
[213]; and more. Moreover, beyond the random-coding error exponent,
other exponents can also be derived using the TCEM, e.g., the error
exponent of the typical random code [14] and large-deviations from this
typical code [197], [205].

4.2 Basic Coding Problems

To obtain a quick glance on the underlying ideas, we first consider the
basic problems of the random-coding and expurgated exponents for a
DMC, and then the correct decoding exponent (for rates above capacity).
Along the way, we will introduce several useful techniques, such as the
summation–maximization equivalence, tail integration, and, later on,
exponential tightness of the union bound for pairwise independent
events. For the sake of convenience, we begin with a short background
of classic error exponents for DMCs.

4.2.1 A Short Background: Error Exponents of DMCs

Consider a DMC W with input alphabet X and output alphabet Y , and
a codebook Cn = {xm} whose codewords xm ∈ X n have blocklength
n, and it has rate R, that is |Cn| = enR.1 One of the most important
problems of error exponent analysis [41, Chapter 10], [71, Chapter 5],

1Throughout, we will ignore integer constraints on large quantities such as enR

(which should be ⌈enR⌉), since these do not affect any of the analyses or the results.
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is to find the maximum achievable error exponent achieved at any rate
R, also known as the reliability function, E∗(R). This establishes the
existence of a sequence of codes {C∗

n} of rate R, whose error probability
decays with the maximal exponent2

E∗(R) = sup
{Cn}

lim sup
n→∞

− 1
n

ln Pe(C∗
n), (4.8)

where Pe(Cn) is the error probability of the codebook Cn (for a given,
implicit, decoding rule). As expected, pointing out a particular sequence
of codes achieving the reliability function is a formidable problem.
The random-coding argument shows that E∗(R) is lower bounded by
the exponent achieved by random codes. Specifically, we consider a
random ensemble in which each codeword Xm ∈ X n is chosen randomly,
independent of all other codewords, and in identical way: In the IID
ensemble, each symbol of the codeword is drawn independently from
some distribution PX , and in the fixed-composition ensemble, each
codeword is chosen uniformly at random from a type class Tn(PX).
While both ensembles can be analyzed using the TCEM, we will focus
on the latter since it is more common when invoking the method of
types, and since it typically leads to larger random-coding exponents.
The average error probability for a random codebook Cn chosen from
the ensemble will be denoted by P e ≜ E[Pe(Cn)]. For a given ensemble,
the random-coding error exponent at rate R is then given by

Erc(R) ≜ lim
n→∞

− 1
n

lnE [Pe(Cn)] , (4.9)

whenever the limit exists, for which it holds that E∗(R) ≥ Erc(R).
The random-coding error exponent was studied by two different

schools. First, an approach lead by Gallager [71, Chapter 5], which is
based on analytical techniques such as refined union bounds, and later,
by Csiszár, Körner and Marton [40]–[42], who developed and used the
method of types [38] to this problem. Since the TCEM is based on the
method of types, we will next describe the latter [41, Chapter 10]. For a
DMC W , and a fixed-composition input PX , this random-coding error

2It is unclear if the following limit exists [41, Exercise 10.7], and so we take the
conservative definition of limit-superior.
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exponent takes the form Erc(R) = maxPX
Erc(R, PX), where, with a

slight abuse of notation,

Erc(R, PX) ≜

min
QY |X

{
D(QY |X ||W |PX) +

[
I(PX × QY |X) − R

]
+

}
. (4.10)

It was also shown that this exponent can be achieved using the MMI
decoder, and does not require the optimal ML decoder. In parallel, it
was proved that the sphere packing bound [19], [65], [82], [183] Esp(R) ≜
maxPX

Esp(R, PX), where

Esp(R, PX) ≜ min
QY |X : I(PX×QY |X)≤R

D(QY |X ||W |PX), (4.11)

is an upper bound on the reliability function E∗(R) ≤ Esp(R). Remark-
ably, there exists a critical rate Rcr such that for any R ≥ Rcr it holds
that

E∗(R) = Erc(R) = Esp(R), (4.12)

and so at high rates, the reliability function is exactly known, and
random-coding is optimal. At low rates, R < Rcr, however, the ensemble-
average error probability may be highly affected by codes with large error
probability. This has lead to the idea of expurgating the ensemble from
these codes, and to the development of the expurgated exponent.3 The
expurgated exponent Eex(R) is a lower bound on the reliability function
E∗(R) ≥ Eex(R), and improves on the random-coding error exponent
at low rates. Let the Bhattacharyya distance between x, x̃ ∈ X n be
defined as

dB(x, x̃) ≜ − ln
∑

y∈Yn

√
W (y|x) · W (y|x̃). (4.13)

Since it only depends on the joint type, QXX̃ = Q̂x,x̃, we also denote,
with a slight abuse of notation, dB(QXX̃) as the Bhattacharyya between
some (x, x̃) ∈ Tn(QXX̃). The expurgated exponent [38], [40]–[42] is
given by Eex(R) = maxPX

Eex(R, PX) where

3The development of the expurgated error exponent also involves expurgating
bad codewords from codebooks.
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Eex(R, PX) ≜
min

QXX̃ : QX=QX̃=PX , I(QXX̃)≤R

[
dB(QXX̃) + I(QXX̃)

]
− R. (4.14)

Also remarkably, Shannon, Gallager and Berlekamp [184] showed that
the expurgated exponent is tight at zero rate E∗(0) = Eex(0), and also
used this result to derive an improved upper bound at intermediate
rates, known as the straight line bound.

4.2.2 Random Coding Error Exponent of a DMC via Type Class
Enumeration

We next show how to derive the random-coding error exponent Erc(R)
via the TCEM. As usual, we fix the transmitted codeword X1 = x and
the output vector y, and then write the probability that one of the
enR − 1 (random) competing codewords in Cn\{X1} is decoded instead
of X1. This amounts to

P e =
∑

x∈X n

∑
y∈Yn

Pr [X1 = x] W (y|x)×

Pr

 enR⋃
m=2

{Xm has higher score than X1 = x}

 . (4.15)

The next reasonable step is to further bound the inner probability by a
union bound, and as said, while a naive union bound fails, the clipped
union bound (4.3) or Gallager’s union bound (4.4) both lead to the
exact random-coding error exponent in this basic setting. However, the
TCEM proceeds differently.

Let us denote by QXY a generic joint type of (x, y), where QX = PX

matches the type of the fixed-composition ensemble, and where for
brevity, henceforth, we will often make this implicit. We further consider
the class of α-decoders, which decide using a score function α(QXY )
that depends only on the joint type of the output vector y and the
candidate codeword. Specifically, if Q̂x,y is the joint type of (x, y) then
the decoded codeword is X(ĵ) where

ĵ(y) = arg max
1≤j≤enR

α(Q̂xj ,y), (4.16)
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where ties are arbitrarily broken. Let the expected log-likelihood of a
joint type QXY be

f(QXY ) ≜ EQ [ln W (Y |X)] . (4.17)

It can be easily noted that the MMI decoder, α(QXY ) = I(QXY ), and
the ML decoder, α(QXY ) = f(QXY ), are both α-decoders. We now
introduce a suitable TCE.

Definition 4.1 (TCE for random-coding exponent). For a codebook
Cn = {xm}, an output vector y, and a joint type QXY such that
Q̂y = QY , let

Ny(QXY , Cn) ≜ |{m > 1: (xm, y) ∈ Tn(QXY )}| . (4.18)

The TCE Ny(QXY , Cn) counts the number of incorrect codewords in
Cn whose joint type with y is QXY . By the method of types (the fourth
property in Section (2.2.1)), when Xm ∼ Uniform[Tn(QX)] then

Pr [(Xm, y) ∈ Tn(QXY )] = kn · e−nI(QXY ) (4.19)

for some kn
.= 1. So, for a random codebook Cn = {Xm},

Ny(QXY ,Cn) =
enR∑
m=2

1 {(Xm, y) ∈ Tn(QXY )}

∼ Binomial
(
enR − 1, kn · e−nI(QXY )

)
. (4.20)

More generally, since any Xm has a unique joint type with y, then
viewed as a collection of TCEs, it holds that

{Ny(QXY )}QXY
∼ Multinomial

(
enR, {p(QXY )}QXY

)
(4.21)

where p(QXY ) .= e−nI(QXY ).

Since the probability distribution of Ny(QXY ,Cn) only depends on
y through its type, for brevity, we will omit both Cn and y from the
notation of TCEs (with a slight abuse of notation). We then have

P e =
∑

QXY

Pr [(X1, y) ∈ Tn(QXY )] ×
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Pr

 ⋃
Q̃XY : QY =Q̃Y , α(Q̃XY )≥α(QXY )

1

{
N(Q̃XY ) ≥ 1

} . (4.22)

The substantial difference between this bound and (4.15), is that its inner
probability is a union over a polynomial number of types, rather than
an exponential number of codewords. For such a union of polynomial
number of events, even the regular union bound is exponentially tight,
as shown in (4.6), and therefore

P e
.= max

QXY

max
Q̃XY

Pr [(X1, y) ∈ Tn(QXY )] · Pr
[
N(Q̃XY ) ≥ 1

]
(4.23)

(∗).= max
QXY

max
Q̃XY

exp [−n · D(QXY ||PX × W )] · Pr
[
N(Q̃XY ) ≥ 1

]
,

(4.24)

where the inner maximization is over the set{
Q̃XY : QY = Q̃Y , α(Q̃XY ) ≥ α(QXY )

}
, (4.25)

and in (∗) we have used the method of types [(2.12) in Section 2.2.1].
In the next section, we will derive various properties of TCEs, and
specifically, tight tail bounds on Pr[N(Q̃XY ) ≥ 1]. After inserting the
tail bound of Theorem 4.1 back to (4.24) we obtain

P e
.= exp [−n · Erc,α(R)] , (4.26)

where

Erc,α(R, PX) ≜

min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) +
[
I(PX × Q̃Y |X) − R

]
+

, (4.27)

for which the minimization is over the set{
QY |X , Q̃Y |X : (PX × QY |X)Y = (PX × Q̃Y |X)Y ,

α(PX × Q̃Y |X) ≥ α(PX × QY |X)
}

. (4.28)
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This recovers a similar bound from [40] obtained in a different way. For
example, if α(QXY ) is the MMI rule, the input the minimization is
over {I(PX × Q̃Y |X) ≥ I(PX × QY |X)}. We recover the random-coding
error exponent (4.10). If α(QXY ) = f(QXY ) ≜ EQ[ln W (Y |X)] is the
ML rule, then we achieve the same exponent. Indeed, since the ML is
the optimal decoder in terms of error probability, its error probability
can only be lower. On the other hand, Q̃XY = QXY belongs to the
set of inner minimization, and so the exponent cannot be larger (see
[40, Proof of Lemma 4] for a direct proof, which does not utilize the
optimality of the ML rule).

At this point, we pause for a brief comment on a delicate technical
issue. The minimization in (4.27) should, in principle, be taken over the
set of possible types for sequences of length n, and then the limit n → ∞
should be taken. As a general rule, in almost all other derivations based
on the TCEM, we obtain an expression of the form

max
Q∈Qn

exp [−ng(Q) + nϵn] , (4.29)

where Qn is a set that is typically the intersection of some feasible set
Q and the set of possible types of length n, g(Q) is some function, and
ϵn = o(n) does not depend on Q. Then, the exponent E(Q) is obtained
by evaluating

E(Q) = lim
n→∞

− 1
n

ln max
Q∈Qn

e−ng(Q)+nϵn = lim
n→∞

min
Q∈Qn

g(Q). (4.30)

However, typically, under mild assumptions on the probabilistic model
of the problem, it holds that g(Q) is uniformly continuous in Q, and so
the limit results in a minimization over the feasible set Q, that is,

E(Q) = min
Q∈Q

g(Q) (4.31)

That being said, there are cases that uniform convergence is not simple
to establish, see [215], [217], [218] for two such cases. Moreover, in
[215], in which the TCEM was used to derive random-coding error
exponents for a distributed hypothesis testing problem, such an issue
was an obstacle for proving that the obtained exponent is indeed exact.

For general decoding scores, the random-coding error exponent
Erc,α(R, PX) is lower than the standard random-coding error exponent,
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and on the face of it, is difficult to compute. Indeed, the clipping opera-
tion is the result of the phase transition of the TCE at R = I(Q̃XY ).
This leads to an exponent expression whose feasible set may be parti-
tioned into two subsets, one with the additional constraint I(Q̃XY ) ≤ R,
and the other one with the additional constraint I(Q̃XY ) > R. Then, the
objective function of (4.27) may be separately minimized over each of
these subsets, and the value of Erc,α(R, PX) is given by the minimum of
the two minimal values. In this method, the first optimization problem
is typically simpler. Indeed, if we re-parameterize Q̃XY = PX · Q̃Y |X for
a fixed input distribution PX , then I(PX · Q̃Y |X) is a convex function
of Q̃Y |X , and the sub-level set {I(Q̃XY ) ≤ R} is a convex set. When
the constraint set {α(PX × Q̃Y |X) ≥ α(PX × QY |X)} is also convex
(which occurs when α(QXY ) is linear in QXY , as for the ML decoder),
the resulting optimization problem has a convex feasible set. Since
the objective function of (4.27) is jointly convex in (QY |X , Q̃Y |X), this
results in a convex optimization problem, which can be efficiently solved
[21]. However, the second optimization problem is problematic since its
constraint set {I(Q̃XY ) > R} is a super-level set that is not a convex set.
Nonetheless, in Appendix B we show a method to efficiently compute
the exponent, which only requires solving convex optimization problems
(assuming α(Q) is linear). As we have seen, the phase transition (I > R

or I < R) holds generally for TCEs, and so this issue occurs for almost
any exponent derived by this method, which may take much more
complicated form. Nonetheless, methods similar to the one described
in Appendix B can usually be developed to efficiently compute the
exponent, even for such complicated scenarios, see e.g., [215, Section
VI], [64, Section V], and [216, Appendix A].

4.2.3 Expurgated Exponent of a DMC via Type Class Enumeration

We next move on to shortly discuss the expurgated exponent. Assuming
that the ML decoder is used, the pairwise error probability for two
codewords x and x̃ is upper bounded by the Bhattacharyya bound (e.g.,
[41, Problem 10.20]) as

Pe(x, x̃) ≜ Pr [W (Y |x̃) ≥ W (Y |x)] ≤ exp [−n · dB(x, x̃)] . (4.32)
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Thus, for a given code Cn,

Pe(Cn)
(a)
≤ 1

enR

enR∑
m=1

enR∑
m̃=1

1{m̃ ̸= m} · Pe(xm, xm̃) (4.33)

(b)
≤ 1

enR

enR∑
m=1

enR∑
m̃=1

1{m̃ ̸= m} · exp [−n · dB(xm, xm̃)] , (4.34)

where (a) follows from the regular union bound and (b) follows from
(4.32). We next introduce a suitable TCE for the expurgated exponent.

Definition 4.2 (TCE for expurgated exponent). For a joint type QXX̃ ,
a codebook Cn = {xm}, and a codeword index m = 1, . . . , enR, let

Nm(QXX̃ ,Cn) ≜
∣∣{m̃ : m̃ ̸= m, (xm, xm̃) ∈ Tn(QXX̃)

}∣∣ , (4.35)

count the number of codewords in the codebook Cn which have a joint
type QXX̃ with xm. By the method of types [(2.12), Section (2.2.1)],
when Xm̃ ∼ Uniform[Tn(QX)] then

Pr
[
(Xm̃, xm) ∈ Tn(QXX̃)

]
= kn · e−nI(QXX̃) (4.36)

for some kn
.= 1. So, for a random codebook Cn = {Xm} it holds that

Nm(QXX̃ ,Cn) ≜
enR∑
m̃=1

1{m̃ ̸= m} · 1
{
(Xm̃, Xm) ∈ Tn(QXX̃)

}
∼ Binomial

(
enR − 1, kn · e−nI(QXX̃)

)
. (4.37)

It should be noted that {Nm(QXX̃ ,Cn)}enR

m=1 is a collection of an expo-
nential number of dependent RVs.

As for the TCE for random-coding, we will omit Cn from the notation
of TCEs (with a slight abuse of notation). Evidently, the upper bound
in (4.34) can be expressed using the TCEs as

Pe(C) ≤ 1
enR

enR∑
m=1

∑
QXX̃

Nm(QXX̃) · exp
[
−n · dB(QXX̃)

]
. (4.38)

In Appendix C, we show how the bound (4.38) and the properties of
{Nm(QXX̃)}enR

m=1 derived in the next section can be used to derive the
classic expurgated exponent (4.14).
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4.2.4 The Correct Decoding Exponent of a DMC

One of the first demonstrations of the usefulness of the TCEM was for
the correct decoding exponent of a DMC at rates above capacity [119].
Following Arimoto [10], the correct decoding error probability of the
ML decoder begins with the identity

Pc(Cn) = 1
enR

∑
y∈Yn

max
m

W (y|Xm) (4.39)

= lim
β→∞

1
enR

∑
y∈Yn

[∑
m

W β(y|Xm)
]1/β

. (4.40)

Let us consider the TCE

Ny(QXY ) ≜ |{m ≥ 1: (xm, y) ∈ Tn(QXY )}| , (4.41)

which is only slightly different from the random-coding TCE of Definition
4.1, and so, we abuse the notation and denote them similarly. Assuming
an ensemble of random codebooks, we next evaluate the ensemble-
average of the correct decoding probability. Recalling that f(QXY ) ≜
EQ[ln W (Y |X)], we fix a finite β and y, and write the ensemble average
using TCEs as

E


[∑

m

W β(y|Xm)
]1/β


= E


∑

QXY

N(QXY ) · enβf(QXY )

1/β
 (4.42)

(∗).= E
{[

max
QXY

N(QXY ) · enβf(QXY )
]1/β

}
(4.43)

= E
{[

max
QXY

N1/β(QXY ) · enf(QXY )
]}

(4.44)

(∗).= E

∑
QXY

N1/β(QXY ) · enf(QXY )

 (4.45)

=
∑

QXY

E
[
N1/β(QXY )

]
· enf(QXY ), (4.46)
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where (∗) both follow from the fact that the number of types is poly-
nomial in n to interchange a summation with a maximum in both
directions. We refer to this as the summation–maximization equivalence,
which is frequently used to manipulate probabilities to a form that
allows for a direct substitution of TCE moments. As can be seen, (4.46)
requires evaluating the fractional 1/β moment of the TCE N(QXY ).
Next, since |Tn(QY )| .= enH(QY ), we obtain

P c ≜ E [Pc(Cn)] (4.47)

(a)= E

 lim
β→∞

1
enR

∑
y∈Yn

[∑
m

W β(y|Xm)
]1/β

 (4.48)

(b)= lim
β→∞

E

 1
enR

∑
y∈Yn

[∑
m

W β(y|Xm)
]1/β

 (4.49)

(c).= lim
β→∞

∑
QXY

E
[
N1/β(QXY )

]
· en[f(QXY )+H(QY )−R], (4.50)

where (a) follows from Arimoto’s identity (4.40); (b) is an interchange
of the order of order of the limit and the expectation operator. It is
justified by first noting that [∑m W β(y|Xm)]1/β is the Lβ-norm of the
vector (W β(y|X1), W β(y|X2), . . . , W β(y|XenR)), and

1
enR

∑
y∈Yn

[∑
m

W β(y|Xm)
]1/β

(4.51)

is a monotonic non-negative and non-increasing function of β, and thus
has a finite limit when β → ∞ for any {Xm}. Also, this function is
bounded by its value at β = 1, which is integrable

E

 1
enR

∑
y∈Yn

∑
m

W (y|Xm)

 = |Y|n < ∞. (4.52)

Then, the order interchange is justified by the dominated convergence
theorem. Finally, (c) follows from (4.46).4

4Strictly speaking, if the number of joint types is kn, which is polynomial in n,
then the polynomial factor hidden by the notation of exponential equality in (4.46)
is between 1

kn
and k

1/β
n , which belongs to ( 1

kn
, kn), an interval that is independent

of β.
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In the next section, we will evaluate the moments E[N1/β(QXY )]
(concretely, using Theorem 4.2 and the standard method of types).
Using this result, we obtain5

P c
.= exp [−n · Ec(R, PX)] (4.53)

where
Ec(R, PX) ≜ min {E−(R, PX), E+(R, PX)} , (4.54)

with

E−(R, PX) ≜ min
QXY : I(QXY )>R

[I(QXY ) − f(QXY ) − H(QY )] , (4.55)

as well as

E+(R, PX)

≜ lim
β→∞

min
QXY : I(QXY )≤R

[ 1
β

I(QXY ) − 1
β

R + R − f(QXY ) − H(QY )
]

(4.56)
= min

QXY : I(QXY )≤R
[R − f(QXY ) − H(QY )] . (4.57)

Therefore,

Ec(R, PX) = min
QXY

[max{R, I(QXY )} − f(QXY ) − H(QY )] (4.58)

= min
QXY

{
D(QXY ||PX × W ) + [R − I(QXY )]+

}
, (4.59)

where the second equality uses the identity

D(QXY ||PX × W ) − I(QXY ) + H(QY )

=
∑

x∈X ,y∈Y
QXY (x, y) ln QXY (x, y)

PX(x)W (y|x)

−
∑

x∈X ,y∈Y
QXY (x, y) ln QXY (x, y)

PX(x)Q(y)

5Again, the rigorous argument requires exchange of limits between β and
n. Specifically, after substituting the moments E[N1/β(QXY )] we get that
Ec(R, PX) = limn→∞ limβ→∞ Γ(n, β) for some function Γ(n, β). It can be shown
that limn→∞ Γ(n, β) converges uniformly in β (we omit the details), and so the
Moore-Osgood theorem [201, Section 3.1] assures that the order of limits may be
interchanged.
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+
∑

x∈X ,y∈Y
QXY (x, y) ln 1

QY (y) (4.60)

=
∑

x∈X ,y∈Y
QXY (x, y) ln 1

W (y|x) (4.61)

= −f(QXY ). (4.62)

We also remark that in all the above expressions, QX = PX is implicitly
assumed.

