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Abstract—This article stands as a tribute to the enduring legacy
of Jacob Ziv and his landmark contributions to information
theory. Specifically, it delves into the groundbreaking individual-
sequence approach – a cornerstone of Ziv’s academic pursuits.
Together with Abraham Lempel, Ziv pioneered the renowned
Lempel-Ziv (LZ) algorithm, a beacon of innovation in various
versions. Beyond its original domain of universal data compres-
sion, this article underscores the broad utility of the individual-
sequence approach and the LZ algorithm across a wide spectrum
of problem areas. As we traverse through the forthcoming pages,
it will also become evident how Ziv’s visionary approach has
left an indelible mark on my own research journey, as well as
on those of numerous colleagues and former students. We shall
explore, not only the technical power of the LZ algorithm, but
also its profound impact on shaping the landscape of information
theory and its applications.

I. INTRODUCTION

Jacob Ziv (November 27, 1931 – March 25, 2023), who was

a luminary in the field of information theory, served as a distin-

guished professor at the Electrical Engineering Department of

the Technion in Haifa, Israel. Renowned for his groundbreak-

ing contributions to information theory, Ziv’s work has left an

indelible mark on the academic landscape. His achievements

were so profound and influential that they garnered widespread

recognition and numerous prestigious awards. Among his

accolades, he was honored with the Israel Prize for Exact

Sciences in 1993, the IEEE Richard W. Hamming Medal in

1995 for his invaluable contributions to information theory

and data compression, and the Claude E. Shannon Award in

1997. His innovative spirit was further acknowledged with

the Golden Jubilee Award for Technological Innovation in

1998 and the 2008 BBVA Foundation Frontiers of Knowledge

Award in Information and Communication Technologies. In

a crowning achievement, he was bestowed with the IEEE

Medal of Honor in 2021, the highest honor from IEEE, in

acknowledgment of his fundamental contributions to informa-

tion theory, data compression technology, and his exemplary

research leadership.

In this article, I chose to focus will hone in on one important

facet of Jacob Ziv’s illustrious research area that stands as

a testament to his ingenuity and dedication – the individual-

sequence approach, which I have always found elegant and

fascinating. Ziv’s pioneering work in this realm spans nearly

half a century, marked by relentless creation of brilliant

innovative ideas.

During the latter half of the 1970s, Jacob Ziv and Abra-

ham Lempel introduced a groundbreaking shift in informa-

tion theory [28], [34], [35]. Departing from the conven-

tional probabilistic paradigm, which characterized sources and

channels with known statistical properties, often memoryless

in structure, they envisioned a new approach, which is the

individual-sequence approach combined with finite-state (FS)

encoders/decoders, offering a fresh perspective on universal

data compression techniques and on coded communication in

general. It was within this paradigm that the seeds of the LZ

algorithm were sown, culminating in its first two versions, in

1977 and 1978 – the LZ77 and LZ78 algorithms, respectively.

Countless words have already been dedicated in the scien-

tific literature to the illustrious LZ algorithms, lauded for being

rare examples of possible coexistence of an elegant theory

and remarkable practicality. Their profound influence, together

with those of later versions of the LZ algorithm, reverberates

through the fabric of modern life, touching each and every

individual who possesses a computer, a smart-phone, or any

device that stores digital information.

Less commonly recognized are the additional pillars of

the individual-sequence approach, alongside the lesser-known

versatility of the LZ algorithms, especially, the LZ78 version.

Beyond its renowned role in universal data compression, the

LZ78 algorithm turns out to serves as a potent engine for

an array of information processing tasks spanning univer-

sal channel decoding, prediction, hypothesis testing, model

order estimation, guessing, filtering, and more. Remarkably,

the asymptotic optimality of the LZ78 algorithm as a data

compressor induces its asymptotic optimality in all these tasks

as well.

This article delves into this facet of the LZ algorithm, a

subject that has always captivated my interest immensely. As

we traverse through the annals of previous research in this

domain, I will not only highlight the contributions of Ziv and

his collaborators, but also shed light on the works of other

researchers who have been inspired by the individual-sequence

approach. Among them, I will draw from my own experiences,

as well as those of esteemed colleagues and former Ph.D.

students.



II. MODELING APPROACHES AND SEQUENCE

COMPLEXITY

Traditionally, since the days of Shannon, information the-

ory has been grounded in probabilistic models, particularly

focusing on memoryless sources and channels. Also, classical

coding theorems operate under the assumption that both the

encoder and decoder have full knowledge of these sources

and channels. While these two assumptions – the assump-

tion of a memoryless structure, and the assumption that the

source/channel is known, are not necessarily reflective of

reality, they persisted because they serve for an excellent sim-

plification. This simplification greatly facilitates the analysis

and the derivation of non-trivial bounds, offering valuable

insights and understanding. Importantly, many of these insights

extend beyond the scope of known memoryless sources and

channels.