This bound recovers the Körner–Dueck exponent [57], which is
known to be optimal (after minimizing over the input distribution PX).
In [120, Chapter 6], this example was studied in detail for a BSC,
and compared with Arimoto’s approach in [10]. Arimoto started as in
(4.40), but continued by upper bounding these moments using Jensen’s
inequality, which interchanges between the expectation operator and
the 1/β-power [similarly to (4.40)]. As was shown in [119, Section 3],
for a BSC with crossover probability p, the correct-decoding exponent
is

P c
.= exp [−n · D(δGV(R)||p)] (4.63)

= exp
[
−n ·

(
δGV(R) ln 1

p
+ (1 − δGV(R)) ln 1

1 − p

)
− H(δGV(R))

]
,

(4.64)

where δGV(R) is the (smaller) solution to ln 2 − H(δ) = R (recall that
H(q) ≜ −q ln q − (1 − q) ln(1 − q) is the binary entropy function). If
one now follows (4.50), and takes β → ∞, then after using Jensen’s
inequality, the following bound is obtained:

P c
˙

≤ exp
[
−n ·

(
min

{
ln 1

p
, ln 1

1 − p

})
− H(δGV(R))

]
. (4.65)

Evidently, the exponent in (4.65) is strictly smaller than the exact
exponent in (4.64), and so using a Jensen-based derivation and taking
β → ∞ leads to a loose bound on the exponent. Arimoto was able to
recover his bound from the sub-optimality of Jensen’s inequality by
replacing the limit β → ∞ with a maximization over β, and obtained an
exponent that matches that of Körner–Dueck [57] (after also minimizing
over the input distribution PX). However, there is no general guarantee
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that such optimization over β can lead to an exact exponent, and the
additional optimization over β may be intractable. Indeed, in more
complicated settings, such as the ones discussed in Section 4.4 to follow,
the optimization over parameters (such as β) for derivations that are
based on Jensen inequality cannot be performed analytically, and even
if so, they lead to strictly sub-optimal bounds.

4.3 Probabilistic and Statistical Properties of Type Class Enumera-
tors

In the previous section, we showed how to analyze basic coded systems
via the TCEM. In this section, we turn to analyze the probabilistic and
statistical properties of TCEs. Motivated by the discussion up until
now, we let n be the blocklength, and let A, B > 0 be two constants. We
will be interested in RVs of the form N ∼ Binomial(k′

n · enA, k′′
n · e−nB),

where k′
n ·enA is the number of trials, and k′′

n ·e−nB is the probability of a
successful trial, and where k′

n
.= k′′

n
.= 1. Specifically, we will be interested

in tail probabilities and moments of these RVs. As we shall see, the
asymptotic logarithm normalized by n of these probabilities/moments
will be a continuous function of (A, B) in some open set. Thus, in
that open set, the polynomial pre-factors k′

n and k′′
n do not affect the

asymptotic result, as it can be sandwiched by the corresponding results
for N ∼ Binomial(en(A±ϵ), e−n(B±ϵ)), with any arbitrarily small ϵ > 0.
As we shall next see, such binomial RVs experience a phase transition
at B = A, and therefore we will separate the analysis to the cases of
B < A and B > A. As a side note, for A = B, the distribution of such
a binomial RV tends to that of a Poisson RV.

We begin by studying the tail probabilities of a generic TCE N .

Theorem 4.1. Assume that N ∼ Binomial(enA, e−nB) and λ ∈ R.
Then, the upper tail is

lim
n→∞

− 1
n

ln Pr
[
N > enλ

]
=

[B − A]+ , [A − B]+ ≥ λ

∞, elsewhere
, (4.66)
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and the lower tail is

lim
n→∞

− 1
n

ln Pr
[
N < enλ

]
=

0, A − B < λ

∞, A − B > λ
. (4.67)

The proof of Theorem 4.1, as well as all other theorems in this
section, is deferred to Appendix D.

We continue with the moments of the TCE N . While the first
moment (expected value) of N is trivially given by E[N ] = en(A−B),
error exponent analysis typically requires to evaluate general moments,
which are possibly fractional.

Theorem 4.2. Assume that N ∼ Binomial(enA, e−nB). Then, for any
s > 0

E [N s] .=

en(A−B)s, A > B

e−n(B−A), A < B
. (4.68)

Importantly, for A < B the moment is asymptotically independent
of s.

In various advanced settings, the analysis of the TCEM also requires
to evaluate probabilistic and statistical properties of a pair of dependent
TCEs, or even a family {Nj}kn

j=1 of sub-exponential number of TCEs
(kn

.= 1), which are possibly dependent. For example, let (U1, U2) be a
pair of dependent Bernoulli RVs so that Pr[Uj = 1] = e−nBj for j = 1, 2.
Typically, Uj are indicators for disjoint events, e.g., U1 is the event in
which a random vector belongs to some type class, and U2 belongs to a
different type class. Thus, only one at most of the Uj is 1. Now, assume
that we draw enA IID RVs from the distribution of (U1, U2), and let
Nj denote the corresponding number of successes for Uj , for j = 1, 2.
While strictly speaking the TCEs are dependent RVs, we next show
they are asymptotically independent in the regime we consider. Indeed,
let us condition on the event that N1 = enν for some ν ∈ [0, A). Then,
N2|N1 = enν ∼ Binomial(enA − enν , Pr[U1 = 1|U2 = 0]). Evidently, the
number of trials is enA − enν ∼ enA and the success probability is

Pr [U1 = 1|U2 = 0] = Pr [U1 = 1, U2 = 0]
Pr [U2 = 0] (4.69)

= Pr [U1 = 1]
1 − e−nB2

(4.70)
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∼ e−nB1 . (4.71)

So, up to factors that tend to 1, the parameters of the conditional
binomial N1 are exactly as those of the unconditional binomial. It is
easy to generalize the above argument to a sub-exponential number
of TCEs, that is, {Nj}kn

j=1 where kn
.= 1, thus showing that they

are asymptotically independent. Indeed, if we consider the full set of
TCEs, i.e., {N(Q)} of all possible types, for which it must hold that∑

N(Q) = enA, then each trial is successful for exactly one of the types.
Thus, the joint distribution of {N(Q)} ∼ Multinomial(enA, {pQ}Q),
where pQ

.= e−nB(Q). It is well-known that for a large number of
trials, the multinomial distribution tends to an independent Poisson
distribution [152, Theorem 5.6].

In the context of superposition codebooks to be discussed later on in
Section 4.4, the joint distribution of TCEs were analyzed in the arXiv
version of [215, Appendix D]. As we will also see in that setting, it is
required to analyze the probability of an intersection of upper tail events
of TCEs {Nj}kn

j=1, when kn
.= 1 and where Nj ∼ Binomial(enAj , e−nBj ).

This result is also obtained from the joint distribution of the TCEs, and
is addressed by the following theorem.

Theorem 4.3. Assume that Nj ∼ Binomial(enAj , e−nBj ) for j =
1, . . . , kn and kn

.= 1. Assume that λ ∈ R, and λ ̸= Aj − Bj for
all j = 1, . . . , kn. Then,

Pr

 kn⋂
j=1

{
Nj ≤ enλ

} .= 1

{
min

1≤j≤kn

{Bj − Aj + [λ]+} > 0
}

. (4.72)

Evidently, depending on the parameters {(Aj , Bj)}kn
j=1, this prob-

ability exhibit a sharp transition from being zero on the exponential
scale, that is, decaying super-exponentially to being asymptotically 1.
In the former case, this is due to a single tail event whose probability
decays super-exponentially, and in the latter case, this is due to the
exponential decay of the probability of each of the events {Nj > enλ}kn

j=1
(see Appendix D for a formal proof).
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4.4 Advanced Coding Problems

In this section, we demonstrate how the TCEM can be used in various
advanced coding problems. We show how the error probability in these
problems can be expressed via suitably defined TCEs, which share
similar properties to the TCE analyzed in the previous section. For
brevity, we will not state here the resulting exponents – they can be
found in the cited references – and typically provide the exact exponent
for the random ensemble of interest. Moreover, oftentimes the exponents
of the TCEM are also the best possible known, and are strictly better
than exponent bounds obtained via classic bounding techniques.

4.4.1 Superposition Coding

We begin with the asymmetric broadcast channel (or a broadcast chan-
nel with a degraded message set) [16], [33], [73], [106], [107], which
is a prototypical example for a multiuser channel [59]. This setting
introduces new aspects, for which the TCEM is especially useful in
deriving exact random-coding error exponents. We focus on a simple
version of this setting, in which a single transmitter wishes to communi-
cate different messages to two receivers with different channels, and so
possibly different point-to-point capacities. The first channel is referred
to as the strong user channel, and the second as the weak user channel,
for reasons to be made clear shortly. We denote the strong user (resp.
weak user) channel by Wy (resp. Wz), which is from the input alphabet
X to the output alphabet Y (resp. Z).

Rather than drawing a regular random code for this channel, Cover
[33] and then Bergman [16], proposed to use superposition coding, or
a hierarchical codebook. In this coding method, the rate is split as
R = Rz + Ry, and the message is thus determined by two indices.
In the random coding regime, the codebook is constructed as follows.
An auxiliary alphabet U is chosen along with a joint input type PUX .
Then, enRz cloud centers C̃n = {U i}enRz

i=1 are drawn from the fixed-
composition ensemble of input type PU . For each cloud center, a sub-
codebook Cn(i) = {Xi,j}enRy

j=1 of satellite codewords is chosen uniformly
at random from the conditional type class Tn(PX|U |U i). Alternatively,
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this sub-codebook is referred to as a bin [127]. The random codebook
is then Cn = ⋃enRz

i=1 Cn(i) = {Xi,j} which has size en(Ry+Rz) and thus is
capable of sending messages at a total rate of R = Ry + Rz. The weak
user is only intended to decode the sub-codebook, that is, to decide
which sub-codebook {Cn(i)} contains the transmitted message, and thus
achieve a rate of Rz (the rate of the common message, indexed by i).
The strong user decodes the codeword and achieves the total rate R

(the common and the private message, indexed by (i, j)).
Let us focus on the weak user. For a given hierarchical codebook

Cn, the ML decoder, which minimizes the error probability of the weak
user, uses the likelihood

Wz (Z|Cn(i)) ≜ Pr [Z = z|i] (4.73)

= 1
enRy

enRy∑
j=1

Wz(z|xi,j) (4.74)

= 1
enRy

enRy∑
j=1

en·αz(Q̂z,xi,j ), (4.75)

with the choice αz(Q) = fz(Q) ≜ EQ[ln Wz(Z|X)], that is, using the
true channel likelihood. One can also replace this choice with a channel-
independent one, e.g., that of the MMI rule αz(Q) = I(QXZ). In any
case, the score of this decoder for a single message i is comprised of
a sum over an exponential number of enRy satellite codewords. The
complex structure of this decoding rule compared to the standard
ML decoding rule substantially complicates the analysis of the error
exponent. Indeed, for the point-to-point channel considered before, an
error event from x to x̃ given output y occurs for the ML decoder
whenever W (y|x̃) ≥ W (y|x). This event can be expressed using the
corresponding joint types as f(Q̂x̃y) ≥ f(Q̂xy), and directly leads to
a simple constraint f(Q̃XY ) ≥ f(QXY ) in (4.24) (when α(·) = f(·)).
However, Wz(·|Cn(i)) is not a memoryless channel, and so the event of
making an error from i to ĩ, that is, Wz(Z|Cn(̃i)) ≥ Wz(Z|Cn(i)) cannot
be expressed as a simple relation between types as before. A naive
use of a union bound or Jensen-type inequalities to analyze this sum
of exponential number of terms typically fails in providing the exact
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exponent. The TCEM ameliorates this by partitioning the summation
over the enRy private codewords of the strong user according to their
joint type Q̂z,xi,j , thus transforming the sum over an exponential number
of likelihoods to a sum over a polynomial number of average likelihoods.
To show this, we next evaluate the ensemble-average error probability
of the weak user. Nonetheless, we will do this in a slightly different way
compared to standard channel coding, in order to demonstrate another
technique.

We assume, without loss of generality, that the first codeword (1, 1)
is transmitted, and thus fix (U1,Cn(1)) = (u1, Cn(1)) as well as the
output vector Z = z. The error probability conditioned on these RVs is
given by

Pr

enRz⋃
i=2

{Wz(z|Cn(i)) ≥ Wz(z|Cn(1))}

 , (4.76)

where Cn(i) is the random code for the ith bin. Now, we use the fact
that the truncated union bound is exponentially tight for pairwise
independent events. That is, if {Em} are pairwise independent events
then (e.g., [186, p. 109, Lemma A.2], or from the de Caen inequality
[48])

1
2 · min

{∑
m

Pr [Em] , 1
}

≤ Pr
[⋃

m

Em

]
≤ min

{∑
m

Pr [Em] , 1
}

. (4.77)

Importantly, the number of events is arbitrary and could be exponential,
while still preserving exponential tightness. Such a bound can be further
generalized, as was shown in [175, Appendix A], to bounds on the
probability of a multiply-indexed unions. Exploiting this result and
the fact that the events in (4.76) are independent, we obtain that the
probability is exponentially equal to

min
{

enRz · Pr [Wz(z|Cn(2)) ≥ Wz(z|Cn(1))] , 1
}

. (4.78)

We may now focus on the inner probability, and as z and Cn(1) are
fixed at this moment, we set, for brevity, s(Cn(1), z) = 1

n ln Wz(z|Cn(1)).
We evaluate this probability in two steps. First, we condition on a
competing cloud-center codeword, say U2 = u2, and compute the
conditional probability according to a random choice of Cn(2). To this
end, we define a suitable TCE.
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Definition 4.3 (TCE for random-coding exponent of superposition
codes). For a superposition codebook Cn = {xi,j}, a cloud center u, an
output vector z and a joint type QUXZ such that Q̂uz = QUZ , let

Nu,z(QUXZ , Cn(i)) ≜∣∣∣{1 ≤ j ≤ enRy : (u, xi,j , z) ∈ Tn(QUXZ)
}∣∣∣ . (4.79)

This TCE counts the number of codewords in a single bin Cn(i) of a
superposition code defined by the cloud center u, which have a joint type
QUXZ with z. By the method of types (a generalization of (2.12) from
Section (2.2.1) to conditional types, see [41, Lemma 2.13]), whenever
Xj ∼ Uniform[Tn(QX|U |u)] it holds that

Pr [(u, Xj , z) ∈ Tn(QUXZ)] = kn · e−nIQ(X;Z|U) (4.80)

for some kn
.= 1. So, for a random codebook Cn(i) = {Xi,j},

Nu,z(QUXZ ,Cn(i)) =
enRy∑
j=1

1 {(u, Xj , z) ∈ Tn(QUXZ)}

∼ Binomial
(
enRy , kn · e−nIQ(X;Z|U)

)
. (4.81)

As before, we will omit for brevity Cn(i) and (u, z) from the notation
of the TCE, as it does not affect its probability distribution. With
Definition 4.3, the probability of interest takes the form

Pr
[
Wz(z|Cn(2)) ≥ en·s(Cn(1),z)

]
= Pr

 ∑
QUXZ

N(QUXZ) ≥ en·s(Cn(1),z)

 (4.82)

.= Pr
[

max
QUXZ

N(QUXZ) ≥ en·s(Cn(1),z)
]

(4.83)
.= max

QUXZ

Pr
[
N(QUXZ) ≥ en·s(Cn(1),z)

]
, (4.84)

where we have used a summation–maximization equivalence for proba-
bilities, which can be derived analogously to (4.46). Without delving
into details, we briefly mention that the sub-exponential factors that are
hidden but the exponential equalities in (4.83) and (4.84) do not depend
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on s(Cn(1), z); a quantity which is a function of n on its own. Evidently,
the next step requires evaluating the tail probability of N(QUXZ). This
can be done, by generalizing Theorem 4.1 (Section 4.3) to the TCEs of
superposition codes. Following this step, an exponentially-tight expres-
sion for the probability (4.84) is obtained, which implicitly depends on
the choice of U2. The next step is thus to average this exponentially
decaying probability over U2 by considering joint types QUZ agreeing
with Q̂U2,z. This average is dominated by the minimal exponent over
all possible types.

The above evaluation of the error probability is for a fixed output
vector z and the sub-codebook Cn(1). To obtain the average error
probability, the next step is to average over (Z,Cn(1)). Handling the
randomness of s(Cn(1), Z) is again obtained with similarly defined TCEs.
However, at this step, the inequality defining the event of interest is in
a reversed direction compared to (4.82). Thus, when proceeding this
way, one encounters for some t ∈ R the following expression

Pr

 ∑
QUXZ

N(QUXZ)en·αz(QUXZ) ≤ en·t


(a).= Pr

[
max
QUXZ

N(QUXZ)en·αz(QUXZ) ≤ en·t
]

(4.85)

= Pr

 ⋂
QUXZ

{
N(QUXZ) ≤ en·[t−αz(QUXZ)]

} (4.86)

(b).= 1

{
min

QUXZ

{
IQ(X; Z|U) − Ry + [t − αz(QUXZ)]+

}
> 0

}
, (4.87)

where here N(QUXZ) is defined as in (4.79), yet for Cn(1), and excluding
x1,1, where (a) follows from the summation–maximization equivalence
for probabilities (as above), and (b) follows from Theorem 4.3. This
exemplifies the necessity to evaluate the probability of the intersection
of tail events of multiple enumerators in the course of the analysis, and
also shows the possibility to evaluate this probability accurately on an
exponential scale. The full details of such derivations can be found in,
e.g., [127, Proof of Theorem 1], [11, Section 5.1].
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4.4.2 Distributed Compression and Random Binning

Our next setting pertains to a source coding problem, and specifically,
the Slepian–Wolf (SW) problem of distributed lossless compression [189].
In this problem, a source X with a finite alphabet X is given at the
encoder side, and side-information Y of a finite alphabet Y that is
at the decoder side. The pair (X, Y ) is correlated, and follows a joint
distribution PXY , and vectors (X, Y ) ∈ X n × Yn are emitted from
PXY , with IID pairs of symbols. The source vector X is compressed
by assigning it to an index Z = f(X) of one of enR possible bins,
where f : X n → {1, 2, . . . , enR} is a called a binning rule. Given the
side-information Y = y and the bin Z = z, the decoder decides that
the source vector is

x̂(y, z) = arg max
x∈f−1(z)

Pr [X = x|Y = y] (4.88)

≜ arg max
x∈f−1(z)

Pr [x|y] . (4.89)

For a giving binning rule f , the error probability is then given by

Pe(f) ≜
∑

x∈X n

∑
y∈Yn

Pr [X = x, Y = y] ×

1

 ⋃
x′ ̸=x : Pr[x′|y]≥Pr[x|y]

{
f(x′) = f(x)

} . (4.90)

For a joint type QXY , let us further denote the expected log-posterior
as

g(QXY ) ≜ EQ

[
ln PX|Y (X|Y )

]
, (4.91)

so that for any (x, y) ∈ Tn(QXY ) it holds that Pr[x|y] = eng(QXY ).
As expected, it is intractable to find the optimal binning rule f .

However, whenever the compression rate R is above the minimal required
rate H(X|Y ), the ensemble average of the error probability over random
choice of binning functions decays exponentially [2], [30], [40], [74], [140],
[141], [160], [217]. In fact, the optimal error exponent for the SW
problem is directly related to the random-coding error exponent in
channel coding (see, e.g., [2], [30], [217]). Thus, we may evaluate the
error probability averaged over random choice of binning rules, referred
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to as random binning. Accordingly, the exponential decay of the average
error probability is called the random-binning error exponent. In simple
random binning, the random rule F is such that the bin of any x ∈ X n

is chosen uniformly at random from the enR possible bins. Analogously
to TCEs for channel coding, we define the following TCE:

Definition 4.4 (TCE for random-binning exponent). For a binning
rule f , a side-information vector y, an encoded index z, and a joint
type Q′

XY such that Q̂y = Q′
Y , let

Ñy,z(Q′
XY , f) ≜

∣∣∣{(x′, y) ∈ Tn(Q′
XY ) ∩ f−1(z)

}∣∣∣ . (4.92)

The TCE Ñy,z(QXY , f) counts the number of vectors in Tn(QX) except
for x, which have joint type Q′

XY with y, and that are mapped to the
index z. Intuitively, the sum of Ñy,z(QXY , f) over all joint types Q′

XY

counts all the source vectors which may be erroneously decided to be
the true source vector instead of x, whenever the bin index is z and the
side information is y. By the method of types [(2.12) in Section 2.2.1]

|Tn(Q′
XY )| = kn · enH(Q′

XY ) (4.93)

for some kn
.= 1. So, for a random binning rule

F (x′) ∼ Uniform
{

1, 2, . . . , enR
}

,

it holds that

Ñy,z(Q′
XY , F ) =

∑
x′∈Tn(QX) : x′ ̸=x

1

{
(x′, y) ∈ Tn(Q′

XY ) ∩ F −1(z)
}

∼ Binomial
(
kn · enHQ′′ (X|Y ), e−nR

)
. (4.94)

This TCE displays a plausible duality with the TCE of channel coding:
In random coding the number of trials is fixed and the success probability
is type-dependent, whereas in random binning, it is the other way round.

As in channel-coding analysis, we will simplify the notation to
Ñy,z(Q′

XY ) or even just Ñ(Q′
XY ) when the TCE is an RV. Given

Definition 4.4, the random-binning error probability is then given by
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P e ≜ E [Pe(F )]
=

∑
x∈X n

∑
y∈Yn

Pr [X = x, Y = y] ×

Pr

 ⋃
Q′

XY : Q′
Y =Q̂y , g(Q′

XY )≥g(Q̂xy)

{
Ñy,f(x)(Q′

XY ) ≥ 1
} (4.95)

(a).=
∑

QXY

Pr [(X, Y ) ∈ Tn(QXY )] ×

∑
Q′ : Q′

Y =QY , g(Q′)≥g(Q)
Pr
[
Ñ(Q′

XY ) ≥ 1
]

(4.96)

(b).= max
QXY

max
Q′

XY : Q′
Y =QY , g(Q′

XY )≥g(QXY )
e−nD(QXY ||PXY )×

Pr
[
Ñ(Q′

XY ) ≥ 1
]

, (4.97)

where (a) follows from the summation–maximization equivalence for
probabilities, and (b) follows from the method of types (Section 2.2.1).
The tail probability Pr[Ñ(Q′

XY ) ≥ 1] can be analyzed as in Section 4.3,
and this results the exact random-binning exponent.

4.4.3 Generalized Decoders

Erasure/List Decoders. An erasure decoder may either decode a
message or declare an erasure, that is, not to output any message. A list
decoder may output multiple codewords, whose number is either fixed
in advance, or varies according to the channel output. Forney showed
in [68] that both Pareto-optimal erasure decoder and variable list-size
decoder have a similar form, which uses the posterior probability, rather
than the likelihood, to decide on its output. We begin by describing
an erasure decoder. Concretely, consider a codebook Cn = {xm} from
which a codeword X is chosen under the uniform distribution. The
codeword is then transmitted over a channel W , and given an output
vector Y = y, the posterior probability of the mth codeword is given
by Bayes rule as

Pr [X = xm|Y = y] = W [y|xm]∑
m′ W [y|xm′ ] . (4.98)
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If the maximal posterior over codewords is large enough, then the
maximizing codeword is decoded. Otherwise, an erasure is declared.
Equivalently, we may set a threshold parameter T > 0, so that the opti-
mal erasure decoder outputs message m if xm is the (unique) codeword
such that

W [y|xm]∑
m′ ̸=m W [y|xm′ ] > enT . (4.99)

The threshold parameter T determines the trade-off between two types
of failure events: An erasure event E ′

1(Cn), in which no codeword is
decoded, or an undetected error event E2(Cn), in which a wrong codeword
is decoded. The event E1(Cn) = E ′

1(Cn) ∪ E2(Cn) is then called the total-
error event. As can be seen, the score of the decoder is a complicated
function, since the denominator in (4.99) includes a summation over an
exponential number of likelihoods.

To bound the probability of the total-error event, Forney has intro-
duced a parameter s ∈ [0, 1] and derived a Chernoff-style bound. As said,
this bounding method is not guaranteed to be tight, and indeed leads
to strictly sub-optimal exponents. The TCEM addresses the problem of
evaluating the probability of the total-error event, by using the TCE
N(Q̃XY ) of Definition 4.1. For a random codebook Cn,

E {Pr [E1(Cn)]}
= E {Pr [E1(Cn)|X1 transmitted]} (4.100)

= Pr

 ∑
m′>1

W [Y |Xm′ ] ≥ e−nT · W [Y |X1]

 (4.101)

=
∑

QXY

Pr [(X1, Y ) ∈ Tn(QXY )] ×

Pr

 ∑
Q′

XY : Q̃Y =QY

N(Q′
XY )enf(Q′

XY ) ≥ e−nT · e−nf(QXY )

 .

(4.102)

The first probability is given by the standard method of types [(2.12)
in Section 2.2.1], and the second probability may be evaluated by the
summation–maximization equivalence



4.4. Advanced Coding Problems 99

Pr

 ∑
Q′

XY : Q′
Y =QY

N(Q′
XY )enf(Q′

XY ) ≥ e−nT · e−nf(QXY )


.= Pr

[
max

Q′
XY : Q′

Y =QY

N(Q′
XY )enf(Q′

XY ) ≥ e−nT · e−nf(QXY )
]

(4.103)

= Pr

 ⋃
Q′

XY : Q′
Y =QY

{
N(Q′

XY )enf(Q′
XY ) ≥ e−nT · e−nf(QXY )

} (4.104)

.= max
Q′

XY : Q′
Y =QY

Pr
[
N(Q′

XY ) ≥ e−n[f(QXY )−f(Q′
XY )−T ]

]
. (4.105)

The derivation is completed by the exact exponential analysis of the
tail probability of N(Q′

XY ) from Section 4.3. It can be shown that the
resulting random-coding error exponent of E[E2(Cn)] is larger by exactly
T than the exponent of the total-error event [91]. Thus, the exponent
of the total-error event is equal to that of the erasure event.

In the setting of variable list size decoding, the Pareto optimal
decoder also takes the form of (4.99), albeit with the threshold parameter
set to some T < 0. With such a choice, the codeword that satisfy (4.99)
may not be unique, and so the rule of (4.99) defines a variable list size
decoder. In this regime, the trade-off is between the exponent of the
error event (where the correct codeword is not in the output list), and
the normalized logarithm of the expected list size. It can be shown that
the expressions for these values are exactly as the ones of the total-error
exponent and undetected error exponent in the erasure regime T > 0,
and so the analysis is identical, while just allowing T < 0.

Likelihood Decoders. Similarly to an erasure/list decoder, a likelihood
decoder [227] also uses the posterior probability. However, it outputs
a random codeword from this posterior, so the decoded message is m

with probability

Pr [xm|y] = W (y|xm)∑enR

m̃=1 W (y|xm̃)
. (4.106)

More generally, one may choose a continuous function g(QXY ) of joint
types and an inverse-temperature β > 0, and consider a likelihood
decoder that decodes message m with probability
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Pr [xm|y] =
exp

[
nβg(Q̂xm,y)

]
∑enR

m̃=1 exp
[
nβg(Q̂xm̃,y)

] . (4.107)

When β = 1 and g(QXY ) = f(QXY ) = EQ[ln W (Y |X)] then the
ordinary likelihood decoder (4.106) is reproduced. However, g(·) can
be replaced by a choice that is mismatched to the channel, or even
by a universal function such as g(QXY ) = I(QXY ). Similar to finite-
temperature decoding [172], the parameter β controls the “amount of
stochasticity” of the decoder: If β → ∞ then the decoder becomes
deterministic, reproducing the score-based decoder with α ≡ g. As
the temperature increases and β decreases, the decoder becomes more
random (at the extreme β = 0, the output codeword is chosen uniformly
at random). On the upside, for any fixed β, the ensemble average error
probability follows a remarkably simple formula, given by

Pe = E [Pe(Cn)] = E [Pe (Cn|X1 transmitted)] (4.108)
(a)= E [1 − Pr [X1|Y ]] (4.109)

(b)= E

∑enR

m=2 exp
[
nβg(Q̂Xm,Y )

]
∑enR

m=1 exp
[
nβg(Q̂Xm,Y )

]
 , (4.110)

where in (a) Y is the output the channel W when X1 is the input,
and (b) follows from the decoding rule (4.107). On the downside, in this
expression, both the numerator and denominator contain an exponential
number of codewords, and this makes its analysis more challenging.
Following the TCEM, let us condition on the joint type (X1, Y ) ∈
Tn(QXY ). Then, using the TCE of Definition 4.1, it holds that

Pe =
∑

QXY

Pr [(X1, Y ) ∈ Tn(QXY )] · e(QXY ) (4.111)

where, for any given QXY ,

e(QXY ) =

E

 ∑
Q̃XY : Q̃Y =QY

N(Q̃XY )enβg(Q̃XY )

enβg(QXY ) +∑
Q̃XY : Q̃Y =QY

N(Q̃XY )enβg(Q̃XY )

 . (4.112)
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This expectation can be evaluated as:

e(QXY )

.= E

min

∑
Q̃XY

N(Q̃XY )en[βg(Q̃XY )−βg(QXY )], 1


 (4.113)

(a)=
∫ ∞

0
Pr

min

∑
Q̃XY

N(Q̃XY )en[βg(Q̃XY )−βg(QXY )], 1

 ≥ t

dt

(4.114)

(b)=
∫ 1

0
Pr

∑
Q̃XY

N(Q̃XY )en[βg(Q̃XY )−βg(QXY )] ≥ t

dt (4.115)

= n

∫ ∞

0
e−nθ · Pr

∑
Q̃XY

N(Q̃XY )en[βg(Q̃XY )−βg(QXY )] ≥ e−nθ

dθ

(4.116)
.= max

Q̃XY

n

∫ ∞

0
e−nθ · Pr

[
N(Q̃XY ) ≥ e−n[θ−βg(Q̃XY +βg(QXY ))]

]
dθ,

(4.117)

where in the summations above and in the maximization on the final line,
Q̃XY is such that the constraint Q̃Y = QY holds, (a) follows from the
tail-integration identity E[X] =

∫∞
0 Pr[X ≥ t] dt, which holds for any

non-negative RV X, and (b) follows from the summation–maximization
equivalence (or, alternatively, as 1

2 min{a, 1} ≤ a
a+1 ≤ min{a, 1}). The

derivation continues by plugging into the integral the tight exponent of
the tail probability of N(Q̃XY ) from Section 4.3. Then, the exponential
decay rate of the integral can be determined using Laplace method from
Section 3. After averaging WRT to (X1, Y ), the resulting expression
may be minimized over QXY to obtain the exact exponent of the
ensemble-average error probability. The full details of this derivation
can be found in [131], [133].

4.4.4 Error Exponent of the Typical Random Code

As discussed above, the random-coding error exponent (4.9) may serve
two purposes. First, it can be used to serve as performance measure for
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a communication system that actually randomly selects its codebook.
Second, it is a lower bound on the error exponent of the optimal sequence
of codes, i.e., it is a technique to prove achievability bounds. Inspecting
the definition of the random-coding error exponent (4.9), it is appears
to be somewhat at odds with both goals. From the perspective of the
first goal, a direct way is to evaluate the average error exponent, or the
error exponent of the typical random code is

Etrc(R) ≜ E
[
− 1

n
ln Pe(Cn)

]
, (4.118)

which is the ensemble average of the exponent, rather than the exponent
of the average error probability, as in (4.9). From the perspective of
the second goal, Jensen’s inequality assures that Etrc(R) ≥ Erc(R),
and so this exponent leads to tighter achievability bounds than the
standard random-coding exponent. Indeed, the root of this relation is
that the exponent Etrc(R) is determined by typical codebooks, whereas
the random-coding error exponent is actually dominated by unlikely
poor codebooks. This can be seen from the following informal argument.
Let GE be the collection of codes {Cn} for which Pe(Cn) ≈ e−nE . Then,
approximating the values of E by a discrete fine grid, results in

E[Pe(Cn)] ≈
∑
E

Pr [Cn ∈ GE ] · e−nE . (4.119)

This term is dominated by the largest term in the sum, yet the max-
imizer may occur for Ẽ in which Pr[Cn ∈ GẼ ] is exponentially small.
Thus, codebooks with exponentially small low probability to occur may
dominate the random-coding exponent. In contrast, it holds that

Etrc(R) = E
[
− 1

n
ln Pe(Cn)

]
=
∑
E

Pr [Cn ∈ GE ] · E. (4.120)

Thus, if there exists a value E0 for which Pr[Cn ∈ GE ] → 1 then
Etrc(R) = E0 (and such E0 does exist). Thus, the error exponent of
the typical random code is determined by codebooks which are highly
likely to occur. Evidently, the averaging of the normalized logarithm
over the error probability mitigates the effect of high error-probability
codebooks on the ensemble average.
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Despite this obvious advantage, the error exponent of the typical
random code was considered to be more difficult to evaluate than the
random-coding error exponent, and thus was somewhat ignored in the
traditional developments of bounds on the reliability function. In [14],
Barg and Forney evaluated the error exponent of the typical random
code for the BSC (and credit [15] for inspiration). The derivation is
sufficiently simple to be done directly, and involves the typical distance
spectrum of the code. The distance spectrum is defined as the number
of pairs of codewords for each possible Hamming distance. Concretely,
it is given by {N(d)}n

d=0 where

N(d) ≜ |{m1, m2 : m1 ̸= m2, dH(xm1 , xm2) = d}| , (4.121)

and where dH(·, ·) is the Hamming distance. The error probability was
then tightly bounded by the union bound as

Pe(Cn) ≤
n∑

d=0
N(d) · e−d·Z(p), (4.122)

where
Z(p) ≜ D

(1
2 ||p

)
= 1

2 ln [4p(1 − p)] (4.123)

is the Bhattacharyya distance. The typical random exponent was de-
termined by the typical behavior of N(d) over the ensemble, that is,
a high-probability upper bound on its value (for the typical random
exponent, the tightness of this bound is credited by Barg and Forney
to [43]).

Evidently, the distance spectrum of the code depends on the dis-
tances between pairs of codewords. Therefore, the generalization of this
expression to general DMCs, required for the derivation of the error
exponent of the typical random code, involves a TCE that is determined
by all pairs of codewords from the codebook. Specifically, it involves
the following TCE:

Definition 4.5 (TCE for the error exponent of the typical random
code). For a codebook Cn, and a joint type QXX̃ , let

N(QXX̃ , Cn)
=
∣∣{(m, m̃) : m ̸= m̃, (xm, xm̃) ∈ Tn(QXX̃)

}∣∣ (4.124)
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=
enR∑
m=1

Nm(QXX̃ , Cn) (4.125)

=
enR∑
m=1

enR∑
m̃=1

1{m̃ ̸= m} · 1
{
(Xm̃, Xm) ∈ Tn(QXX̃)

}
, (4.126)

where Nm(QXX̃) is as defined in (4.35). The TCE N(QXX̃ , Cn) counts
the number of pairs of codewords in the codebook which have a joint
type QXX̃ .

As for previous TCEs, we abbreviate the notation to N(QXX̃)
when it is an RV. Recall that the TCE for random-coding exponent
(Definition 4.1) is a binomial RV when the codebook is random. In
contrast, for a random codebook, the TCE N(QXX̃) has no such sim-
ple probabilistic description, and so the derivation of the probabilistic
properties N(QXX̃) is more challenging. The root of this difficulty is
the dependencies between pairs of codewords. Indeed, N(QXX̃) counts
the number of successes in enR(enR − 1) .= e2nR trials, and the success
probability of each trial is .= e−nI(QXX̃). Had these trials were statisti-
cally independent then N(QXX̃) was a binomial RV, as the TCE for
random-coding exponent (Definition 4.1). However, these trials are not
mutually independent. To explicitly see this dependence, consider the
following extreme example: Let QX be uniform over X and let QXX̃

be the joint type that equals to 1/|X | whenever x = x̃ and 0 otherwise.
Then, without any prior knowledge, for every m̃ ̸= m,

Pr [Xm = Xm̃] = Pr
[
(Xm, Xm̃) ∈ Tn(QXX̃)

]
(4.127)

.= exp
[
−nI(QXX̃)

]
, (4.128)

where I(QXX̃) = ln |X |. Now, conditioned on X1 = X2 and X2 = X3
it also holds with probability 1 that X1 = X3, thus showing their
dependency. Nonetheless, this dependence is “weak”, and as we will show,
some of its asymptotic properties can be shown to be indifferent to this
dependence, and match those of a regular Binomial(e2nR, e−nI(QXX̃))
distribution.