Soon after the inception of information theory, we observed

the emergence of research endeavors aimed at relaxing these

two fundamental assumptions. Departing from the memory-

lessness assumption led to expansions of source coding theo-

rems, encompassing models such as Markov sources, unifilar

finite-state sources, hidden Markov sources, and more general

stationary and ergodic sources. Similar strides were made in

the realm of channel coding theorems and their corresponding

channel models.

Regarding the perspective of discarding the assumption of

known statistics, two main avenues of research have emerged.

The first draws from the field of robust statistics, wherein the

approach entails assuming that the actual source (or channel)

lies within a certain neighborhood of a known nominal model.

Designs are then crafted to address the worst-case scenario

within this neighborhood. This has spurred the development

of robust hypothesis testing, particularly robust detection,

robust parameter estimation, robust filtering, and robust signal

processing in general. The second route is associated with

the advancement of universal methods, which are sub-optimal

schemes that asymptotically achieve optimality in the limit

of large amounts of data or large blocks, as they adapt to

the underlying source statistics. Certainly, within the realm

of source coding, we have witnessed a progressive evolution

towards devising universal schemes capable of accommodating

increasingly diverse classes of sources (at the price of a

slow-down in the convergence towards to the entropy rate).

This evolution commenced with the treatment of the class of

memoryless sources, then extended to encompass classes of

Markov and finite-state sources, culminating in non-parametric

classes such as all stationary and ergodic sources with a

finite alphabet. Furthermore, atop these advancements lies the

individual-sequence approach, which treats the source data as

a deterministic entity devoid of any underlying probabilistic

mechanism. Fig. 1 illustrates this hierarchy of stages of de-

parture from the assumption of known statistics and gradually

increasing the degree of generality.

Alongside the development of universal data compression

schemes, the concept of complexity, a.k.a. compressibility, has

emerged. While in traditional probabilistic settings, complexity

is naturally measured by the entropy rate of the source,

the individual-sequence setting presents a challenge. Here,

defining complexity is not straightforward because without

constraints on compression and decompression resources, there

exists no non-trivial lower bound on achievable compression

ratios for individual sequences. Consider, for example, an

“encoder” that represents a given individual sequence with

a single bit, say ’0’, while all other possible sequences are

represented by the flag-bit ’1’ followed by a copy of the

uncompressed input. In this scenario, the compression ratio for

the given sequence approaches zero, rendering the issue trivial,

uninteresting, and essentially useless for anything beyond that

specific sequence. This echoes the effect of overfitting in model

learning, where an overly complex model fails to generalize. A

natural expectation from a reasonable definition of complexity

is that it should converge to the entropy rate when applied to

typical sequences drawn from a random process.

One of the most famous pioneers in the context of com-

plexity of an individual sequence was Kolmogorov [6], [7],

who during the 1960s, took the algorithmic approach and

defined complexity in terms of the length of the shortest

computer program, running on a universal Turing machine,

that generates the given sequence (see also [3, Chap. 14]). The

ideas of Kolmogorov were raised independently and nearly at

the same time also by Solomonoff [25] and Chaitin [2]. While

immensely powerful and elegant, the Kolmogorov complexity

suffers a significant limitation: it is not computable, making it

challenging to practically utilize.

About a decade later, during the latter half the 1970s, Ziv

and Lempel published a series of landmark papers [9], [28],

[34], [35], that have ultimately laid the foundation for the

development their individual-sequence approach along with

their definition of sequence complexity, termed the finite-

state complexity, or the finite-state compressibility. The finite-

state compressibility of an infinite sequence means the best

achievable compression ratio that can be achieved by any

information lossless finite-state encoder, where the limit on

the number of states, s, that grows without bound is taken

after the limit of the length, n, of the sequence is taken

to infinity, namely, an asymptotic regime where s ≪ n, to

meet practicality considerations and to avoid the ‘overfitting’

problem described earlier.

The finite-state complexity measure is not as powerful as the

Kolmogorov complexity. As an extreme (but simple) example,

consider the counting sequence,

0100011011000001010011100101110111...

which is formed as a concatenation of all binary strings

of length 1, followed by all binary strings of length 2 (in

lexigraphical order), and so on. Indeed, this can be seen by

parsing this sequence as follows:

0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111...

This description of the rule behind the sequence generation

can easily be translated into a very short and simple computer



program, which suggests that the Kolmogorov complexity,

normalized by the sequence length n, tends to zero, and so,

the Kolmogorov complexity of the infinite counting sequence

is zero. On the other hand, as shown in [35], the finite-state

complexity of the counting sequence is 1, which means that

this sequence is not compressible by any information lossless

finite-state encoder.

On the bright side, the finite-state complexity is computable

in contrast to the Kolmogorov complexity, and it also satisfies

the above mentioned desired property of convergence to the

entropy rate when the sequence emerges from a stationary and

ergodic source [35]. In the next section, we will have more to

say about it as well as and on the LZ78 algorithm and other

versions of the LZ algorithm.

known

statisticsuncertainty

parametric
non−parametric

uncertainty

individual sequences

no probabilisitc assumptions

Fig. 1. The hierarchy of classes of sources with various degrees of generality.