The required moments and tail properties of N(QXX̃) were evaluated
as follows. In [197, Theorem 3], it was determined that for any s ∈ R
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lim
n→∞

− 1
n

ln Pr
[
N(QXX̃) ≥ ens

]
≥[I(QXX̃) − 2R]+, [2R − I(QXX̃)]+ > s

∞, [2R − I(QXX̃)]+ < s
, (4.129)

which is the same upper tail behavior as for a Binomial(e2nR, e−nI(QXX̃)).
This is intuitively justified because the events 1{(xm1 , xm2) ∈
Tn(QXX̃)} and 1{(xm3 , xm4) ∈ Tn(QXX̃)} are pairwise-independent,
even if m1 = m3, and as the overall dependence between all events is
fairly low. The proof of the first case in (4.129), i.e., upper tail bound
in the case of populated types, is based on bounding its integer moments,
and showing that for any k ∈ N

E
[
N

k(QXX̃)
]

≤̇

enk[2R−I(QXX̃)], I(QXX̃) < 2R

en[2R−I(QXX̃)], I(QXX̃) > 2R
. (4.130)

For k = 1, the bound of (4.130) readily follows by the linearity of the
expectation. Then, the proof of (4.130) for an arbitrary k follows by
a careful induction argument over k. Once (4.130) is established, the
proof of the first case in (4.129) is then completed by applying Markov’s
inequality with an arbitrarily large k. The proof of the second case in
(4.129), i.e., upper tail bound in the case of typically empty types, is
based on Janson’s inequality [95, Theorem 9] for the probability of the
event that N(QXX̃) = 0.

As for the lower tail that complements the upper tail in (4.129), it
was determined in [197, Lemma 2] that given ϵ ∈ (0, 2R), if I(QXX̃) ≤
2R − ϵ then

lim
n→∞

− 1
n

ln Pr
[
N(QXX̃) ≤ e−nϵ · E

[
N(QXX̃)

]]
= ∞ (4.131)

(see a more accurate statement therein). The proof is inspired by an
investigation of typicality graphs by Nazari et al. [157]. For typically
populated TCEs (2R ≥ I(QXX̃)), the analysis is based on a lower
tail-bound form of Janson’s inequality [95, Theorem 3]: For our analysis,
this Janson’s bound is a tail bound for the sum of possibly dependent
Bernoulli RVs, which is suitable for settings in which each Bernoulli RV
only depends on a small number of other Bernoulli RVs. Another useful
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moment result that was derived, is a bound on the correlation of TCE
powers, given by [197, Proposition 4] as

E
[
N

k(QXX̃)N ℓ(QXY )
]

≤̇ F (R, QXY , ℓ) · F (2R, QXX̃ , k), (4.132)

where for a joint type QUV , S ≥ 0 and j ∈ N,

F (S, QUV , j) ≜

enj[R−I(Q)], I(Q) < S

en[R−I(Q)], I(Q) > S
. (4.133)

The bound (4.132) again exhibits that asymptotic independence of
TCEs. The proof of (4.132) generalizes the proof of (4.130) and utilizes
a double-induction on both k and ℓ.

4.5 Further Applications

In the last 15 years, the TCEM has found extensive applications in
diverse coding problems. We next briefly review these applications.

Expurgated exponents were considered in [123], [177] for both stan-
dard channel coding, as well as mismatched decoding and under input
constraints, utilizing Definition 4.2 and an expurgation argument based
on TCEs (see Appendix C).

The TCEM was widely used in multiuser and network problems [59].
For the broadcast channel [16], [33], [73], [106], [107], random-coding
and expurgated error exponents were derived using the TCEM in [11],
[12], [101], [127], for various decoders, including the optimal bin-index
decoder. For the multiple-access channel (MAC), concurrently to the
early development stages of the TCEM, Nazari et al. [156] also used
TCEs (referred to as “packing functions”), but only obtained bounds,
as their derivation was only based on the expectation and variance of
the TCEs, rather than the their tail probabilities and higher moments.
Scarlett, Martinez and Guillén i Fàbregas fully utilized the TCEM for
the MAC in [175], [176]. For the interference channel, random-coding
error exponents for the Han–Kobayashi scheme [80] and under the
optimal ML decoder, were derived in [64], [89]. For the wiretap channel
[226], assuming a multi-coding scheme [39], [111], [226], the correct-
decoding exponent of the eavesdropper (as in [117]) was derived in
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[126], and the exponential decay rate of the mutual information between
the message and the eavesdropper output vector (unnormalized by the
blocklength n) was derived in [164]; this later result refined previous
bounds in [83], [84], [163]. The dirty-paper [32] and the Gel’fand–Pinsker
[75] channels were analyzed using the TCEM in [196],6 improving the
bounds of Moulin and Wang [154]. The works above heavily rely on the
idea of superposition coding and index-bin decoding, which evidently
has wide applicability in multiuser problems [59]. Some settings in which
it has not been applied yet include the relay channel [34], and channels
with feedback [35], [161]. Similar derivations and results are therefore
anticipated to these settings too.

For source coding problems, the TCEM was mainly used in dis-
tributed compression, and specifically for deriving exact random-binning
exponents [129], [130]. For secure lossy compression, the optimal trade-
off between the excess-distortion exponent of the legitimate receiver and
the exiguous-distortion exponent of the eavesdropper was derived in
[218]. For distributed hypothesis testing [1], [79], [81], [170], type-I and
type II error exponents were derived for the quantization-and-binning
scheme [79], [185] under optimal decision rule in [215].

Returning to channel coding, the TCEM was extensively used to
derive error exponents for generalized decoders. For Forney’s erasure/list
decoder [68], random-coding and expurgated error exponents were
derived in [76], [91], [118], [125], [190], [220] and by Cao and Tan [27]
in a broadcast channel setting. Among other results, this has shown
that the exact exponents can be arbitrarily large compared to Forney’s
bounds, and that, unlike for ordinary decoding [66], [145], they are not
universally achievable. Hayashi and Tan [85] used the TCEM for erasure
decoding in the moderate deviation regime [5], [167]. The exponents of
a decoder with a fixed list size were derived in [128]. The result matches
the celebrated converse bound of Shannon, Gallager and Berlekamp
[183, Theorem 2] and improved the best lower bound previously known
[41, p. 196, Problem 27, part (a)].

For asynchronous sparse communication, [28], [29], [202], [203], false-

6By means of source-channel duality [103], [168] these results are also applicable
to the Wyner–Ziv distributed lossy compression problem [225].
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alarm and mis-detection exponents were derived for joint codeword
detection and decoding in [216], improving Wang et al. [213]. This
result was generalized in [219] to joint channel detection and decoding.
Exponents for generalized likelihood decoding [227] were derived in [131],
[133]. Additional settings include decoding for biometric identification
[93, Chapter 5], [208], [222] and content identification [44], [45], for
which the exponents for vector-quantized codewords were derived in
[132], [134], and error exponents for an alternative model for a biometric
identification system, which is based on secret key generation and a
helper messages during the enrollment phase [93, Chapter 2], in [134].
Error exponents for the bee identification problem [200] were derived in
[193].

The error exponent of the typical random code was derived using
the TCEM in [135], for a broad class of generalized likelihood decoders.
One of the consequences of this analysis is that a general relation of the
form Etrc(R, PX) ≤ Eex(2R, PX) + R holds for any R and generalized
likelihood decoder (for ML decoding and the BSC, a similar relation
with equality sign was shown in [14]). A Gallager–style exponent was
developed in [137]. The results were then extended to the colored
Gaussian channel in [138], to random time-varying trellis codes in [139],
and to typical SW codes in [194]. In [195], the TCEM was used to
establish that a stochastic MMI decoder, which is a universal decoder,
achieves the exponent of the typical random code and the expurgated
exponent. Finally, the concentration of the random error exponent to
its mean value, the error exponent of the typical random code, was
derived using the TCEM in [197], with refinements by Truong et al.
in [205], and then by Truong and Guillén i Fàbregas [206]. In this
last result, the TCEM was used for codewords that are drawn in a
dependent manner, for an ensemble based on the Gilbert–Varshamov
construction, previously suggested by Somekh-Baruch, Scarlett and
Guillén i Fàbregas [191].



5
Manipulating Expectations of Nonlinear

Functions of Random Variables

5.1 Introduction

An often-encountered challenge in information-theoretic analytical
derivations involves the necessity to assess the expected value of a
non-linear function applied to either an RV or a random vector. The
conventional approach typically involves resorting to upper and lower
bounds for the sought-after expectation, with the hope that these
bounds are sufficiently accurate, at least for guiding us toward the cor-
rect behavior of the overall expression. When dealing with a non-linear
function that exhibits convexity or concavity, it seems natural to employ
Jensen’s inequality, which yields an upper or lower bound, respectively.
However, it is worth noting that this bound may not always prove
precise enough to serve our intended purposes.

The primary aim of this section is to introduce a range of alternative
tools that have proven their utility in prior research. These alternative
tools can be broadly categorized into two main categories.

In the first category (Sections 5.2 and 5.3), the focus is on achiev-
ing exact results. Here, the fundamental approach involves leveraging
integral representations of the non-linear function under consideration.
In the second category (Sections 5.4, 5.5 and 5.6), we turn to bounding

109
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techniques, but these bounds are designed to be more refined and precise
than what traditional applications of Jensen’s inequality would typically
yield. In some cases, these bounds even extend in the opposite direction,
offering a comprehensive exploration of the problem at hand.

To provide the reader with a swift comprehension of the concept of
an integral representation, as discussed in the first category mentioned
earlier, let us delve into a straightforward example. Imagine we have a
set of IID zero-mean Gaussian RVs, X1, X2, . . . , Xn, each with a variance
of σ2. Our task is to compute the expected value of E{1/

∑n
i=1 X2

i }. At
first glance, this expectation might appear insurmountable to compute
precisely. However, let us consider the integral representation of the
function f(s) = 1/s as

1
s

=
∫ ∞

0
e−st dt. (5.1)

The concept is to employ this representation to tackle the current
problem by rearranging the order between the expectation and the
integration, much akin to our approach in Section 3:

E
{

1∑n
i=1 X2

i

}
(a)= E

{∫ ∞

0
exp

(
−t

n∑
i=1

X2
i

)
dt

}
(5.2)

(b)=
∫ ∞

0
E
{

exp
(

−t
n∑

i=1
X2

i

)}
dt (5.3)

(c)=
∫ ∞

0

[
E
{

exp(−tX2
1 )
}]n

dt (5.4)

(d)=
∫ ∞

0

dt

(1 + 2σ2t)n/2 (5.5)

=

∞, n ≤ 2
1

(n−2)σ2 , n > 2
, (5.6)

where (a) is an application of (5.1), (b) amounts to interchanging
integration and expectation order, (c) follows from the IID assumption,
and (d) is due to the known expression for the MGF of X2, which
follows a chi-squared distribution.

Certainly, the example provided is quite elementary, but it is im-
portant to note that this concept can be applied in a wide range of
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scenarios, involving the presentation of the given function as the Laplace
transform (or any other linear transform) of another function, and the
expectation of the given non-linear function is represented as an inte-
gral of an expression that involves an expectation for which there is a
closed-form expression, like the MGF.

Another family of integral representations relates to the following
identity, which is applicable to any positive RV X (and can be readily
extended to encompass any RV with a well-defined expectation):

E{X} =
∫ ∞

0
Pr {X ≥ t} dt. (5.7)

In fact, this idea has already been used in Example 3.3 as well as in
Section 4. Accordingly, if f is non-negative and monotonic, and hence
invertible, we have

E{f(X)} =
∫ ∞

0
Pr{f(X) ≥ t} dt =

∫ ∞

0
Pr{X ≥ f−1(t)} dt, (5.8)

which often lends itself to closed-form analysis.
In the first two upcoming sections, we will explore certain integral

representations of two specific highly important functions in the context
of information-theoretic analyses: The logarithmic function (in Section
5.2, which is based on [148]) and the power function (in Section 5.3,
which is based on [149]). To the best of our knowledge, those integral
representations are not very common in the information-theory liter-
ature, but the essence of the approach remains as described above:
Substitute the expectation of the given non-linear function with an
integral of a function for which a closed-form expectation exists.

In the second category of tools explored in this section, which focuses
on modified versions of the Jensen inequality, we delve into three distinct
types of bounding techniques:

1. Jensen’s inequality combined with a change of measure (Section
5.4), where our exposition relies strongly on [9], [121] and [136].

2. Reverse Jensen inequalities (Section 5.5), which summarizes the
main findings on [142].
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3. Jensen-like inequalities, where the convex/concave function is only
part of the expression and the supporting line is re-optimized
(Section 5.6), which is based on [144].

While these techniques provide bounds rather than exact results, as seen
in the first category, their applicability extends across a broader range
of scenarios. Furthermore, they often yield substantial improvements
compared to the bounds derived from the conventional Jensen inequality.

5.2 An Integral Representation of the Logarithmic Function

In this section, we will explore the following integral representation of
the logarithmic function, which states that for x > 0

ln x =
∫ ∞

0

e−u − e−ux

u
du, (5.9)

and can be easily proved by substituting
∫∞

0 e−ut dt for 1/u on the
RHS and interchanging the order of the integration. This representation
finds its immediate utility in scenarios where the argument of the
logarithmic function is a positive-valued RV denoted as X, and our goal
is to compute the expectation, denoted as E{ln X}. By assuming the
validity of interchanging the expectation operator with the integration
over the variable u, we can simplify the calculation of E{ln X} into
evaluating the MGF of X, which is often a more straightforward task.
This transformation allows us to express it as:

E {ln X} =
∫ ∞

0

[
e−u − E{e−uX}

] du

u
. (5.10)

In particular, if X1, . . . , Xn are positive IID RVs, then

E {ln(X1 + . . . + Xn)} =
∫ ∞

0

(
e−u −

[
E{e−uX1}

]n) du

u
. (5.11)

This concept is not entirely novel, as it has been previously applied in
physics, as evidenced in sources such as [63, Eq. (2.4) and beyond], [151,
Exercise 7.6, p. 140], and [192, Eq. (12) and beyond]. However, in the
field of information theory, this approach is seldom utilized, despite its
potential significance. This significance arises from the frequent require-
ment to compute logarithmic expectations – a common occurrence in



5.2. An Integral Representation of the Logarithmic Function 113

numerous problem areas within information theory. Furthermore, the
integral representation (5.9) extends its utility beyond mere expectation
calculations; it also proves invaluable in evaluating higher moments of
ln X, most notably, the second moment or variance. This added func-
tionality allows us to assess statistical fluctuations around the mean,
enhancing our analytical capabilities in the field.

In [148], the practicality of this approach was effectively showcased
across various application domains. These applications encompassed
areas such as entropy and differential entropy assessments, performance
analysis of universal lossless source codes, and the determination of
ergodic capacity for the Rayleigh SIMO channel, with AWGN. It is worth
noting that within some of these examples, we successfully computed
variances related to the pertinent RVs. In particular, in [148, Proposition
2], the following result is stated and proved: For an RV X and s ∈ R let

MX(s) ≜ E
{

esX
}

, (5.12)

be the MGF of X. If X ≥ 0 with probability one, then

E {ln(1 + X)} =
∫ ∞

0

e−u · [1 − MX(−u)]
u

du, (5.13)

and

Var {ln(1 + X)}

=
∫ ∞

0

∫ ∞

0

e−(u+v)

uv

[
MX(−u − v) − MX(−u) MX(−v)

]
dudv. (5.14)

It is worth highlighting an intriguing consequence of the integral
representation (5.10). It transforms the calculation of the expectation
of the logarithm of X into the expectation of an exponential function of
X. This transformation has an added benefit: It simplifies expressions
involving quantities like ln(n!) into the integral of a summation of
a geometric series, a form that is readily expressible in closed form.
Specifically,

ln(n!) =
n∑

k=1
ln k (5.15)

=
n∑

k=1

∫ ∞

0
(e−u − e−uk)du

u
(5.16)
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=
∫ ∞

0

(
ne−u −

n∑
k=1

e−uk

)
du

u
(5.17)

=
∫ ∞

0
e−u

(
n − 1 − e−un

1 − e−u

)
du

u
. (5.18)

For a positive integer-valued RV, denoted as N , the computation of
E{ln N !} becomes a straightforward task, requiring only the calculation
of E{N} and the MGF, E{e−uN }. This is useful, for example, when N

follows a Poisson distribution, as shown in [148] in detail.
In [148], the usefulness of the integral representation of the logarith-

mic function is illustrated in several problem areas in information theory,
including graphs of numerical results. Here, we briefly summarize two
of the examples provided therein.

5.2.1 Differential Entropy for Generalized Multivariate Cauchy Den-
sities

Let (X1, . . . , Xn) be a random vector whose PDF is of the form

f(x1, . . . , xn) = Cn

[1 +∑n
i=1 g(xi)]q

, (5.19)

for (x1, . . . , xn) ∈ Rn, a given non-negative function g, and a real q > 0
such that ∫

Rn

dx

[1 +∑n
i=1 g(xi)]q

< ∞. (5.20)

We term this category of density as generalized multivariate Cauchy,
primarily because the multivariate Cauchy density arises as a specific
instance when g(x) = x2 and q = 1

2(n + 1). Employing the Laplace
transform relation,

1
sq

= 1
Γ(q)

∫ ∞

0
tq−1e−st dt, (5.21)

which holds for q ≥ 1 and Re(s) > 0, f can be displayed as a mixture
of product-form PDFs:

f(x1, . . . , xn) = Cn

[1 +∑n
i=1 g(xi)]q

(5.22)
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= Cn

Γ(q)

∫ ∞

0
tq−1e−t · exp

{
−t

n∑
i=1

g(xi)
}

dt. (5.23)

Defining for t > 0
Z(t) ≜

∫ ∞

−∞
e−tg(x) dx (5.24)

we obtain from (5.23),

1 = Cn

Γ(q)

∫ ∞

0
tq−1e−t

∫
Rn

exp
{

−t
n∑

i=1
g(xi)

}
dx1 . . . dxndt (5.25)

= Cn

Γ(q)

∫ ∞

0
tq−1e−t

(∫ ∞

−∞
e−tg(x)dx

)n

dt (5.26)

= Cn

Γ(q)

∫ ∞

0
tq−1e−tZn(t) dt, (5.27)

and so,
Cn = Γ(q)∫ ∞

0
tq−1e−tZn(t) dt

. (5.28)

Evaluating the differential entropy of f involves deriving E{ln
[
1 +∑n

i=1 g(Xi)
]
}. Using (5.13)

E
{

ln
[
1 +

n∑
i=1

g(Xi)
]}

=

∫ ∞

0

e−u

u

(
1 − E

{
exp

[
−u

n∑
i=1

g(Xi)
]})

du, (5.29)

and

E
{

exp
[
−u

n∑
i=1

g(Xi)
]}

= Cn

Γ(q)

∫ ∞

0
tq−1e−t

∫
Rn

exp
{

−(t + u)
n∑

i=1
g(xi)

}
dx1 . . . dxndt (5.30)

= Cn

Γ(q)

∫ ∞

0
tq−1e−tZn(t + u) dt. (5.31)

Thus, the joint differential entropy is given by

h(X1, . . . , Xn)
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= q · E
{

ln
[
1 +

n∑
i=1

g(Xi)
]}

− ln Cn (5.32)

= q

∫ ∞

0

e−u

u

(
1 − Cn

Γ(q)

∫ ∞

0
tq−1e−tZn(t + u) dt

)
du − ln Cn (5.33)

= qCn

Γ(q)

∫ ∞

0

∫ ∞

0

tq−1e−(t+u)

u

[
Zn(t) − Zn(t + u)

]
dtdu − ln Cn.