III. COMPRESSION OF INDIVIDUAL SEQUENCES BY FSM’S

- THE LZ ALGORITHM

Following Ziv and Lempel [35], consider the system de-

picted in Fig. 2, which describes a source sequence fed

into a finite-state encoder for the purpose of lossless data

compression, and outputs the compressed representation. More

precisely, the encoding mechanism is as follows: An infinite

individual source sequence, x = (x1, x2, . . .), from a finite

alphabet serves as an input to a finite-state encoder that imple-

ments recursively the following two equations, for i = 1, 2, . . .:

yi = f(zi, xi), (1)

and

zi+1 = g(zi, xi), (2)

where yi, the encoder output at time instant i, is a variable-

length binary string, whose length, ℓ(yi), may sometimes

be zero (no output), when the encoder idles, and zi is the

encoder state, which takes on values in a finite set of states

of size s. Generally speaking, the state represents whatever

the encoder “remembers” from the past of the input, for

example, the state could be defined by a shift register, zi =
(xi−1, xi−2, . . . , xi−k), that stores the k most recent source

inputs, if g is chosen accordingly. Also, it is assumed that the

encoder is information lossless, which means that the source

can be reconstructed from any segment of the compressed

output, provided that the states at the beginning and at the

end of this segment are provided as well. The finite-state

compressibility is then defined in several steps. First, define

ρs(x1, . . . , xn) = min
{s-state encoders}

∑n
i=1 ℓ(yi)

n
, (3)

which is the best compression ratio that can be attained among

all s-state encoders, (f, g). Next, define

ρs(x) = lim sup
n→∞

ρs(x1, . . . , xn), (4)

and finally, define the finite-state compressibility of x by

ρ(x) = lim
s→∞

ρs(x). (5)

delay

finite−state encoder

xi
yi = f(zi, xi)

zi
zi+1 = g(zi, xi)

Fig. 2. Finite-state encoder.

While the sequence of minimizing encoders in (3) depends

on (x1, . . . , xn) for n = 1, 2, . . ., and a given s, the quest

is for a single encoder that asymptotically attains ρ(x) for

every x, namely, a universal data compression scheme in the

individual-sequence sense. The LZ78 algorithm, proposed in

[35] and briefly described next, achieves this objective.

The main engine of the LZ78 algorithm is the so called

incremental parsing procedure, which is a sequential process

of parsing the source string to distinct phrases, where each

phrase is the shortest substring that has not been observed

before as parsed phrase, and the last phrase might be

incomplete. One example was already shown above in the

context of the counting sequence. As another example, the

string:

repeatandrepeatandrepeatandrepeatandrepeat

is parsed as:

r,e,p,ea,t,a,n,d,re,pe,at,an,dr,ep,eat,

and,rep,eata,nd,repe,at



Let n denote the length of source string, x1, x2, . . . , xn,

and let c denote the number of parsed phrases. In the above

example, n = 42 and c = 21. Clearly, when the source string

exhibits a high degree of repetitive behavior, the phrases grow

rapidly along the process and then their number, c, is relatively

small for a given string length, n. Conversely, if the string has

a low level of repetitiveness, the phrases grow slowly as we

proceed in the parsing process, and then c is very large. It

is therefore plausible that c, or any monotonically increasing

function of c, may serve as a measure of the complexity of

the source string. As shown in [35], it turns out that the

relevant measure of complexity, as far as data compression

is concerned, is essentially given by the function c log c, or

actually, c log c
n , after normalizing by n, in order to give it the

meaning of a compression ratio.

Indeed, the main results in [35] are given by a coding

theorem and its converse in that respect: On the one hand, the

converse theorem asserts that if s ≪ n, then ρs(x1, . . . , xn)
cannot be much smaller than the LZ complexity, defined as

ρLZ(x
n)

∆
=

c log c

n
. (6)

On the other hand, the coding theorem tells that ρLZ(x
n) is an

essentially achievable compression ratio (up to a vanishingly

small redundancy term), and the proof of the latter theorem is

constructive – by performance analysis of the LZ78 algorithm,

which, roughly speaking works as follows:

1) Apply the incremental parsing procedure to the source

string, (x1, . . . , xn).
2) Compress each parsed phrase sequentially as follows:

a) Letting l denote the length of the current phrase,

compress the substring formed by the first l − 1
symbols by indicating the location of an earlier

(already decoded) phrase of length l − 1 with

matching contents.

b) Encode the last symbol of the current phrase but

its binary representation, without compression.

There is a certain caveat, however, in the sense that this

coding theorem and its converse are not quite compatible with

each other, because the number of states needed to implement

the LZ algorithm over a source block of length n is not

negligible compared to n as it should be according to the

converse theorem. On the contrary, it even grows exponentially

with n, because the entire block should be stored at the encoder

in order to implement it. This incongruity between the coding

theorem and the converse theorem is closed once the limit of

s → ∞ is taken. But this limit should be taken cautiously.

Specifically, if one restarts the LZ algorithm for every block

of length, say k (in order to limit the number of states), and

considers the quantity,

lim sup
k→∞

lim sup
n→∞

k

n

n/k−1
∑

i=0

ρLZ(xik+1 , xik+2, . . . , xik+k),

which achieves ρ(x) in the limit of s → ∞, then the gap is

indeed closed.

A simplistic point of view on the quantity c log c could be

the following: Consider the c distinct phrases as super-letters

over a super-alphabet (or dictionary) of variable length strings,

each of with appears in (x1, . . . , xn) exactly once, and so, their

empirical probabilities are all equal to 1/c. Accordingly, ignor-

ing integer length constraints, the code-length to be assigned to

each such phrase is − log(1/c) = log c. Since we have a total

of c phrases to compress, and each one is represented by log c
bits, the total length is c log c. This perspective, however, is

overly simplistic because the decoder lacks explicit foreknowl-

edge of the contents of these super-letters. Interestingly, the

LZ78 algorithm achieves a compression ratio of approximately

c log c even without necessitating an explicit header to inform

the decoder about the phrase contents.

The LZ complexity, ρLZ(x1, . . . , xn), can be thought of as

the individual-sequence analogue of the entropy in the sense

that when (x1, . . . , xn) is a typical realization of a stationary

and ergodic source, ρLZ(x1, . . . , xn) converges to the entropy

rate of that source. More precisely, if X = (X1, X2, . . .) is

a stationary and ergodic source, then {ρLZ(X1, . . . , Xn), n =
1, 2, . . .} converges to the entropy rate almost surely [35]. In

other words, the LZ78 algorithm is universal for all stationary

and ergodic sources in quite a strong sense (almost sure

convergence and not just expectation).

The LZ78 algorithm is only one among an array of quite

many versions of the LZ algorithm. The common feature of all

of those versions is that they take advantage of repetitiveness

in the source sequence to be compressed, by applying various

mechanisms of string matching. As another example, the LZ77

algorithm [34] is based on storing a large sliding window of

the most recent past symbols observed and seeking the longest

match that can be found within the window for the current

string being compressed. Compression is obtained by encoding

two positive integers: the length of the matching string and the

shift needed to point on its most recent earlier occurrence.

The impact of LZ algorithms is indeed profound, repre-

senting some of the most widely employed techniques for

lossless data compression. Among these, DEFLATE stands out

as a variant tailored for optimizing decompression speed and

compression ratio. Notably, in the 1980s, spurred by the work

of T. Welch, the Lempel-Ziv-Welch (LZW) algorithm emerged

as the preferred method for a wide array of compression

applications. Its versatility is evident in its adoption across

various domains: from GIF images and compression utilities

like PKZIP to hardware peripherals such as modems. More-

over, it underpins the compression of file formats like PDF,

TIFF, PNG, ZIP, as well as popular video formats like MP3,

and finds utility in cell phones. Remarkably, the ubiquity of LZ

compression extends to everyday devices such as desktop com-

puters, laptops, and smart-phones, where it quietly operates

in the background, seamlessly managing digital information

storage. It is a testament to the algorithm’s efficiency that

countless individuals interact with LZ compression on a daily

basis without necessarily being aware of its presence. Given

its monumental significance, it is no wonder that in 2004, the

IEEE recognized the LZ algorithm as a Milestone in Electrical



Engineering and Computing, solidifying its place in the annals

of technological advancement.

Earlier, it was mentioned that the LZ complexity can be

viewed as the individual-sequence analogue of the entropy

rate. On the other hand, it is well known that the concept of

entropy is fundamental, not only in information theory, but also

in thermodynamics and statistical physics. First and foremost,

it plays the central role in the second law of thermodynamics

which asserts that the total entropy of an isolated system cannot

decrease. It turns out then that the LZ complexity may play

the role of the individual-sequence analogue of entropy also

in statistical physics. Following the thought provoking ideas

behind the famous Maxwell demon and the Szilard engine, a

recent research trend in statistical physics has been evolving

around physical systems that, in addition to the traditional

heat reservoir at fixed temperature, include also an information

reservoir in the form of a digital memory device or a magnetic

tape with random digital information stored on it, like the

one depicted in Fig. 3 (see, e.g., [13] and references therein).

The main theme in these works is in extending the second

law of thermodynamics in a way that includes also a term

pertaining to the change in the entropy of the information

reservoir. Another way to look at the extended second law

is to observe that it is possible to convert heat emanating from

the heat reservoir (not shown in Fig. 3) to mechanical work

at the cost of writing information in the information reservoir,

that is, increasing its entropy. In Fig. 3, we describe a system

with a certain mechanism of sequential interaction between

a digital tape and a simple mechanical system from which

one can extract work in the form of lifting the mass, m.

As shown in [13], if the information recorded on the tape

is an individual sequence of bits, rather than random data,

then the same extended version of the second law continues

to hold with the Shannon entropy being replaced by the LZ

complexity. More details can be found in [13].