(5.34)

For g(x) = |x|θ, with an arbitrary θ > 0, we obtain from (5.24) that

Z(t) = 2 · Γ(1/θ)
θ · t1/θ

. (5.35)

In particular, for θ = 2 and q = 1
2(n + 1), we get the multivariate

Cauchy density from (5.19). In this case, since Γ
(1

2
)

=
√

π, it follows
from (5.35) that Z(t) =

√
π
t for t > 0, and from (5.28)

Cn =
Γ
(

n+1
2

)
πn/2

∫ ∞

0
t(n+1)/2−1e−t t−n/2 dt

=
Γ
(

n+1
2

)
πn/2 Γ

(1
2
) =

Γ
(

n+1
2

)
π(n+1)/2 . (5.36)

Combining (5.34), (5.35) and (5.36) gives

h(X1, . . . , Xn) = n + 1
2π(n+1)/2

∫ ∞

0

∫ ∞

0

e−(t+u)

u
√

t

[
1 −

(
t

t + u

)n/2
]

dtdu

+ (n + 1) ln π

2 − ln Γ
(

n + 1
2

)
. (5.37)

In this application example, we find it intriguing that (5.34) offers
what can be considered a “single-letter expression.” Remarkably, the
n-dimensional integral tied to the original expression of the differential
entropy h(X1, . . . , Xn) is effectively replaced by the two-dimensional
integral in (5.34), and notably, this replacement remains independent
of the value of n.

5.2.2 Ergodic Capacity of the Rayleigh SIMO Channel

Let us consider the SIMO channel with L receive antennas and AWGN.
We make the assumption that the channel transfer coefficients, denoted
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as h1, h2, . . . , hL, are independent and follow a zero-mean, circularly
symmetric complex Gaussian distribution with variances σ2

1, σ2
2, . . . , σ2

L.
In this context, the ergodic capacity of the SIMO channel, measured in
nats per channel use, is expressed as an expected value:

C = E
{

ln
(

1 + ρ
L∑

ℓ=1
|hℓ|2

)}
= E

{
ln
(

1 + ρ
L∑

ℓ=1

(
f2

ℓ + g2
ℓ

))}
, (5.38)

where fℓ ≜ Re{hℓ}, gℓ ≜ Im{hℓ}, and ρ ≜ P
N0

is the signal-to-noise ratio
(SNR). In view of (5.13), let

X ≜ ρ
L∑

ℓ=1
(f2

ℓ + g2
ℓ ). (5.39)

For all u > 0,

MX(−u) = E
{

exp
(

−ρu
L∑

ℓ=1
(f2

ℓ + g2
ℓ )
)}

(5.40)

=
L∏

ℓ=1

{
E
{

e−uρf2
ℓ

}
· E
{

e−uρg2
ℓ

}}
(5.41)

=
L∏

ℓ=1

1
1 + uρσ2

ℓ

, (5.42)

where (5.42) holds since

E
{

e−uρf2
ℓ

}
= E

{
e−uρg2

ℓ

}
(5.43)

=
∫ ∞

−∞

dw√
πσ2

ℓ

· e−w2/σ2
ℓ · e−uρw2 (5.44)

= 1√
1 + uρσ2

ℓ

. (5.45)

From (5.13), (5.38) and (5.42), the ergodic capacity (in nats per channel
use) is given by

C = E
{

ln
(

1 + ρ
L∑

ℓ=1

(
f2

ℓ + g2
ℓ

))}
(5.46)
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=
∫ ∞

0

e−u

u

(
1 −

L∏
ℓ=1

1
1 + uρσ2

ℓ

)
du (5.47)

=
∫ ∞

0

e−x/ρ

x

(
1 −

L∏
ℓ=1

1
1 + σ2

ℓ x

)
dx. (5.48)

We next turn to the variance of ln[1 + ρ
∑L

ℓ=1[f2
ℓ + g2

ℓ ]]. In the context
of a fading channel, the randomness of this RV is related to random
fluctuations in the channel quality, related to the so-called instanta-
neous capacity, and thus to the outage probability [207]. Concerning the
variance, owing to (5.14) and (5.42), we have:

Var
{

ln
(

1 + ρ
L∑

ℓ=1
[f2

ℓ + g2
ℓ ]
)}

=
∫ ∞

0

∫ ∞

0

e−(x+y)/ρ

xy
×{

L∏
ℓ=1

1
1 + σ2

ℓ (x + y) −
L∏

ℓ=1

[ 1
(1 + σ2

ℓ x)(1 + σ2
ℓ y)

]}
dxdy. (5.49)

The capacity C can be expressed as a linear combination of integrals of
the form ∫ ∞

0

e−x/ρ dx

1 + σ2
ℓ x

= 1
σ2

ℓ

∫ ∞

0

e−t dt

t + 1/(σ2
ℓ ρ) (5.50)

= e1/(σ2
ℓ ρ)

σ2
ℓ

∫ ∞

1/(σ2
ℓ
ρ)

e−s

s
ds (5.51)

= 1
σ2

ℓ

· e1/(σ2
ℓ ρ) · E1

( 1
σ2

ℓ ρ

)
, (5.52)

where E1(·) is the (modified) exponential integral function, defined for
x > 0 as

E1(x) ≜
∫ ∞

x

e−s

s
ds. (5.53)

5.3 An Integral Representation of the Power Function

In this section, we build upon the same approach as in Section 5.2,
expanding the scope to introduce an integral representation for a general
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moment of a non-negative RV, X. Specifically, we aim to find an expres-
sion for E{Xρ} where ρ > 0. When ρ is an integer, it is well-known that
this moment can be computed as the ρ-th order derivative of the MGF
of X, evaluated at the origin. However, our proposed integral represen-
tation, presented in this work, applies to any non-integer positive value
of ρ. Here as well, it replaces the direct calculation of E{Xρ} with the
integration of an expression involving the MGF of X. We refer to this
representation as an “extension” of the integral representation of the
logarithmic function discussed in Section 5.2. This is because the latter
can be derived as a special case of the formula for E{Xρ} by employing
the identity:

E {ln X} = lim
ρ→0

E{Xρ} − 1
ρ

, (5.54)

or alternatively, the identity,

E {ln X} = lim
ρ→0

ln [E{Xρ}]
ρ

. (5.55)

As in the previous section, here too, the proposed integral representation
is applied to a range of examples motivated by information theory [149].
This application showcases how the representation streamlines numerical
evaluations. In particular, much like the case of the logarithmic function,
when employed to compute a moment of the sum of a large number,
denoted as n, of non-negative RVs, it becomes evident that integration
over one or two dimensions, as suggested by our integral representation,
is notably simpler than the alternative of integrating over n dimensions,
as required in the direct calculation of the desired moment. Additionally,
single or double-dimensional integrals can be promptly and accurately
computed using built-in numerical integration techniques.

In order to present the integral representation, we commence by
recalling the definition of the Gamma function and defining the Beta
function, as follows:

Γ(u) ≜
∫ ∞

0
tu−1e−t dt, (5.56)

for u > 0, and

B(u, v) ≜
∫ 1

0
tu−1(1 − t)v−1 dt = Γ(u)Γ(v)

Γ(u + v) , (5.57)
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for u, v > 0. Let X be a non-negative RV with an MGF MX(·), and let
ρ > 0 be a non-integer real. Then, as shown in [149],

E{Xρ} = 1
1 + ρ

⌊ρ⌋∑
ℓ=0

αℓ

B(ℓ + 1, ρ + 1 − ℓ) + ρ · sin(πρ) · Γ(ρ)
π

×

∫ ∞

0

1
uρ+1

( ⌊ρ⌋∑
j=0

{(−1)j · αj

j! · uj
}

e−u − MX(−u)
)

du, (5.58)

where for all j ∈ {0, 1, . . . , ⌊ρ⌋}

αj ≜ E
{

(X − 1)j
}

(5.59)

= 1
j + 1

j∑
ℓ=0

(−1)j−ℓ · M
(ℓ)
X (0)

B(ℓ + 1, j − ℓ + 1) . (5.60)

The proof of (5.58) in [149] does not apply to natural values ρ (see [149,
Appendix A], where the denominators vanish). However, taking a limit
in (5.58) where we let ρ tend to an integer, and applying L’Hôpital’s
rule, one can reproduce the well-known result for integer ρ, which is
given in terms of the ρ-th order derivative of the MGF at the origin.
For ρ ∈ (0, 1), the above simplifies to:

E{Xρ} = 1 + ρ

Γ(1 − ρ)

∫ ∞

0

e−u − MX(−u)
u1+ρ

du. (5.61)

In [149], the profound utility of the integral representation shines
through in a comprehensive exploration across various domains within
information theory and statistics. These applications include detailed
investigations accompanied by graphical illustrations. The showcased
instances span a range of analytical inquiries, encompassing random-
ized guessing, estimation errors, the Rényi entropy of n-dimensional
generalized Cauchy distributions, and mutual information calculations
for channels featuring a specific jammer model. Here, we will provide a
succinct overview of one of these application examples, focusing primar-
ily on the easier scenario where ρ ∈ (0, 1) for clarity and simplicity of
exposition.

Example 5.1 (Moments of Guesswork). Suppose we have an RV X

that assumes values from a finite alphabet X . Let us explore a random
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guessing strategy wherein the guesser submits a sequence of independent
random guesses, drawn from a specific probability distribution denoted
as P̃ (·), defined over X . Consider any instance where x ∈ X represents
a realization of X, and we have the guessing distribution P̃ at our
disposal. In such a scenario, the RV G, representing the number of
independent guesses required to achieve success, follows a geometric
distribution:

Pr{G = k|x} =
[
1 − P̃ (x)

]k−1 · P̃ (x). (5.62)

Hence, for u < ln 1
1−P̃ (x)

the corresponding MGF is equal to

MG(u|x) =
∞∑

k=1
eku · Pr{G = k|x} (5.63)

= P̃ (x)
e−u −

(
1 − P̃ (x)

) . (5.64)

For ρ ∈ (0, 1), it is shown in [149] that

E {Gρ|x} = 1 + ρ

Γ(1 − ρ)

∫ ∞

0

e−u − e−2u

uρ+1[(1 − P̃ (x)
)−1 − e−u

] du. (5.65)

Consider the distribution of the RV X, denoted as P . To compute the
unconditional ρ-th moment using (5.65), we average over all possible
values of X. This yields the following result for all ρ in the open interval
(0, 1):

E {Gρ} = 1 + ρ

Γ(1 − ρ)

∫ 1

0

1 − z

(− ln z)ρ+1

∑
x∈X

P (x)
(
1 − P̃ (x)

)
1 − z

(
1 − P̃ (x)

) dz, (5.66)

where (5.66) is by changing the integration variable according to z = e−u.
In conclusion, equation (5.65) provides a computable one-dimensional
integral expression for the ρ-th guessing moment for any ρ > 0 (at least
numerically). This eliminates the necessity for numerical computations
involving infinite sums.

5.4 Jensen’s Inequality with a Change of Measure

In this section, we advocate for the practical utility of combining Jensen’s
inequality with a change of measure, effectively introducing an additional
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degree of freedom for optimization. To illustrate this concept concretely,
let us consider a concave function f and an RV X characterized by a
PDF p, with its support set in X . Additionally, let q represent another
PDF, also with support in X . We will use Ep{·} and Eq{·} to denote
expectation operators WRT p and q, respectively. Now, let us delve into
the following chain of simple inequalities:

f (Ep{X}) = f

(∫
X

p(x)x dx

)
(5.67)

= f

(∫
X

q(x) · xp(x)
q(x) dx

)
(5.68)

≥
∫

X
q(x)f

(
xp(x)
q(x)

)
dx (5.69)

= Eq

{
f

(
Xp(X)
q(X)

)}
. (5.70)

Given that the inequalities mentioned above are valid for any PDF q

supported by X , we have the flexibility to maximize the rightmost side
of this chain, which can be expressed as:

f (Ep{X}) ≥ sup
q∈Q

Eq

{
f

(
Xp(X)
q(X)

)}
, (5.71)

where Q is any class of PDFs with this support. Clearly, when p belongs
to the set Q, the choice of q = p reduces the inequality in (5.71) to
the standard Jensen’s inequality. On the opposite end of the spectrum,
if Q encompasses the entire collection of PDFs over X , and if X is a
positive RV with Ep{X} < ∞, then selecting q(x) = xp(x)

Ep{X} results in
a trivial and uninformative identity. However, this highlights that in
such a scenario, the inequality in (5.71) essentially becomes an equality,
depicted as:

f (Ep{X}) = sup
{q : supp{q}=X }

Eq

{
f

(
Xp(X)
q(X)

)}
. (5.72)

In the sequel, we abbreviate suprema and infima over {q : supp{q} = X }
simply by writing supq and infq, respectively. Likewise, if f is convex,
we have

f (Ep{X}) ≤ inf
q∈Q

Eq

{
f

(
Xp(X)
q(X)

)}
. (5.73)
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The effectiveness of these inequalities hinges on our judicious selection
of Q. As we have observed, Q should encompass p to ensure that the
resultant bound, after optimizing over q ∈ Q, does not fall short of the
standard Jensen’s inequality. Conversely, Q should exclude the choice
q(x) = xp(x)

Ep{X} , which renders the inequality uninformative. Ideally, the
class Q should be well-suited for practical use, allowing for closed-form
optimization. This convenience would enable us to derive bounds that
significantly improve upon the standard Jensen’s inequality, making the
approach both mathematically tractable and practically useful.

Perhaps the most important special case of (5.72) pertains to the
case of f(x) = ln x, where it becomes

ln (Ep{X}) = sup
q

Eq

{
ln
(

Xp(X)
q(X)

)}
(5.74)

= sup
q

{Eq{f(X)} − D(q∥p)} , (5.75)

which is intimately related to the Laplace principle [58] in large-de-
viations theory, or more generally, to Varadhan’s integral lemma [49,
Section 4.3] or the Donsker-Varadhan variational principle.

Example 5.2 (Exponential moments of codeword lengths in lossless com-
pression ). Let U1, . . . , Un be drawn from a finite-alphabet memoryless
source P and let ℓ(U1, . . . , Un) be the length (in nats) of the compressed
version of (U1, . . . , Un) under some given fixed-to-variable length loss-
less source code. We consider the exponents of ℓ(U1, . . . , Un) given by
X = exp{αℓ(U1, . . . , Un)} where α > 0 is a given real parameter. These
moments form the MGF, and as such they provide the full information
on their probability distribution. In addition, they are relevant for the
large-deviations behavior, e.g., assessing the probability of codeword
length buffer overflow [92], [97], [217]. Now, a naive application of
Jensen’s inequality yields

E{X} = E {exp[αℓ(U1, . . . , Un)]} (5.76)
≥ exp {αE{ℓ(U1, . . . , Un)} (5.77)
≥ eαnH(P ), (5.78)

where H(P ) is the per-symbol entropy of the source P . On the other
hand, considering P n and Qn as probability distributions of n-vectors
from the source, we have
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ln (EP n{X}) ≥ sup
Qn∈Q

[EQn{ln X} − D(Qn∥P n)] (5.79)

= sup
Qn∈Q

[αEQn{ℓ(U1, . . . , Un)} − D(Qn∥P n)] (5.80)

≥ sup
Qn∈Q

[αH(Qn) − D(Qn∥P n)] . (5.81)

Now, rather than taking Q to be the class of all probability distributions
of n-vectors, let us take it to be the class of all product form distributions,
i.e., Qn(u1, . . . , un) = ∏n

i=1 Q(ui). Since P n has a product form too, i.e.,
P n(u1, . . . , un) = ∏n

i=1 P (ui), we readily obtain that the last expression
reads

sup
Qn∈Q

[αH(Qn) − D(Qn∥P n)] = n · sup
Q

[αH(Q) − D(Q∥P )], (5.82)

that yields the Rényi entropy of order α pertaining to P , which is an
attainable lower bound to the exponential moment of ℓ(U1, . . . , Un),
unlike the lower bound obtained from the naive use of Jensen’s inequality
above. In other words, rather than maximizing over the entire class of all
probability distributions of n-vectors, {Qn}, we observe that the much
smaller class of memoryless probability distributions is large enough
to obtain a tight result. The same idea was used also in the converse
part of [9] in the context of guessing, which is strongly related to source
coding.

The identity (5.75) has found extensive utility, not only in this
context but also in previous works such as [121], where it was applied to
exponential moments of various loss functions, and [136], where it played
a crucial role in establishing lower bounds on exponential moments of
estimation errors. Numerous references within these two articles further
emphasize the importance of (5.75). However, it is vital to highlight
a key takeaway message from this section: The relation (5.71) is not
limited to the logarithmic function alone; it holds true for any concave
function (or convex function with appropriate adjustments) and extends
its applicability beyond just the logarithmic case.

Example 5.3. To demonstrate another special case of combining
Jensen’s inequality with a change of measure, consider the example of
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deriving an upper bound to the expectation of the harmonic mean of n

positive RVs, X1, . . . , Xn, i.e.,

E
{

n∑n
i=1 1/Xi

}
. (5.83)

This expectation cannot be upper bounded by a direct application of
Jensen’s inequality, because it provides a lower bound,

E
{

n∑n
i=1 1/Xi

}
≥ n∑n

i=1 E {1/Xi}
, (5.84)

rather than an upper bound, and moreover, it requires the expectations
of 1/Xi rather than those of Xi. However, consider the following ap-
proach: Let q = (q1, . . . qn) be an arbitrary probability vector, i.e., a set
of n positive numbers summing to unity. Then,

n∑
i=1

1
Xi

=
n∑

i=1
qi · 1

qiXi
(5.85)

(∗)
≥ 1∑n

i=1 qi · (qiXi)
(5.86)

= 1∑n
i=1 q2

i Xi
, (5.87)

where (∗) follows from the (ordinary) Jensen inequality applied to the
convex function f(u) = 1/u. Equivalently,

n∑n
i=1 1/Xi

≤ n ·
n∑

i=1
q2

i Xi. (5.88)

Since this inequality holds for every probability vector q, we may mini-
mize the RHS over q, to obtain

n∑n
i=1 1/Xi

≤ n · min
q

n∑
i=1

q2
i Xi. (5.89)

Taking the expectations of both sides, we get:

E
{

n∑n
i=1 1/Xi

}
≤ n · E

{
min

q

n∑
i=1

q2
i Xi

}
(5.90)

≤ n · min
q

E
{

n∑
i=1

q2
i Xi

}
(5.91)



126 Expectations of Nonlinear Functions of RVs

= n · min
q

n∑
i=1

q2
i E{Xi} (5.92)

(∗)= n∑n
i=1 1/E{Xi}

, (5.93)

where (∗) follows from the optimal choice of q, which is according to

qi = 1/E{Xi}∑n
j=1 1/E{Xj}

. (5.94)

More generally, whenever the function f(u) = uρ is convex (namely, for
ρ /∈ (0, 1)), we can similarly obtain the inequality

E
{(

n∑
i=1

Xi

)ρ}
≤
[

n∑
i=1

(E{Xρ
i })1/ρ

]ρ

. (5.95)

Note that no assumptions were imposed on the dependence/indepen-
dence among the RVs {Xi}.