0 0 0 01 1 1 1 10 0 0

m

Fig. 3. Physical system with an information reservoir

The paradigm of compression of individual sequences using

finite-state encoders/decoders have has been extended by Ziv

and by others, in several directions, including the presence

of side information, settings of distributed coding, and lossy

compression with and without side information, see, e.g., [12],

[15], [19], [26], [29], [30] and [31], for a non-exhaustive

sample of references.

However, instead of reviewing all these extensions, I believe

it would be more interesting to devote the last section of this

article to another aspect of Ziv’s work, which is the utility

of the LZ78 algorithm, or more precisely – the incremental

parsing procedure associated with it, in a large variety of in-

formation processing tasks beyond compression. In particular,

it is fascinating that the asymptotic optimality property of the

LZ78 algorithm (in the compression sense) is ‘inherited’ when

it is utilized in those other tasks, resulting in asymptotically

optimal schemes in each and every one of them. This indicates

that there must be something very deep and powerful in the

incremental parsing procedure for the purpose of gathering

statistics in a very general sense, that includes even individual

sequences.

IV. THE LZ ALGORITHM AT THE SERVICE OF TASKS

BEYOND COMPRESSION

One of the pivotal tools for deriving and developing many

of the results in the context of “the LZ algorithm for tasks

beyond compression” is known as Ziv’s inequality [3, Lemma

13.5.5], [24], which asserts that the probability of any string,

(x1, . . . , xn), under any Markov source of any order, or any

general finite-state source, or even a hidden Markov source,

cannot be larger than 2−c log c up-to a possible factor that grows

in a sub-exponential rate as a function of n, or equivalently,

logP (x1, . . . , xn) ≤ −c log c+ nǫn, (7)

where ǫn tends to zero as n tends to infinity. This inequality

is interesting also on its own right.

At first glance, it might seem intriguing that there is any

connection whatsoever between the probability of a sequence

and the number of phrases, c. This relationship stems from

a combinatorial consideration of lower bounding the number

of sequences of length n that share the same probability as

(x1, . . . , xn), by counting phrase permutations and showing

that their number is exponentially lower bounded by 2c log c,

thus echoing parallel well known results from the method of

types.

We next review briefly some applications of the LZ algo-

rithm in several problem areas, other than data compression.

It should be pointed out that this is by no means the full set

of applications.

A. Hypothesis Testing and Model Order Estimation

About a decade after the invention of the LZ algorithm, Ziv

considered a certain class of problems of universal hypothesis

testing [32], [33]. The simplest problem in this class is the

following: Given a binary sequence, (x1, . . . , xn), which is a

realization of a certain random process, the task is to decide

between two hypotheses:

H0: x1, . . . , xn are independent fair coin tosses.

H1: x1, . . . , xn are not independent fair coin tosses.

One motivation for this problem could be testing the re-

liability of a random number generator for the purpose of

simulations.



While under H0, the probability of (x1, . . . , xn) is given

simply by P0(x1, . . . , xn) = 2−n, the difficulty is that under

H1, we know nothing about the underlying probability distri-

bution, except that it is not a binary symmetric source, and

so, it is impossible to apply the optimal likelihood ratio test

(LRT).

Nonetheless, adopting the Neymann-Pearson criterion for

binary hypothesis testing, consider a class of discriminators

that are implementable by finite state machines with s states.

Such a finite state machine recursively implements a next-state

function,

zi+1 = g(zi, xi), i = 1, 2, . . . , n, (8)

and stores the matrix of all joint counts,

n(x, z) =
n
∑

i=1

I{xi = x, zi = z} (9)

for all possible combinations of (x, z). A decision rule is then

a partition of the space of space of matrices into two regions,

A0 and A1, where in Ai one makes the decision in favor of

Hi, i = 0, 1. The motivation for considering such a structure

is that it includes the optimal LRT as a special case whenever

the source P1, under H1, is a finite-state source, characterized

by the product form,

P1(x1, . . . , xn) =

n
∏

i=1

Q(xi|zi), (10)

with {zi} being generated by (8).

Consider the decision rule,

decision =

{

H0 ρLZ(x1, . . . , xn) ≥ 1− λ
H1 ρLZ(x1, . . . , xn) < 1− λ,

(11)

where 0 < λ < 1 is a prescribed constant.

It turns out that this decision rule uniformly minimizes the

probability of error given H1 among all decision rules of the

above described structure (for any g and any partition) among

all decision rules for which the probability of error given H0

decays exponentially at least as fast as 2−λn.

This simple decision rule is intuitively appealing: to deter-

mine whether x1, . . . , xn are fair coin tosses or not, let us

compress it by the LZ78 algorithm and compare the resulting

compression ratio to a threshold, as a sequence of independent

fair coin tosses is incompressible. The choice of λ depends on

the false-alarm probability that we are willing to accept,

More generally, suppose that under H0, the underlying

process is memoryless, but otherwise unknown. In other words,

we are supposed to decide whether (x1, . . . , xn) emerges

from some memoryless source or not. Then, the corresponding

extension of (11) is in replacing the term 1 by the (memoryless)

empirical entropy, Ĥ, of (x1, . . . , xn), or equivalently,

decision =

{

H0 Ĥ − ρLZ(x1, . . . , xn) ≤ λ

H1 Ĥ − ρLZ(x1, . . . , xn) > λ.
(12)

Here the intuition is that we compare the code-lengths of two

universal data compression schemes, one designed for the class

of memoryless sources, whose compression ratio is about Ĥ ,

and the other is the LZ algorithm which is far more general.

If the difference is below some threshold, consider the source

to be memoryless.

In [18], this idea was further generalized to the problem of

estimation of the order of a Markov source with an asymptoti-

cally optimal trade-off between the underestimation and the

overestimation probabilities. Denoting by Ĥk the empirical

entropy of (x1, . . . , xn) under k-th order Markov modeling,

the order estimator,

k̂ = min{k : Ĥk − ρLZ(x1, . . . , xn) ≤ λ} (13)

turns out to uniformly minimize the underestimation probabil-

ity among all model order estimators for which the overesti-

mation probability decays at an exponential rate at least as fast

as 2−λn.

Yet another generalization of this line of work, which is

about estimating the number of states of a non-unifilar finite-

state source (a.k.a. hidden Markov source), can be found in

[36]. Additional results concerning tests for randomness and

tests for independence can be found in [33].

B. A Measure of Divergence between Sequences

Can we tell when two individual sequences are “statistically

similar” and when they are not? Intuitively, we feel that two

sequences like

00001000010000001 and 100001000000010000

do have “very similar statistical characteristics” whereas two

sequences such as

00001000010000001 and 111101111001111010

do not. What could be a good measure of statistical resem-

blance between two individual sequences in general, whatever

the meaning of such a term might be?

In [37], an attempt was made to define a certain metric that

quantifies the statistical similarity/dissimilarity between two

individual sequences, with application to universal classifica-

tion using training data. Specifically for two finite-alphabet in-

dividual sequences, xn = (x1, . . . , xn) and yn = (y1, . . . , yn),
let:

∆(xn‖yn) =
c(xn ← yn) logn− c(xn) log c(xn)

n
(14)

where c(xn) is c as before and c(xn ← yn) is the number

of phrases of xn with respect to y, created in the following

manner:

1) Find the longest prefix string of xn that appears

somewhere in yn, namely, the largest i such that

(x1, x2, . . . , xi) = (yj , yj+1, . . . , yj+i−1) for some j.

2) Continue from xi+1 in the same manner until xn is

exhausted.

If xn and yn are ‘statistically similar’, the phrases of xn

w.r.t. yn are long and then c(xn ← yn) is relatively small,

which implies small ∆(xn‖yn). As an example, let n = 11,



x11 = (01111000110) and y11 = (10010100110). Parsing x11

with respect to y11 yields (011, 110, 00110), and so, c(x11 ←
y11) = 3.

While the LZ complexity is the individual-sequence ana-

logue of the entropy rate, it turns out that ∆(xn‖yn) is the

individual-sequence analogue to the relative entropy (or the

Kullback-Leibler divergence) between two probability distri-

butions. In [37], it is shown that ∆(xn‖yn) can be used for

universal classification using training data. In particular, it

discriminates between statistically distinguishable sequences

whenever there is some finite-state classifier that can do this

task.

This individual-sequence divergence between two sequences

finds its applications in several disciplines, such as text clas-

sification [22], ECG-based personal identification and authen-

tication [23], anomaly detection [20], and also for divergence

estimation in the context of assessing entropy production

and energy dissipation in certain processes that take place in

physical systems out of equilibrium [1].

C. Universal Channel Decoding

In 1985, Ziv proposed a universal decoder for unifilar finite-

state channels, which achieves the same random coding error

exponent as that of the optimal maximum likelihood (ML)

decoder with respect to the ensemble of random codebooks,

whose codewords are drawn independently under the uniform

distribution [31].

By “unifilar finite-state channel”, we mean a channel that

admits the product-form strructure

P (yn|xn) =

n
∏

i=1

P (yi|xi, zi), (15)

where zi is the channel state at time i, which obeys the

recursion,

zi+1 = q(xi, yi, zi), i = 1, 2, . . . , n, (16)

for some next-state function q.

Ziv’s universal decoding metric is defined as follows. Let

xn = (x1, . . . , xn) be a channel input vector (a codeword)

and let yn = (y1, . . . , yn) be a channel output vector. De-

fine c(xn, yn) to be the number of phrases in joint parsing

of ((x1, y1), (x2, y2), . . . (xn, yn)), and denote by c(yn) the

number of distinct phrases of yn. Finally, let cℓ(x
n|yn) be

number of repetitions of the ℓth distinct phrase of yn, which

is equal to the number of distinct phrases of xn that are aligned

to the ℓth distinct phrase of yn, 1 ≤ ℓ ≤ c(yn). For example,1

let n = 6 and

(

x6

y6

)

=









0

∣

∣

∣

∣

1

∣

∣

∣

∣

0 0

∣

∣

∣

∣

0 1

0

∣

∣

∣

∣

1

∣

∣

∣

∣

0 1

∣

∣

∣

∣

0 1









. (17)

Then, c(y6) = 3 and

c1(x
6|y6) = c2(x

6|y6) = 1; c3(x
6|y6) = 2. (18)

1The same example appears also in [31].