5.5 Reverse Jensen Inequalities

The widely used Jensen inequality states that

E {f(X)} ≥ f(E{X}) (5.96)

for any convex function f and an RV X. Frequently, however, applied
mathematicians, and especially information-theorists, encounter a rather
vexing situation where Jensen’s inequality seems to operate in the
opposite direction of their desired results. This observation has spurred
significant research efforts aimed at developing various versions of the
so-called reverse Jensen inequality (RJI). A myriad of articles, including,
but not limited to, [3], [24], [25], [54], [55], [96], [104], [105], [187], [224],
have delved into this topic, showcasing its rich and evolving landscape.
In the majority of these works, the derived inequalities find practical
applications in diverse fields. Examples include establishing valuable
relationships between arithmetic and geometric means, deriving reverse
bounds on entropy, KL divergence, and more generally, Csiszár’s f -
divergence [4], [37]. Additionally, these inequalities have been extended
to reverse versions of the Hölder inequality, among other applications.
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In many of the aforementioned papers, the primary results manifest
in the form of an upper bound on the difference E{f(X)} − f(E{X}),
where f denotes a convex function and X is an RV. It is worth noting
that these upper bounds predominantly rely on global properties of the
function f , such as its range and domain, rather than on the underlying
PDF of X or its probability mass function in the discrete case. Ideally,
a desirable characteristic of an RJI would be its ability to provide tight
bounds when the PDF of X is highly concentrated around its mean,
akin to the well-known property of the standard Jensen inequality (5.96).
Such tightness in the presence of concentration around the mean is a
hallmark of the ordinary Jensen inequality, and it would be advantageous
for RJIs to exhibit a similar behavior under such conditions.

In [142], we extend the concepts introduced in [224], providing a fresh
perspective on the RJI landscape. Our contributions encompass several
novel variants of RJI, and what sets these apart is their ability to exhibit
the desired property of tightness in cases of measure concentration, a
characteristic we consistently emphasize.

Our journey in this section begins from the same foundational point
as found in the proof of [224, Lemma 1], but we continue by taking
a significantly different path. As we amply demonstrate, this novel
approach leads to notably tighter bounds, which prove to be eminently
tractable and analyzable in a multitude of scenarios. We then expand
upon these ideas, and venture into multivariate functions that exhibit
convexity (or concavity) in each variable individually, but may not
possess this property jointly across all variables. Furthermore, building
upon similar underlying principles, we extend our investigations to
derive upper and lower bounds on the expectations of functions that
do not necessarily exhibit convexity or concavity across their entire
domain. These diverse contributions collectively enrich the toolbox of
RJIs and broaden their potential utility in a wide array of practical and
theoretical contexts.

We commence our exploration from a foundational point that closely
resembles [224, Lemma 1]. Let f : R+ → R be a non-decreasing concave
function, and 1[X > a] denote the indicator function of event {X > a}.
Then,
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f(x) = f(x) − f(0)
x

· x + f(0) (5.97)

≥ f(x) − f(0)
x

· x · 1 {x ≤ a} + f(0) (5.98)

≥ f(a) − f(0)
a

· x · 1 {x ≤ a} + f(0) (5.99)

= f(a) − f(0)
a

· x · [1 − 1{x > a}] + f(0). (5.100)

Letting now X be a non-negative RV with a finite mean, E{X} = µ, it
is readily seen that by taking expectations of both sides that

E{f(X)} ≥

sup
a>0

[
µ

a
· f(a) +

(
1 − µ

a

)
· f(0) − f(a) − f(0)

a
· E {X · 1[X > a]}

]
.

(5.101)

This foundational inequality sets the stage for our subsequent derivations.
The primary challenge at this juncture is to evaluate the term:

q(a) ≡ E {X · 1[X > a]} . (5.102)

In straightforward cases, the exact calculation of q(a) is achievable
through closed-form expressions. Examples include scenarios where the
PDF of X follows uniform, triangular, or exponential distributions,
among others. However, for the majority of cases that pique our interest,
obtaining an exact, closed-form expression for q(a) becomes a formidable
task, if not an impossibility. Consequently, we must rely on upper bounds
to further constrain the RHS of (5.101).

In situations where the computation of q(a) eludes an exact closed-
form expression, we introduce two fundamental alternative approaches
for bounding q(a). Both approaches share a common feature: When the
RV X tightly concentrates around its mean µ, even slight deviations
of a from µ result in small values for q(a). This characteristic ensures
that our bounds closely approach the value of f(µ). The selection
between these two approaches depends on the specific problem under
consideration and the feasibility of obtaining closed-form expressions
for the moments involved, if such expressions exist at all.
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1. The Chernoff approach. The first approach is to upper bound the
indicator function, 1{x > a} by the exponential function es(x−a)

(s ≥ 0), akin to Chernoff’s bound. This results in

q(a) ≤ inf
s≥0

E{Xes(X−a)} (5.103)

= inf
s≥0

[
e−asE{XesX}

]
(5.104)

= inf
s≥0

[
e−asΦ′(s)

]
(5.105)

≜ qChernoff(a), (5.106)

where Φ′(s) is the derivative of the MGF, Φ(s) ≜ E{esX}. Thus,
(5.101) is further lower bounded as

E {f(X)} ≥

sup
a>0

[
µ

a
· f(a) +

(
1 − µ

a

)
· f(0) − f(a) − f(0)

a
· qChernoff(a)

]
.

(5.107)
This bound proves to be particularly valuable when the RV X

possesses a finite MGF, denoted as Φ(s), within a certain range
of positive s values. Furthermore, it is essential that Φ(s) is dif-
ferentiable within this range. To ensure the practicality of this
bound, it is crucial that qChernoff(a) can be expressed in a reason-
ably straightforward closed-form manner. A slight variation of the
Chernoff approach involves bounding not just the indicator func-
tion factor but the entire function x · 1[x > a] by an exponential
function of the form a · es(x−a). To ensure the effectiveness of this
approach, we choose s such that the derivative WRT x at x = a

is not less than 1. This ensures that the exponential function is
at least tangential to the function x · 1[x > a] as x approaches a

from above. Mathematically, this condition can be expressed as
as ≥ 1, which implies that s should be greater than or equal to
1/a. Thus,

q(a) ≤ a · inf
s≥1/a

{e−asΦ(s)} ≜ q̃Chernoff(a), (5.108)

which, of course, may replace qChernoff(a) in (5.107). This bound
can be applied in the same cases as qChernoff(a). It has the small
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advantage that there is no need to differentiate Φ(s), but the
range of the optimization over s is somewhat smaller.

2. The Chebychev–Cantelli approach. According to this approach,
the function x ·1[x > a] is upper bounded by a quadratic function,
in the spirit of the Chebychev–Cantelli inequality, i.e.,

x · 1[x > a] ≤ a(x + s)2

(a + s)2 , (5.109)

where the parameter s ≥ 0 is optimized under the constraint that
the derivative at x = a, which is 2a/(a + s), is at least 1 (again,
to be at least tangential to the function itself at x ↓ a), which
is equivalent to the requirement, s ≤ a. In this case, denoting
σ2 = Var{X}, we get

q(a) ≤ aE
{
(X + s)2}

(a + s)2 = a
[
σ2 + (µ + s)2]

(a + s)2 , (5.110)

which, when minimized over s ∈ [0, a], yields

s∗ = min
{

a,
σ2

a − µ
− µ

}
, (5.111)

and then the best bound is given by

q(a) ≤ qCheb-Cant(a) ≜


σ2+(a+µ)2

4a , a < ac
aσ2

σ2+(a−µ)2 , a ≥ ac
, (5.112)

where ac ≜
√

σ2 + µ2.

The Chernoff approach often outperforms the Chebychev–Cantelli ap-
proach in many scenarios. Let us consider an example to illustrate
this point. Suppose we have an RV X expressed as the sum of n IID
RVs, Y1, Y2, . . . , Yn, all with the same mean µY , variance σ2

Y , and MGF
ΦY (s). In this case, we can readily calculate that µ = nµY , σ2 = nσ2

Y ,
and Φ(s) = [ΦY (s)]n. Additionally, for the sake of simplicity, let us
assume that f(0) = 0. Now, if we aim to apply the Chebychev–Cantelli
approach, we typically end up with a bound that relies on the variance
of X and its mean, which are both multiplied by n. This often results in
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a relatively loose bound due to the dependence on the sample size n. On
the other hand, when we employ the Chernoff approach, we leverage the
MGF of X and, consequently, the MGF of Yi, which remains unchanged
as n grows. This approach frequently yields tighter bounds, even when
n is substantial. Thus, in cases like this, the Chernoff approach tends
to be more effective in providing more accurate and meaningful bounds.
In particular, Chernoff’s bounds yields

E
{

f

(
n∑

i=1
Yi

)}

≥ nµY

a
· f(a) − f(a)

a
inf
s≥0

{
e−sa d

ds
[ΦY (s)]n

}
(5.113)

= nµY

a
· f(a) − nf(a)

a
inf
s≥0

{
e−sa[ΦY (s)]n−1Φ′

Y (s)
}

(5.114)

= nf(a)
a

[
µY − inf

s≥0

{
e−sa[ΦY (s)]n · d ln ΦY (s)

ds

}]
. (5.115)

Now, if Y1, Y2, . . . obey a large-deviations principle, the second term
in the square brackets tends to zero exponentially for the choice a =
n(µY + ϵ) with arbitrarily small ϵ > 0. In this case, let s∗ > 0 be the
maximizer of [s(µ+ϵ)−ln ΦY (s)], and denote I(ϵ) = s∗(µ+ϵ)−ln ΦY (s∗).
Then,

E
{

f

(
n∑

i=1
Yi

)}
≥

f [(µY + ϵ)n]
µY + ϵ

[
µY − e−nI(ϵ) d ln ΦY (s)

ds

∣∣∣∣
s=s∗

]
. (5.116)

For large enough n, the second term in the square brackets becomes
negligible, and the lower bound becomes arbitrarily close to f [(µY +
ϵ)n] · µY /(µY + ϵ). On the other hand, Jensen’s upper bound is f(µY n).
In some cases, the difference is not very large, at least for asymptotic
evaluations. For example, if f(x) = ln(1 + x), which is a frequently
encountered concave function in information theory, ln[1 + n(µY + ϵ)] ≥
ln n + ln(µY + ϵ), whereas ln(1 + nµY ) ≤ ln n + ln(µY + 1/n), which
are very close for large n and small ϵ > 0.
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In the Chebychev–Cantelli approach, on the other hand, we have
ac =

√
n2µ2

Y + nσ2
Y ∼ nµY for large n. Thus, if we take a = n(µY +ϵ) >

ac, we have

qCheb-Cant [n(µY + ϵ)] = nσ2
Y

nσ2
Y + n2ϵ2 = σ2

Y

σ2
Y + nϵ2 , (5.117)

which tends to zero, but only at the rate of 1/n, as opposed to the
exponential decay in the Chernoff approach. Still, for large n, the main
term of the bound becomes asymptotically tight, as before.

In spite of the superiority of the Chernoff approach relative to the
Chebychev–Cantelli approach, as we now demonstrated, one should
keep in mind that there are also situations where the RV X does not
have an MGF (i.e., when the PDF of X has a heavy tail), yet it does
have a mean and a variance. In such cases, the Chebychev–Cantelli
approach is applicable while the Chernoff approach is not. But even
when the MGF exists, in certain cases, the calculation of the first and
the second moment are easier than the calculation of the exponential
moment.

We summarize our main finding this section so far in the following
inequality:

E{f(X)} ≥

sup
a>0

[
µ

a
· f(a) +

(
1 − µ

a

)
· f(0) − f(a) − f(0)

a
· qmin(a)

]
, (5.118)

where

qmin(a) ≜ min {qChernoff(a), q̃Chernoff(a), qCheb-Cant(a)} . (5.119)

We now demonstrate the lower bound in two information-theoretic
application examples. More examples can be found in [142].

Example 5.4 (Capacity of the Gaussian channel with random SNR).
Consider a zero-mean, circularly symmetric complex Gaussian channel
whose SNR, Z, is an RV (e.g., due to fading), known to both the
transmitter and the receiver. The capacity is given by C = E{ln(1+gZ)},
where g is a certain deterministic gain factor and the expectation is
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WRT the randomness of Z. For simplicity, let us assume that Z is
distributed exponentially, i.e.,

pZ(z) = θe−θz, (5.120)
for z ≥ 0, where the parameter θ > 0 is given. In this case, f(x) =
ln(1 + gx), µ = 1/θ and q(a) can be easily derived in closed form, to
obtain

q(a) = θ ·
∫ ∞

a
ze−θz dz =

(
a + 1

θ

)
· e−θa. (5.121)

Consequently,

C ≥ sup
a≥1/θ

ln(1 + ga)
a

[1
θ

−
(

a + 1
θ

)
· e−aθ

]
(5.122)

= sup
s≥1

[1 − (s + 1)e−s

s

]
· ln

(
1 + gs

θ

)
, (5.123)

whereas the Jensen upper bound is C ≤ ln(1 + g/θ). A plot of the
bounds can be found in [142], which shows that the bounds become
tight for large θ (high SNR).
Example 5.5 (Universal source coding). Let us delve into the evaluation
of the expected code length linked with the universal lossless source
code developed by Krichevsky and Trofimov [108]. In essence, this code
serves as a universal solution for encoding memoryless sources. In the
binary context, at each time step t, it systematically assigns probabilities
to the next binary symbol based on a biased version of the empirical
distribution derived from the source data observed up to that point,
denoted as s1, s2, . . . , st. To be more specific, let us examine the ideal
code-length function (measured in nats):

L(sn) = −
n−1∑
t=0

ln Q(st+1|s1, . . . , st), (5.124)

where
Q(st+1 = s|s1, . . . , st) = Nt(s) + 1

t + 2 , (5.125)

and Nt(s), s ∈ {0, 1}, is the number of occurrences of the symbol s in
(s1, . . . , st). Therefore,

E {L(Sn)} =
n−1∑
t=0

ln(t + 2) −
n−1∑
t=0

E{ln[Nt(St+1) + 1]} (5.126)
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= ln[(n + 1)!] −
n−1∑
t=0

E
{

ln
(

1 +
t∑

i=0
1[Si = St+1]

)}
(5.127)

= ln[(n + 1)!] − p ·
n−1∑
t=0

E
{

ln
(

1 +
t∑

i=0
1[Si = 1]

)}

− (1 − p) ·
n−1∑
t=0

E
{

ln
(

1 +
t∑

i=0
1[Si = 0]

)}
, (5.128)

where 1[·] are indicator functions of the corresponding events and
where p and 1 − p are the probabilities of ‘1’ and ‘0’, respectively. To
establish an upper bound for E{L(Sn)}, one can now use (5.116) for
lower bounds for each of the terms: E{ln(1 + ∑t

i=0 1[Si = 1])} and
E{ln(1 + ∑t

i=0 1[Si = 0])}, which are approximately ln(1 + np) and
ln[1 + n(1 − p)], respectively.

5.6 Jensen-Like Inequalities

In this section, which summarizes the main findings of [144], we consider
inequalities that are founded upon a fundamental insight closely tied to
the derivation of the ordinary Jensen inequality. This insight revolves
around the relationship between a given convex function, denoted as
f(x), and the tangential affine function, ℓ(x) = f(a)+f ′(a)(x−a). Here,
a is an arbitrary value within the domain of x, and f ′(a) represents the
derivative of f at the point x = a (assuming the differentiability of f at
that point). By strategically choosing a to be E{X} (the expected value
of the RV X) and subsequently taking expectations of both sides of the
inequality f(X) ≥ ℓ(X), we can effortlessly establish the traditional
Jensen inequality (5.96). This crucially hinges on the fact that a∗ =
E{X} constitutes the optimal selection of a in the context of maximizing
E{ℓ(X)} across all potential values of a. This, in turn, furnishes us with
the most stringent lower bound within the scope of lower bounds for
E{f(X)}. However, it is worth noting that the optimal choice of a may
differ when we are dealing with more intricate expressions where the
expectation needs to be lower bounded. For instance, one might seek
to establish a lower bound for E{g[f(X)]}, where g is a monotonically
non-decreasing function, or E{f(X)g(X)}, where g is a non-negative
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and/or convex function, or perhaps a combination of these conditions
and more. In such cases, the optimal choice of a could deviate from
E{X}.

To illustrate this point, let g be a non-negative function, and let
us examine the lower bound of E{f(X)g(X)}. In this scenario, we can
establish the following inequality:

E {f(X)g(X)} ≥ E
{
[f(a) + f ′(a)(X − a)]g(X)

}
. (5.129)

By optimizing the RHS over the parameter a, we can easily determine
the optimal choice for a, denoted as a∗:

a∗ = E{Xg(X)}
E{g(X)} . (5.130)

This result leads to the inequality:

E {f(X)g(X)} ≥ f

(E{Xg(X)}
E{g(X)}

)
· E {g(X)} . (5.131)

This inequality proves valuable, provided that we can readily compute
both E{g(X)} and E{Xg(X)} for the given function g. Our first example
concerns a function that is intimately related to the Shannon entropy.

Example 5.6 (An entropy-related function). Letting f(x) = − ln x and
g(x) = x for x > 0, we obtain

E {−X ln X} ≥ −E{X} · ln E{X2}
E{X}

(5.132)

= −E{X} · ln(E{X})

− E{X} · ln
(

1 + Var{X}
[E{X}]2

)
. (5.133)

Notice that the function −x ln x exhibits concavity, rather than con-
vexity. Nevertheless, we establish a lower bound, not an upper one,
on its expectation, thereby unveiling a RJI. The right-most side of
the expression comprises two components: The initial term represents
the standard Jensen upper bound for E{−X ln X}, while the second
term accounts for the gap. This gap is contingent not only upon the
expectation of X but also on its variance, reflecting the fluctuations
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around E{X}. Clearly, in scenarios where Var{X} = 0, the second term
disappears — a logical outcome, as a degenerate RV causes Jensen’s
inequality to hold with equality, eliminating any gap. This inequality
promptly finds application in deriving a lower bound for the expected
empirical entropy of a sequence generated by a memoryless source. Such
an application is significant to universal source coding, as detailed in
[108] (see more details in [144]).

Another important example is associated with moments.