The universal decoding metric is defined as

u(xn|yn) =

c(yn)
∑

ℓ=1

cℓ(x
n|yn) log cℓ(x

n|yn), (19)

and the proposed universal decoder selects the codeword xn

with the smallest u(xn, yn) for the given yn.

The quantity u(xn|yn)/n is an individual-sequence counter-

part of the conditional entropy, and so, Ziv’s universal decoder

echoes the well-known minimum conditional entropy decoder,

which is universal for memoryless channels. Indeed, as a

byproduct of [31], u(xn|yn)/n is established as the conditional

version of the LZ complexity in the sense that it admits both

a coding theorem and a converse for encoding an individual

sequence xn in the presence of a side information sequence

yn (available at both ends) using finite-state encoders (see also

[10], [26]).

In [8] Lapidoth and Ziv have extended the findings of [31] to

non-unifilar finite-state channels, namely, channels for which

the next-state function q is stochastic.

D. Encryption

In an unpublished memorandum, [27], Ziv considered the

problem of perfectly secure encryption of individual se-

quences, where the eavesdropper is equipped with a finite-

state machine. More specifically, it was postulated in [27] that

the eavesdropper has some prior knowledge about the plain-

text, which can be represented in terms of the existence of

some set of “acceptable messages” that constitutes the a-priori

level of uncertainty (or equivocation) that the eavesdropper

has concerning the source input – the larger the acceptance

set, the larger is the uncertainty. It was assumed that there

exists an finite-state machine that can test whether or not

a given candidate plain-text message is acceptable. If the

finite-state machine produces the all-zero sequence in response

to that message, then this message is considered acceptable.

Perfect security is then defined as a situation where the size

of the acceptance set is not reduced (and hence neither is the

uncertainty) in the presence of the cryptogram. The main result

in [27] is that the asymptotic key rate needed for perfectly

secure encryption in that sense, cannot be smaller (up to

asymptotically vanishing terms) than the LZ complexity of the

plain-text source. This lower bound is clearly asymptotically

achieved by one-time pad encryption of the bit-stream obtained

by LZ compression of the plain-text source. This is in perfect

analogy to Shannon’s classical probabilistic counterpart result,

asserting that the minimum required key rate is equal to the

entropy rate of the source.

In [11] encryption of individual sequences is considered as

well, but the modeling approach and the definition of perfect

secrecy are substantially different. Rather than assuming that

the encrypter and decrypter have unlimited resources, and that

it is the eavesdropper which has limited resources, modeled

in terms of finite-state machines, in [11], the opposite is true.

The model adopted therein is of a finite-state encrypter, which

receives as inputs the plain-text sequence and the secret key



bit-stream, and it produces a cipher-text. Accordingly, a notion

of finite-state encryptability is defined as the minimum achiev-

able rate at which key bits must be consumed by any finite-

state encrypter in order to guarantee perfect security against an

unauthorized party in the sense that the probability distribution

of the cryptogram is independent of the plaintext input. The

final conclusion in [11] is the same as in [27]: the finite-state

encryptability is equal to the finite-state compressibility, which

in turn is equal to the LZ complexity.

E. Gambling

In [4], sequential gambling schemes, where the amount to

be wagered on the future outcome is obtained by a finite-state

machine were analyzed. In that work, the finite-state machine

calculates the percentage of the wagered capital at time instant

i on the outcome at the next time instant, i + 1, and that

wagers are paid at even odds. The maximum capital attained by

any finite-state machine is characterized in terms of the finite-

state complexity of the given individual sequence is proved.

A concrete gambling scheme was then proposed based on the

incremental parsing process of the LZ78 algorithm. The capital

achieved was found and it turned out that asymptotically,

its exponential growth is as fast as the exponential growth

achieved by any finite-state gambling machine.

F. Prediction

A year later, in [5], the related problem of universal predic-

tion of binary individual sequences using finite-state predictors

was addressed. The model adopted was in the spirit of the one

in eqs. (1) and (2), except that in eq. (1), the output was defined

to be an estimate of the next outcome of the sequence, namely,

x̂i+1 = f(zi, xi), (20)

and the performance of a predictor was measured in terms

of the relative frequency of prediction errors in the long

run. A notion of finite-state predictability was defined under

the inspiration of [35], as the asymptotic minimum fraction

of prediction errors attainable by any finite-state predictor

similarly as in the above mentioned definitions associated

with compressibility. A mechanism similar to the one in [4]

was used for universal prediction scheme that asymptotically

achieves the finite-state predictability. This was achieved by

devising a running empirical conditional probability distribu-

tion (based on the LZ phrases) of the next outcome given the

past. If the empirical conditional probability of ‘1’ was well

above 1
2 , then the predictor would guess that the next out come

is x̂i+1 = 1. If it was significantly below 1
2 , the guess would be

x̂i+1 = 0. In the vicinity of 1
2 , the prediction was randomized.