Example 5.7 (Bounds on moments). Let s and t be two real numbers
whose difference, s − t, is either negative or larger than unity. Now, let
g(x) = xt, and f(x) = xs−t. Then,

E {Xs} = E
{

XtXs−t
}

(5.134)

≥
(
E{Xt+1}
E{Xt}

)s−t

· E{Xt} (5.135)

= (E{Xt+1})s−t

(E{Xt})s−t−1 . (5.136)

In particular, for t = 1 and s /∈ (1, 2), this becomes

E {Xs} ≥
(
E{X2}

)s−1

(E{X})s−2 = [E{X}]s ·
(

1 + Var{X}
[E{X}]2

)s−1

, (5.137)

which is, once again, a bound that depends only on the first two mo-
ments of X. For s ∈ (0, 1), the function xs exhibits concavity, resulting
in a RJI. Conversely, when s ≤ 0 or s ≥ 2, the function xs is convex,
giving rise to an enhanced version of Jensen’s inequality. In this en-
hanced version, the first term, [E{X}]s, corresponds to the standard
Jensen inequality, while the second factor quantifies the degree of en-
hancement. This enhancement is contingent on the relative fluctuation
term, Var{X}/[E{X}]2. Naturally, the extent of improvement hinges
on the variance of X. When the variance tends to zero, there is no room
for improvement since the standard Jensen inequality attains equality.
In contrast, a larger variance results in a wider gap between the con-
ventional Jensen bound, [E{X}]s, and the enhanced counterpart. This
underscores the importance of optimizing the parameter a, as opposed
to the default choice of a = E{X} in the standard Jensen inequality.
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Another family of Jensen-like bounds is associated with the product
of two non-negative convex functions. Let f and g be non-negative,
differentiable convex functions of x ≥ 0, where f is monotonically
non-decreasing. Then,

E {f(X)g(X)}
≥ E

{
[f(a) + f ′(a)(X − a)] · g(X)

}
(5.138)

=
[
f(a) − af ′(a)

]
· E {g(X)} + f ′(a)E {Xg(X))} (5.139)

(∗)
≥
[
f(a) − af ′(a)

]
E
{
[g(b) + g′(b)(X − b)]

}
+

f ′(a)E
{
X
[
g(c) + g′(c)(X − c)

]}
(5.140)

=
[
f(a) − af ′(a)

]
·
[
g(b) − bg′(b) + g′(b)E{X}

]
+

f ′(a)
[
(g(c) − cg′(c))E{X} + g′(c)E

{
X2
}]

, (5.141)

where (∗) follows since the convexity of f implies that f(a) ≥ af ′(a) ≥
0. Maximizing the right-most side over a, b and c, one obtains the
inequality:

E {f(X)g(X)} ≥ f

(
E{X} · g(E{X2}/E{X})

g(E{X})

)
· g (E{X}) . (5.142)

Example 5.8 (Second moment of Gaussian capacity). Consider the ex-
ample of the AWGN channel with a random SNR, denoted as Z. In
this context, we aim to bound the variance of the (instantaneous) ca-
pacity, denoted as c(Z). This variance is important in order to assess
the random fluctuations of the quality of the channel [207]. Indeed, if Z

is deterministic then the variance is zero, and c(Z) is constant, trivially
equals to E[c(Z)]. So, reliable information can be sent over the channel
at rate E[c(Z)] at arbitrarily small error probability, using a capacity
achieving code [171]. If, however, Z is random, then the system may de-
ploy a capacity achieving code at some chosen rate R, e.g., the expected
capacity E[c(Z)]. In this case, if the variance of c(Z) is large, then there
is a high probability for an outage event, to wit, the event c(Z) ≤ R

in which the instantaneous capacity of the system does not suffice to
support the coding rate R, and the decoding error probability is high
[10], [57]. Thus, for such channels, the error probability is dominated by
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the outage probability, which in turn, is directly related to the variance
of c(Z).

The variance of c(Z) can be expressed as follows:

Var {c(Z)} = E
{

c2(Z)
}

− [E{c(Z)}]2 (5.143)

= E
{

ln2(1 + gZ)
}

− [E {ln(1 + gZ)}]2 . (5.144)

To establish an upper bound for Var{c(Z)}, we can derive upper bounds
for both E{ln2(1 + gZ)} and a lower bound for E{ln(1 + gZ)}. For
the former, we can utilize the inequality presented here, employing
f(z) = g(z) = ln(1 + gz). This yields the following upper bound, relying
solely on the first two moments of Z:

E
{

ln2(1 + gZ)
}

≤

ln (1 + gE{Z}) · ln
(

1 + gE{Z} ln(1 + gE{Z2}/E{Z})
ln(1 + gE{Z})

)
. (5.145)

Notably, the function ln2(1 + gz) is neither convex nor concave. Nev-
ertheless, our approach provides an upper bound that can be easily
computed, given the ability to calculate the first two moments of Z.

These are just a few out of many more examples provided in [144].
The main features of the results on Jensen-like inequalities in general,
are the following. Firstly, in many instances, such as the one mentioned
above, we can analytically determine the optimal value of a parameter
(e.g., a in the preceding discussion). However, in cases where closed-form
optimization is not feasible, we have two viable options: (i) Perform
numerical optimization or (ii) select an arbitrary value for a and derive a
valid lower bound. It is important to note that a well-informed choice for
a can potentially yield a robust lower bound. Secondly, these inequalities
offer two distinct types of bounds: (i) Bounds that necessitate computing
the first two moments (or equivalently, the first two cumulants) of the
RV X, and (ii) bounds that require calculating the MGF of X and
its derivative, or equivalently, the cumulant generating function of X

and its derivative. These moment calculations are often straightforward,
especially in scenarios where X is represented as the sum of IID RVs —
a common occurrence in information-theoretic applications.
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It should also be noted that the classes of Jensen-like inequalities
provide ample flexibility for deriving lower bounds on functions that
may not be inherently convex, some may even be concave. This opens
the door to an alternative approach for RJIs, different than those
discussed in Section 5.5. This can be achieved by representing the given
function within one of the discussed categories, such as a product of
a convex function and a non-negative function, a product of two non-
negative convex functions, or a composition of a monotone function and a
convex function. Finally, the Jensen-like inequalities possess the desirable
property of tightening as the RV X becomes increasingly concentrated
around its mean, akin to the conventional Jensen inequality.



6
Summary, Outlook and Open Issues

In this monograph, we have provided an analytical toolbox for infor-
mation-theoretic analysis. We have described a generalization of the
method of types, which allows to address settings that go beyond the fi-
nite alphabet case, including the prominent example of Gaussian sources
and channels, possibly with memory. This allows to evaluate the volumes
of various high-dimensional sets, and thus also their probability. We
have also described a generalization of this method to distributions from
exponential families. Further generalizing and refining such extensions to
broader classes of distributions is an interesting path for future research.
We have then described the saddle-point method for integration, which
not only allows to evaluate the pre-exponent of volumes or probabilities,
it is also necessary in the evaluation of redundancy rates, and may
provide solutions in settings for which the method of types fails.

We then continued to present the TCEM, for evaluating the expo-
nential behavior of random codes. The method is principled, allows
to analyze optimal decoders, and is guaranteed to provide exponen-
tially tight results. It also provides the best known exponents in diverse
problem settings. Future research may further explore additional set-
tings, e.g., the error exponent of the typical random code in multi-user
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configurations [59]. An additional important future research direction
is to consider structured random-ensembles. The TCEM relies on the
assumption that the codewords in the ensemble are drawn at random,
IID (or some variant of such a random ensemble). For practical decoding
algorithms, codes must have some structure, e.g., linear codes over finite
fields, lattice codes for real/complex-input channels [229], convolutional
codes or trellis-codes, or even well-defined structure such as turbo-codes
[17], LDPC codes [171], polar codes [8], and so on. It is of interest to
develop methods, akin to the TCEM, to accurately analyze the error
exponents of such codes. In addition, it is also of interest to explore
methods inspired by the TCEM in derivation of converse results, in the
finite-blocklength regime [166], in the moderate-deviations regime [5],
[167] and so on. We have briefly mentioned a few such initial results,
which hints at the possibility of enriching this direction. Finally, it is
also of interest to further delve into the optimization problems involved
in the computation of exponents obtained by the TCEM, and develop
efficient, and perhaps “general-purpose”, solvers, to solve them.

We then considered the tight evaluation of expectations of non-linear
functions of RVs, including integral representations and a few variants
of Jensen’s inequality. These techniques are highly useful in information
theory, as information measures typically involve such expectations.
For RJI, we have emphasized that it approaches the standard Jensen
inequality, when the RV of interest is tightly concentrated around its
mean value. It is thus of interest to relate the RJI we considered to
concentration-of-measure ideas [20].
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A
On the Tightness of Chernoff’s Bound via the

Method of Types

Let P be a memoryless source over an alphabet X . For simplicity, we
focus on finite-alphabet sources, though a similar derivation can be
carried out using the extended method of types developed in Section
2 for more general sources. Let f be a real function of probability
distributions over X , and α ∈ R. Then,

Pr
[
f(P̂x) ≥ α

]
=

∑
x∈X n

P (x) · 1
[
f(P̂x) ≥ α

]
(A.1)

(a)=
∑

x∈X n

P (x) · inf
s≥0

ens[f(P̂x)−α] (A.2)

(b)=
∑
Q

e−n·D(Q||P ) · inf
s≥0

ens[f(P̂x)−α] (A.3)

(c).= exp
[
−n · min

Q

{
D(Q||P ) − inf

s≥0
s
[
f(P̂x) − α

]}]
(A.4)

= exp
[
−n · min

Q
sup
s≥0

{
D(Q||P ) − s

[
f(P̂x) − α

]}]
(A.5)

(d)
≤ exp

[
−n · sup

s≥0
min

Q

{
D(Q||P ) − s

[
f(P̂x) − α

]}]
(A.6)
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= inf
s≥0

exp
[
−n · min

Q

{
D(Q||P ) − s

[
f(P̂x) − α

]}]
(A.7)

(e).= inf
s≥0

∑
x∈X n

P (x) · ens[f(P̂x)−α] (A.8)

= inf
s≥0

E
[
ens[f(P̂x)−α]

]
, (A.9)

where (a) follows from the elementary bound 1{t ≥ α} ≤ ens(t−α) that
holds for any s ≥ 0, (b) follows from the probability of a type class
[(2.12) in Section 2.2.1], and where the summation is over all possible
types, (c) follows since the number of possible types is polynomial in
n [(2.2) in Section 2.2.1], and so the sum is exponentially on the same
scale as the maximum element, (d) follows since maximin is always less
or equal than the minimax, and (e) follows again from the method of
types, reversing the reasoning above.

The final term in (A.9) is exactly Chernoff’s bound for the event
{f(P̂x) ≥ α}. Importantly, if f is concave then the minimax theorem
[188] implies the inequality in (d) above is, in fact, an equality, and
so the chain of passages is exponentially tight. In many applications,
f is affine (e.g., the empirical mean of some cost) and thus concave,
and so Chernoff’s bound is assured to be tight. See [49] for a thorough
discussion.



B
Computation of Exponents

In this appendix, we describe two possible approaches to efficiently
compute or bound the exponents obtained using the TCEM. This
aspect is an indispensable part of the TCEM, since it is possible for an
error exponent to take a rather intricate formula. Indeed, recall that
the TCEM exponents are given by Csiszár–Körner-style formulas, e.g.,
as in (4.10). Thus, they involve a constrained optimization problem
over joint distributions, and the dimensionality of the optimized joint
distributions increases with the alphabet sizes of the problem (e.g.,
input and output alphabets of the channel). Thus, a direct optimization,
using an exhaustive search or “general-purpose” global optimization
over the probability simplex may be prohibitively complex.

The first approach we consider is based on Lagrange duality [21]
(see also [180, Appendix]), in which the original exponent optimization
problem is considered to be the primal optimization problem. When
deriving instead the dual optimization problem of the exponent, the
result is a Gallager-style bound [71, Chapter 5], which is often rather
easy to compute and plot for an entire range of rates, rather than
for a specific rate; see (B.19) in what follows for a typical formula.
This is especially useful in multiuser problems [59], for which even
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problem instances with binary alphabets lead to optimization problems
in non-trivial dimensions. For example, for a broadcast channel problem
with input alphabet X and two receivers, each with an alphabet Y, a
joint distribution of the input and the two outputs has dimensionality
|X | · |Y|2 − 1, which is at least 7. In some of the problems, the number
of optimization variables for the Gallager-style bound does not increase
with the alphabet size of the source or channel. The downside is that, as
we shall see, the derivation might include the utilization of bounds that
may sacrifice tightness. Indeed, in minimization optimization problems,
the value of the dual problem is a lower bound on the value of the
primal problem, and if the primal optimization problem is convex then
strong duality holds (under typically mild conditions) [21, Chapter 5],
and both values are equal. However, there is no guarantee that the
primal optimization problem of the exponent is convex, and sometimes
obtaining reasonably simple dual problems requires additional steps,
which may also sacrifice tightness.

The second approach is based on utilization of convex optimization
solvers. While the optimization problem involved in the computation of
the exponent may not be convex as is, in many cases it is possible to
develop a procedure that allows to compute it by only solving convex
optimization problems.

Moreover, typically, the primal problem involves mostly minimiza-
tion operators (over joint types), while the dual problem involves maxi-
mization operators (over scalar parameters). From this aspect, the dual
exponent is preferable, because even a sub-optimal choice of the dual
variables leads to a valid bound on the exponent. Thus, e.g., a coarse
exhaustive search on the dual variables may be performed and still lead
to a tight bound. In contrast, the minimization in the primal problem
must be performed accurately in order to obtain a valid numerical
value of the exponent. Nonetheless, it also possible for the primal prob-
lem to include a maximization operator (possibly intertwined between
minimization operators), and the same holds for such maximization
problems — any sub-optimal choice leads to a valid bound. In fact, in
some cases, an educated guess for the maximizing primal variable may
be proposed, and in some settings it is possible to show that this choice
is actually optimal.
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B.1 Exponent Computation by Lagrange Duality

Lagrange duality is based on the minimax theorem [188], stating the
minimax value of a functional convex in the minimization variable and
concave in the maximization variable equals to the maximin value.
We will next exemplify this technique on the random-coding error
exponent Erc,α(R, PX) from (4.27), and derive a Lagrange dual lower
bound on its value. As we have seen, if we consider the MMI rule,
then the random-coding error exponent is greatly simplified to the
standard random-coding error exponent in (4.10), which only contains
a minimization over QY |X (with the minimization over Q̃Y |X removed).
In accordance, it is not very difficult to obtain a dual Lagrange form
of this exponent. In order to demonstrate a few other techniques that
are generally useful for the TCE-based exponents, we will next let
α(·) be general, yet restricted to be a linear function of QXY , given
by α(QXY ) ≜

∑
x∈X ,y∈Y α(x, y) · Q(x, y) (this includes, e.g., the ML

decoder).
Let us start by writing the objective function of Erc,α(R, PX) using

a dual variable ρ ∈ R as

Erc,α(R, PX)

= min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) +
[
I(PX × Q̃Y |X) − R

]
+

(B.1)

= min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) + max
{

I(PX × Q̃Y |X) − R, 0
}

(B.2)

(∗)= min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) + max
ρ∈[0,1]

ρ ·
[
I(PX × Q̃Y |X) − R

]
(B.3)

= min
QY |X ,Q̃Y |X

max
ρ∈[0,1]

D(QY |X ||W |PX) + ρ ·
[
I(PX × Q̃Y |X) − R

]
, (B.4)

where (∗) follows from the identity max{t, 0} = maxρ∈[0,1] ρt. Now,
the objective function is linear, and hence concave, in the maximizing
variable ρ, and the interval [0, 1] is convex. Moreover, D(QY |X ||W |PX)
is convex in QY |X and ρ · I(PX × Q̃Y |X) is convex in Q̃Y |X (for ρ ≥ 0),
hence the objective functional is jointly convex in (QY |X , Q̃Y |X). The
constraint set for (QY |X , Q̃Y |X), given by
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{
QY |X , Q̃Y |X : (PX × QY |X)Y = (PX × Q̃Y |X)Y ,

α(PX × Q̃Y |X) ≥ α(PX × QY |X)
}

, (B.5)

is the intersection of a hyperplane and a half space. We also note
the implicit constraint that QY |X and Q̃Y |X are conditional probabil-
ities, i.e., ∑y∈Y QY |X(y|x) = ∑

y∈Y Q̃Y |X(y|x) = 1 for all x ∈ X and
QY |X(y|x), Q̃Y |X(y|x) ≥ 0 for all x ∈ X , y ∈ Y. These are also convex
constraints, and since the intersection of convex sets is convex, the
constraint set for (QY |X , Q̃Y |X) is convex. So, the minimax theorem
[188] implies that

Erc,α(R, PX) =

max
ρ∈[0,1]

min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) + ρ ·
[
I(PX × Q̃Y |X) − R

]
(B.6)

over the constraint set. We next focus on the inner minimization for
a given ρ ∈ [0, 1]. Following Lagrange duality [21, Chapter 5], we
introduce dual variables λ ≥ 0 and {ν(y)}y∈Y ⊂ R. The variable λ is
for the inequality constraint α(PX × Q̃Y |X) ≥ α(PX × QY |X), whereas
the variables {ν(y)}y∈Y are for the constraint of equal output marginals,
that is, the |Y| constraints (PX × QY |X)Y = (PX × Q̃Y |X)Y . Note
that the constraint that QY |X and Q̃Y |X are conditional probability
distributions is kept implicit. Hence, the minimization of interest is

min
QY |X ,Q̃Y |X

max
λ≥0

max
{ν(y)}y∈Y

D(QY |X ||W |PX) + ρ ·
[
I(PX × Q̃Y |X) − R

]
+
∑
y∈Y

ν(y) ·
[∑

x∈X
PX(x)

(
Q̃Y |X(y|x) − QY |X(y|x)

)]

+ λ ·

∑
x∈X

∑
y∈Y

α(x, y) · PX(x)
(
QY |X(y|x) − Q̃Y |X(y|x)

) . (B.7)

The minimax theorem now implies that we may interchange the mini-
mization and maximization order. We next focus on the minimization,
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and begin by expressing the mutual information term via the golden
formula using an arbitrary probability distribution SY on Y, as

I(PX × Q̃Y |X) = D(Q̃Y |X ||Q̃Y |PX) − D(Q̃Y ||SY ) (B.8)
= min

SY

D(Q̃Y |X ||SY |PX). (B.9)

Using this relation and slightly re-organizing the objective function, we
are left with the minimization of the functional

min
SY

D(QY |X ||W |PX)+∑
x∈X

∑
y∈Y

PX(x)QY |X(y|x) · [−ν(y) + λ · α(x, y)]

+ ρD(Q̃Y |X ||SY |PX)
+
∑
x∈X

∑
y∈Y

PX(x)Q̃Y |X(y|x) · [ν(y) − λ · α(x, y)] (B.10)

over (QY |X , Q̃Y |X). It can be noticed that the minimization over QY |X
is decoupled from the minimization over Q̃Y |X , and each of them can
be solved directly. Alternatively, we may use the Donsker–Varadhan
variational formula [20, Corollary 4.15], [53], stating that for any two
probability measures P1 and P2 on Z and a function f : Z → R that
does not depend on P1

min
P2

{D(P2||P1) + EP2 [f(Z)]} = − lnEP1

[
e−f(Z)

]
. (B.11)

Let W (·|x) denote the conditional output of the channel given x ∈ X .
By employing (B.11) separately for each x ∈ X we get

min
QY |X

D(QY |X ||W |PX) +
∑
x∈X

∑
y∈Y

PX(x)QY |X(y|x) · [−ν(y) + λ · α(x, y)]

=
∑
x∈X

PX(x) ·

{
min

QY |X=x

D(QY |X=x||W (·|x))

+
∑
y∈Y

QY |X(y|x) · [−ν(y) + λ · α(x, y)]
}

(B.12)

= −
∑
x∈X

PX(x) · ln

∑
y∈Y

W (y|x) · eν(y)−λ·α(x,y)

 . (B.13)
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Similarly, the minimization over Q̃Y |X leads to

∑
x∈X

PX(x) ·
{

min
Q̃Y |X=x

ρD(Q̃Y |X=x||SY )

+
∑
y∈Y

Q̃Y |X(y|x) · [ν(y) − λ · α(x, y)]
}

= min
SY

−ρ
∑
x∈X

PX(x) · ln

∑
y∈Y

SY (y) · e−[ν(y)+λ·α(x,y)]/ρ

 (B.14)

≥ min
SY

−ρ ln

∑
x∈X

∑
y∈Y

PX(x)SY (y) · e−[ν(y)+λ·α(x,y)]/ρ

 , (B.15)

where the inequality follows from convexity and Jensen inequality, yet
is not guaranteed to be tight. Since ρ ∈ [0, 1], minimizing this last term
over SY corresponds to maximizing∑

y∈Y
SY (y)

∑
x∈X

PX(x) · e−[ν(y)+λ·α(x,y)]/ρ, (B.16)

which, due to Schwarz–Cauchy inequality, occurs when

SY (y) =
∑

x∈X PX(x) · e−[ν(y)+λ·α(x,y)]/ρ∑
y∈Y

∑
x∈X PX(x) · e−[ν(y)+λ·α(x,y)]/ρ

. (B.17)

The minimal value over SY is then

min
SY

−ρ ln

∑
x∈X

∑
y∈Y

PX(x)SY (y) · e−[ν(y)+λ·α(x,y)]/ρ


= −ρ ln


∑

y∈Y

(∑
x∈X PX(x)e−[ν(y)+λ·α(x,y)]/ρ

)2

∑
y∈Y

∑
x∈X PX(x) · e−[ν(y)+λ·α(x,y)]/ρ

 . (B.18)

We thus conclude the dual lower bound

Erc,α(R, PX)

≥ −
∑
x∈X

PX(x) · ln

∑
y∈Y

W (y|x) · eν(y)−λ·α(x,y)
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− ρ ln


∑

y∈Y

(∑
x∈X PX(x)e−[ν(y)+λ·α(x,y)]/ρ

)2

∑
y∈Y

∑
x∈X PX(x) · e−[ν(y)+λ·α(x,y)]/ρ

 , (B.19)

for any choice of ρ ∈ [0, 1], λ ≥ 0 and {ν(y)}y∈Y ⊂ R.
Let us compare the primal optimization in (B.1), with the dual

lower bound (B.19). The primal problem is a minimization problem
of dimension 2|X |(|Y| − 1) over a constrained set (QY |X , Q̃Y |X) (the
constraints further reduce the dimension by |Y| + 1). For the exact
exponent, this minimization must be accurately solved. By comparison,
the dual exponent is a lower bound on the exact exponent [recall
(B.15)], and can be maximized over dimension |Y| + 2. Nonetheless, this
maximization can be performed in a crude manner, since any choice of
the dual parameters leads to a valid lower bound on the exponent.

For additional derivations of dual Lagrange exponents formulations
and Gallager-style bounds, see [41, Exercise 10.24] and [165] (in Russian),
and in the context of the TCEM, see [11], [137], [177].

B.2 Exponent Computation Procedures with Convex Optimization
Solvers

As we have seen, we may write

Erc,α(R, PX) = max
ρ∈[0,1]

min
QY |X ,Q̃Y |X

D(QY |X ||W |PX)

+ ρ ·
[
I(PX × Q̃Y |X) − R

]
, (B.20)

and when α(QXY ) is a linear function of QXY , then the feasible set
of (QY |X , Q̃Y |X) is convex. Hence, the inner minimization problem is a
convex optimization problem that can be efficiently solved. However, in
principle, it should be solved for the continuous set of values ρ ∈ [0, 1].
We next describe an alternative method to evaluate Erc,α(R, PX).

Let us write Erc,α(R, PX) = min{E−(R), E+(R} where1

E−(R) = min
QY |X ,Q̃Y |X

D(QY |X ||W |PX), (B.21)

1For brevity, we omit the explicit dependence on the score α and the input
distribution PX .
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where the minimization is over the set{
QY |X , Q̃Y |X : (PX × QY |X)Y = (PX × Q̃Y |X)Y ,

α(PX × Q̃Y |X) ≥ α(PX × QY |X), I(PX × Q̃Y |X) ≤ R

}
, (B.22)

and where

E+(R) = min
QY |X ,Q̃Y |X

D(QY |X ||W |PX) + I(PX × Q̃Y |X) − R, (B.23)

where the minimization over the set{
QY |X , Q̃Y |X : (PX × QY |X)Y = (PX × Q̃Y |X)Y ,

α(PX × Q̃Y |X) ≥ α(PX × QY |X), I(PX × Q̃Y |X) ≥ R

}
. (B.24)

Note that the only difference between E−(R) and E+(R) is the con-
straint I(PX × Q̃Y |X) ⋛ R, and due to the continuity of the objective
function, we have included the points {I(PX × Q̃Y |X) = R} in both
problems. Now, since the KL divergence is also a convex function of
QY |X , it can be seen that the objective function is jointly convex in
{QY |X , Q̃Y |X} for both optimization problems. Since α(QXY ) is a linear
function of QXY , the set {QY = Q̃Y , α(PX × Q̃Y |X) ≥ α(PX × QY |X)}
is a convex set. Furthermore, the set {I(PX × Q̃Y |X) ≤ R} is also a
convex set, and thus so is its intersection with the previous set. Conse-
quently, the minimization problem of E−(R) is a convex optimization
problem [21] (of dimension 2|X | × (|Y| − 1)), which can be efficiently
solved, e.g., using software packages such as CVX [78]. In contrast, the
minimization problem of E+(R) involves the set {I(PX × Q̃Y |X) ≥ R},
which is not a convex set.

We thus proceed as follows. First, let us solve E+(R) for R = 0. In
this case, the constraint I(PX × QY |X) ≥ R is idle, and so
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E+(0) =
min

QY |X ,Q̃Y |X : α(PX×Q̃Y |X)≥α(PX×QY |X)
D(QY |X ||W |PX)+I(PX ×Q̃Y |X).

(B.25)

This is a convex optimization problem, which can be efficiently solved.
Let us denote the solution of this problem as (Q(0)

Y |X , Q̃
(0)
Y |X). Now, as

long as R ≤ Rcr ≜ I(Q̃(0)
Y |X), then the objective function in E+(R) is

minimized by the unconstrained solution (Q(0)
Y |X , Q̃

(0)
Y |X), even if the

constraint I(PX × QY |X) ≥ R is imposed. For these rates it thus holds
that E+(R) = E+(0) − R. Now, if R ≥ Rcr then the unconstrained
solution (Q(0)

Y |X , Q̃
(0)
Y |X) does not solve E+(R), and so the solution must

be obtained on the boundary {I(PX × Q̃Y |X) = R}. However, for such
rates

E+(R)
= min

QY |X ,Q̃Y |X : I(PX×Q̃Y |X)=R
D(QY |X ||W |PX) + I(PX × Q̃Y |X) − R

(B.26)
= min

QY |X ,Q̃Y |X : I(PX×Q̃Y |X)=R
D(QY |X ||W |PX) (B.27)

≥ min
QY |X ,Q̃Y |X : I(PX×Q̃Y |X)≤R

D(QY |X ||W |PX) (B.28)

= E−(R), (B.29)

where all the above minimization operators are under the constraint
α(PX × Q̃Y |X) ≥ α(PX × QY |X), and the inequality holds since the
feasible set is larger for E−(R). Consequently, for rates R ≥ Rcr, the
exponent is given by min{E−(R), E+(R)} = E−(R).

To conclude, despite the fact that the minimization problem of
E+(R) is not a convex optimization problem, the exponent can be
computed for all rates by only solving convex optimization problems.
To summarize, this is done by the following procedure: (1) Solve the
optimization problem for E+(0), and compute the critical rate Rcr. (2)
Solve the optimization problem E−(R) for any R > Rcr. The exponent
is
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E+(0) − R, 0 ≤ R ≤ Rcr

E−(R), R > Rcr
. (B.30)

Note that this method requires solving two convex optimization prob-
lems at most for each rate, and the first one for finding E+(0) one is
common to all rates.

For additional computational algorithms, see, for example, [64, Sec-
tion V] for the computation of the exponent of the interference channel,
[216, Appendix A] for the exponents of joint detection and decoding,
and [215, Section VI] for exponents of distributed hypothesis testing.



C
The Derivation of the Expurgated Exponent

In this appendix, we outline the expurgation argument that follows the
TCEM method. The proof follows [128, Appendix]. Let us focus on a
specific codeword index m. We showed in Section 4.3 that, effectively,
Nm(QXX̃) ∼ Binomial(enR, e−nI(QXX̃)). Thus, we separate between
typically populated joint types (I(QXX̃) ≤ R) and typically empty joint
types (I(QXX̃) > R). First, for the populated types, for any ϵ > 0, it
holds by (4.66) that

Pr
[
Nm(QXX̃) ≥ en(R−I(QXX̃)+ϵ)

] .= e−n∞. (C.1)

Taking the union over an exponentially number of codewords enR and a
polynomial number of joint types, it follows from the union bound that

F ≜

enR⋃
m=1

⋃
QXX̃ : QX=QX̃=PX , I(QXX̃)≥R

{
Nm(QXX̃) ≥ en(R−I(QXX̃)+ϵ)

}
(C.2)

satisfies Pr[F ] .= e−n∞. Since by (4.67) the lower tail also similarly
decays double-exponentially, for the sake of exponent analysis, the TCE
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are effectively deterministic, for all codewords in the codebook and all
joint types with I(QXX̃) ≤ R, and is given by

Nm(QXX̃) .= en[R−I(QXX̃)]. (C.3)

Second, for the empty types for which I(QXX̃) > R, it holds by (4.66)
that

Pr
[
Nm(QXX̃) ≥ 1

] .= e−n[I(QXX̃)−R], (C.4)
which is exponentially small. Thus, we do not expect to observe other
codewords m̃ ≠ m which have joint type QXX̃ with Xm. Indeed, the
event

Em ≜

 ⋃
QXX̃ : QX=QX̃=PX , I(QXX̃)>R

{
Nm(QXX̃) ≥ 1

} (C.5)

is the event that the mth codeword is a a-typical neighboring codeword,
in the sense that there exists a QXX̃ with I(QXX̃) > R and at least
one neighboring codeword Xm̃ so that Q̂XmXm̃ = QXX̃ . By the union
bound, since the number of joint types increases polynomially with n,
pn ≜ Pr[Em] .= e−n(I(QXX̃)−R). Thus, on the average, we expect that
pnenR codewords will have such a-typical neighboring codewords. So,
the event

E∗ ≜

 1
enR

enR∑
m=1

1{Em} ≥ 2pn

 , (C.6)

in which more than 2pnenR have such a-typical neighboring codeword
has low probability. Indeed, Markov’s inequality, which does not require
independence of the events {Em}, implies that Pr[E∗] ≤ 1

2 . Hence, with
probability larger than 1/2 − Pr[F ] ≥ 1/3, both Fc and [E∗]c hold. We
thus may choose a codebook Cn that belongs to the event Fc ∩ [E∗]c. The
number of codewords in this codebook for which 1{Em} = 1 is less than
3pnenR. Thus, we can expurgate those codewords from the codebook,
and obtain a new codebook C∗

n which satisfies: (1) Its size is larger than
|C∗

n| ≥ enR(1 − 3pn) .= enR. (2) Its TCEs N
∗
m(QXX̃) are only smaller

than those of the original codebook, and specifically, N
∗
m(QXX̃) = 0

for all QXX̃ with I(QXX̃) > R. (3) N
∗
m(QXX̃) ≤ en(R−I(QXX̃)+ϵ) for all

QXX̃ with I(QXX̃) ≤ R.
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For such a codebook, and after taking ϵ ↓ 0, the error probability
bound in (4.38) is given by

Pe ≤ exp [−n · Eex(R, PX)] , (C.7)

where Eex(R, PX) is as defined in (4.14).
Compared to the TCEM, the properties of codebook C∗

n tradition-
ally follow from the packing lemma [41, Exercise 10.2], [42] (which is
somewhat similar) or from a graph decomposition lemma [40, Corollary
to Lemma 2]. In the latter case, equipped with the existence of such
a codebook, [40] derived a bound for decoders with general score α(·),
and when α(·) is set to be the ML decoder, then this exponent is shown
to be at least as high as both the random-coding error exponent and
the expurgated exponent.



D
Proofs for Section 4.3

Before proving Theorems 4.1, 4.2 and 4.3, we recall the following Cher-
noff tail bounds of a binomial RV X ∼ Binomial(m, p). If r > p then
rm > E[X] = pm and so the probability of the upper tail is

e−m·D(r||p)−o(m) ≤ Pr [X > rm] ≤ e−m·D(r||p), (D.1)

where D(r||p) ≜ r ln r
p + (1 − r) ln (1−r)

(1−p) is the binary KL divergence. If
r < p then this probability Pr[X > rm] ≥ Pr[X > ⌊E[X]⌋] ≥ 1/2, and
the so the exponent is zero. Similarly, if r < p then the probability of
the lower tail is

e−m·D(r∥p)−o(m) ≤ Pr [X < rm] ≤ e−m·D(r∥p), (D.2)

and if r > p then the exponent is zero.
We will also need the following simple lemma regarding the KL

divergence.

Lemma D.1. Let {an, bn} be sequences in (0, 1) such that an = o(1)
and bn = o(1). Then,

D(an||bn) ∼

bn
an
bn

= o(1)
an ln an

bn
, an

bn
= ω(1)

, (D.3)
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where for a sequence {cn}, the notation cn = o(1) means that limn→∞ cn

= 0 and the notation cn = ω(1) means that limn→∞ cn = ∞.

Proof. We use the expansion ln(1 + x) = x + Θ(x2) throughout. If
an
bn

= o(1) then it holds that

(1 − an) ln
[1 − an

1 − bn

]
= (1 − an) ln(1 − an) − (1 − an) ln(1 − bn) (D.4)
= −an(1 − an) + Θ(a2

n) + bn(1 − an) + Θ(b2
n) (D.5)

= (bn − an)(1 − an) + Θ(b2
n) (D.6)

= bn ·
[(

1 − an

bn

)
− an(1 − an) + Θ(b2

n)
]

(D.7)

∼ bn, (D.8)

and so for all n large enough∣∣∣∣an ln an

bn

∣∣∣∣ = an ln bn

an
= −bn · an

bn
ln an

bn
= −o(bn) (D.9)

since limt↓0 t ln t = 0. This is negligible compared to the first term.
If an

bn
= ω(1) then∣∣∣∣(1 − an) ln

(1 − an

1 − bn

)∣∣∣∣
= |(1 − an) ln(1 − an) − (1 − an) ln(1 − bn)| (D.10)

=
∣∣∣(1 − an)

[
−an + Θ(a2

n) + bn + Θ(b2
n)
]∣∣∣ (D.11)

= Θ(an), (D.12)

which is negligible compared to an ln an
bn

= ω(an).

We are now ready to prove Theorem 4.1, which provides exact
exponents of the tail probabilities of the TCE N .

Proof of Theorem 4.1. In the case of a TCE, we are dealing with both
an exponential number of trials and an exponentially decaying success
probability, and so we consider the events {N > enλ} and {N < enλ}
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for some λ ∈ R. Throughout, we will use the asymptotic expansion of
the binary KL divergence in Lemma D.1.

We distinguish between two cases:

1. If A > B then the mean value E[N ] = en(A−B) is exponentially
large. For the upper tail, we assume λ > A − B, for which

Pr
[
N > enλ

]
≤ exp

[
−enA · D(e−n(A−λ)||e−nB)

]
. (D.13)

Since A − B < λ then e−n(A−λ)/e−nB = ω(1) and the exponent is

enA · D(e−n(A−λ)||e−nB) ∼ enAe−n(A−λ) ln e−n(A−λ)

e−nB
(D.14)

= n(λ − (A − B))enλ. (D.15)

Thus, the right-tail probability decays double-exponentially. Simi-
larly, for the lower tail, we assume λ < A − B, for which

Pr
[
N < enλ

]
≤ exp

[
−enA · D(e−n(A−λ)||e−nB)

]
. (D.16)

Since A − B > λ then e−n(A−λ)/e−nB = o(1) and the exponent is

enA · D(e−n(A−λ)||e−nB) ∼ en(A−B). (D.17)

Thus, the lower-tail probability also decays double-exponentially.

2. If B > A then the mean value E[N ] = e−n(B−A) ≤ 1 is exponen-
tially small. For the upper tail, we set λ > 0 > A−B and obtain a
double-exponentially decay, exactly as in the previous case. Next,
as N is integer, for λ ≤ 0, Markov’s inequality implies that

Pr
[
N > enλ

]
= Pr [N ≥ 1] ≤ E[N ] = exp [−n(B − A)] . (D.18)

On the other hand,

Pr
[
N > enλ

]
≥ Pr [N = 1] =

(
enA

1

)
· e−nB · (1 − e−nB)enA−1

(D.19)

= e−n(B−A) · (1 − e−nB)enA−1 (D.20)
∼ exp [−n(B − A)] , (D.21)

which shows that Markov’s inequality is exponentially tight in this
case, and hence Pr[N > enλ] .= e−n(B−A). The variable N has no
lower tail since the above implies that Pr[N = 0] ≥ 1 − e−n(B−A).
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Combining the two cases leads to the claimed result.

We next prove Theorem 4.2, which states the exponent of E[N s].

Proof of Theorem 4.2. We separate again between two cases, depending
on the sign of A − B.

1. If A > B then we know that any exponential deviation from
the mean leads to a double-exponentially decay. Hence, for any
λ > A − B

E [N s] = Pr[N ≤ enλ] · E
[
N s|N ≤ enλ

]
+ Pr[N > enλ] · E

[
N s|N ≥ enλ

]
(D.22)

≤̇ enλs + e−n∞ · ensA (D.23)
.= enλs, (D.24)

where we have used the fact that N ≤ enA with probability 1,
and write e−n∞ for a probability that decays super-exponentially.
Taking the limit λ ↓ A − B shows that

E [N s] ≤̇ en(A−B)s. (D.25)

A matching lower bound can be derived in an analogous way: For
any λ < A − B

E [N s] = Pr[N ≥ enλ] · E
[
N s|N ≥ enλ

]
+ Pr[N < enλ] · E

[
N s|N < enλ

]
(D.26)

≥
[
1 − Pr[N < enλ]

]
· enλs (D.27)

∼ enλs, (D.28)

after taking the limit λ ↑ A − B. Hence,

E [N s] .= en(A−B)s. (D.29)

2. If A < B then we take λ > 0 to obtain

E [N s] = Pr[1 ≤ N ≤ enλ] · E
[
N s|1 ≤ N ≤ enλ

]
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+ Pr[N > enλ] · E
[
N s|N ≥ enλ

]
(D.30)

≤̇ Pr[N ≥ 1] · enλ + e−n∞ · ensA (D.31)
≤̇ e−n(B−A) · enλ. (D.32)

Taking the limit λ ↓ 0 shows that

E [N s] ≤̇ e−n(B−A). (D.33)

A lower bound is obtained by

E [N s] ≥ Pr[N = 1] · 1s ≥ [1 + o(1)] · e−n(B−A), (D.34)

which shows that the upper bound is tight.

Combining the two cases leads to the claimed result.

We finally prove Theorem 4.3, which states that the probability of
an intersection of lower tail events of a set of TCEs is exponentially
equivalent to either 0 or 1.

Proof of Theorem 4.3. If there is a j∗ ∈ [kn] so that Bj∗ < Aj∗ and
λ < Aj∗ − Bj∗ then Pr[Nj∗ < enλ] .= e−n∞. So,

Pr

 kn⋂
j=1

{
Nj < enλ

} ≤ min
1≤j≤kn

Pr
[
Nj < enλ

] .= e−n∞. (D.35)

Otherwise, if all j = 1, . . . , kn it holds that either Bj > Aj or λ > Aj−Bj

then (4.66) implies that Pr[Nj > enλ] ≤̇ e−n∞ for all j = 1, . . . , kn. Thus,
from the union bound, as n → ∞

Pr

 kn⋂
j=1

{
Nj ≤ enλ

} = 1 − Pr

 kn⋃
j=1

{
Nj > enλ

} (D.36)

≥ 1 −
kn∑

j=1
Pr
[
Nj > enλ

]
(D.37)

≥ 1 − kn · max
1≤j≤kn

Pr
[
Nj > enλ

]
(D.38)

≥ 1 − kn · e− min1≤j≤kn Ej (D.39)
→ 1. (D.40)

Combining (D.35) and (D.40) leads to the stated claim.
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