The ideas of [5] were extended later in various directions, as

summarized (among other things) in the tutorial article [17].

G. Filtering

In the filtering problem considered in [21], a finite-alphabet

individual sequence is corrupted by a memoryless channel

and the objective was to reconstruct the underlying clean

sequence, with as low distortion as possible, by processing

the channel output sequence causally. Using the incremental

parsing procedure, practical filtering algorithms were devised.

In particular, a finite-memory filter of order k was defined to

have the property that the estimation at any time instant is a

time-invariant function of the channel outputs from time t− k
to time t, inclusive. The universal filter derived was shown

to achieve distortion essentially as small as that of the best

finite–memory filter of any fixed order, that is informed with

full knowledge of the clean sequence. More general finite-state

filters were also considered and it was shown that any such

filter is well approximated by some finite-memory filter of

growing order, and so, universality of the proposed algorithms

was established with respect to this larger class.

H. Guessing

Motivated by earlier work on universal randomized guess-

ing, in [14], the individual-sequence setting was studied in the

context of the guessing problem: in this setting, the objective

was to guess a secret, individual (deterministic) vector xn =
(x1, . . . , xn), by using a finite-state machine that sequentially

generates randomized guesses from a stream of purely random

bits. The finite-state guessing exponent was defined as the

asymptotic normalized logarithm of the minimum achievable

ρth order moment of the number of randomized guesses,

generated by any finite-state machine, until xn is guessed

successfully. It was shown in [14] that the finite-state guessing

exponent of any sequence is intimately related to its finite-

state compressibility, and it is asymptotically achieved by the

decoder of (a slightly modified version of) the LZ78 algorithm,

fed by purely random bits. The results in [14] are also extended

to the case where the guessing machine has access to a side

information sequence, yn = (y1, . . . , yn), which is also an

individual sequence.

I. Universal Code Ensembles

In [16], a universal ensemble for random selection of

rate-distortion codes, which is asymptotically optimal in an

individual-sequence sense was proposed. According to this en-

semble, each reproduction vector, x̂n, is selected independently

at random under the universal probability distribution,

Puniv(x̂
n) =

2−c(x̂n) log c(x̂n)

Z
(21)

where Z is the normalization constant,

Z =
∑

x̂n

2−c(x̂n) log c(x̂n), (22)

which echoes the spirit of the universal distribution defined in

the context of the Kolmogorov complexity [3, Section 14.6].

It is shown that with high probability, the randomly drawn

codebook yields an asymptotically optimal variable-rate lossy

encoder with respect to an arbitrary distortion measure, as a

compatible converse theorem holds as well. According to the

converse theorem, even if the decoder knew ℓ-th order type

class of source vector ahead of time (ℓ being a large but

fixed positive integer), the rate-distortion performance code

could not have been improved, for most of the codewords



that represent source sequences within in the same type.

This establishes an individual-sequence analogue of the rate

distortion function in the form of

̺(xn, D) = −
logPuniv{B(x

n, D)}

n
, (23)

where B(xn, D) = {x̂n : d(xn, x̂n) ≤ nD}, d(·, ·) is a (not

necessarily additive) distortion measure that satisfies certain

regularity conditions, and D is the distortion level. This rate-

distortion performance is easily seen to be better than that

of the scheme that selects the reproduction vector with the

shortest LZ78 code-length among all possible reproduction

vectors within B(xn, D).

V. SUMMARY AND OUTLOOK

In this article, we reviewed one of the most monumen-

tal contributions of Jacob Ziv to information theory - the

individual-sequence approach. We started from the jewel in

the crown - the LZ algorithm in its many versions. The LZ

algorithm is a special example of the rare combination of a

beautiful theory on the one hand, and great practicality, on the

other hand. Our main focus, in this article, was on an aspect

that is probably less familiar to the general Information Theory

community – the utility of LZ compression, and in particular,

the incremental parsing procedure, across a wide spectrum of

information processing tasks beyond data compression. This

broad utility indicates that there must be something very

deep associated with the ability of the incremental-parsing

mechanism to gather statistics from data in a profound sense.

Ziv’s inequality, which relates the probability of sequence to

the number of phrases, plays a pivotal role in harnessing the LZ

algorithm as an engine for the other tasks. Without any doubt,

Ziv’s legacy has influenced my own research journey, as well

as those of several colleagues and former students, and we

have seen here only a small fraction of many examples of this

fact. I am sure that this legacy will continue to influence my

research work for years to come, as I am still fascinated by its

beauty and elegance. One challenge that might be interesting to

explore in the future is about extensions to multiuser network

configurations.
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