
Discrete Universal Filtering Through
Incremental Parsing

Erik Ordentlich∗, Tsachy Weissman†, Marcelo J. Weinberger∗,
Anelia Somekh–Baruch‡, Neri Merhav‡

Abstract

In the discrete filtering problem, a data sequence over a finite alphabet is assumed
to be corrupted by a discrete memoryless channel. The goal is to reconstruct the clean
sequence, with as high a fidelity as possible, by way of causal processing of the noisy
sequence alone, with the reconstruction at time t depending only on noisy observations
occurring no later than t. We study a universal version of this problem in which
no assumptions are made about the distribution of the clean data, which may even
be non–stochastic. Using techniques from universal data compression, in particular,
the incremental parsing rule of LZ78, we derive practical and efficient algorithms for
the universal filtering of discrete sources. A finite–memory filter of order k has the
property that the reconstruction at any time t is a time–invariant function only of noisy
observations occurring between times t−k and t, inclusive. We show that our universal
filtering algorithms perform essentially as well, in an expected sense (with respect to
the noise process), as the best finite–memory filter of any fixed order, determined with
full knowledge of the actual clean data sequence, for all such data sequences. We also
consider more general finite–state filters and show that any such filter is arbitrarily
well approximated by a finite–memory filter of growing order, thereby establishing the
universality of the proposed algorithms with respect to this larger class. This result
can be viewed as the filtering analogue of the well known optimality of LZ78 relative
to the class of finite–state compressors.

1 Introduction

There have been several successful applications of tools and techniques from data com-
pression to other problem areas. A prominent instance of such cross–pollination is
the use of the well known LZ78 incremental parsing rule [12] as the basis for practical
and efficient algorithms for such diverse applications as gambling [2], prediction [3],
and prefetching for memory caches [7]. These applications can be characterized as
sequential decision problems, in which, at each time t, an action must be taken based
on past observations of some data sequence, and the resulting action is evaluated
against a new instance of the data sequence according to some loss function. The
overall performance is measured by summing the losses incurred for each action–data

∗HP Laboratories, 1501 Page Mill Rd.,Palo Alto, CA 94304, (eord,marcelo)@hpl.hp.com
†Department of Electrical Engineering, Stanford University, Stanford, CA, 94305,

tsachy@stanford.edu
‡Department of Electrical Engineering, Technion, Israel–Institute of Technology, Haifa 32000,

Israel, (anelia@techunix,merhav@ee).technion.ac.il

instance pair. The LZ78 incremental parsing rule provides an elegant algorithmic
framework for collecting and processing counts of symbol occurrences in slowly grow-
ing contexts of previously occurring symbols. The resulting algorithms are universal
in a sense analogous to that in which the basic LZ78 algorithm is universal in data
compression. Specifically, in each application, the notion of a finite–memory machine
of order k is defined.1 Such a machine is constrained to base its action at time t on
a time–invariant (randomized) function of data that occurred at times t− k through
t− 1. The LZ78–based algorithms in the above applications then achieve essentially
the same performance as the best finite–memory machine of any fixed order, matched
to the specific data sequence, for every data sequence. In most cases, following [3], the
notion of universality is strengthened by showing that finite–memory machines are no
less powerful than more general finite–state machines driven by the data sequence.

In this work, we apply the LZ78–based parsing rule to the filtering problem, which
can be formulated as follows. A data sequence {xt}, with xt ∈ X and |X | finite, is
corrupted by a discrete memoryless channel (DMC) into a noisy data sequence {zt},
zt ∈ Z, with |Z| finite. A filter estimates xt by applying a (possibly randomized)

function ft to z1, . . . , zt. Denoting the estimate by x̂t = ft(z1, . . . , zt) ∈ X̂ , its accuracy

is judged by evaluating a loss function, Λ : X × X̂ → IR+ on the pair xt, x̂t. The
overall performance of a filtering algorithm is assessed by summing the symbol-wise
losses.

In analogy to the above sequential decision problems, the class of finite–state
filters and the subclass of finite–memory filters can be defined. A key difference
with respect to the above cases, however, is that here the machines operate on the
noisy data, and not on the data they are actually trying to estimate. The notion of
universality with respect to these classes of filters must be adapted as well, to account
for the randomness in the noise. A filtering algorithm will be said to be universal
with respect to a class of finite–state filters, if its expected loss, averaged over the
noise process, is asymptotically no greater than the expected loss of the best finite–
state filter of any fixed size in the class, matched to the specific underlying clean data
sequence, for all such individual data sequences. We shall refer to this framework
for assessing the performance of an algorithm as the semi–stochastic setting since it
treats the noise as a random process, over which the loss is averaged, while it regards
the clean data sequence as a non–random individual sequence.

Two obstacles stand in the way of obtaining a filtering algorithm that is universal
in the above sense. The first, which also applies to the noise–free sequential decision
problems mentioned above, is that the universal filter must generate its estimates
causally, while the best finite–state filter is optimized non–causally, based on the entire
data sequence. The second obstacle, which is unique to the noisy–setting, is that the
universal algorithm must operate on the noisy data exclusively, while the best finite–
state filter is optimized with full knowledge of the underlying clean sequence. Thus,
any information about the clean sequence which is fundamental to the finite–state
filter optimization must ultimately be “learned” from processing noisy observations.
In particular, this precludes a direct application of the universal algorithms devised
for the noise–free class of sequential decision problems to the filtering problem, since
all of these algorithms, in deciding what action to take at time t, rely heavily on

1In previous papers (cf. eg. [3]) the adjective “Markov” is used instead of “finite–memory”.

the ability to evaluate the loss of varying order finite–memory machines on portions
of the data observed prior to time t. This reliance is not directly possible in the
noisy setting, since the loss is a function of both the observable noisy data and the
unobservable clean data.

We present two LZ78–motivated filtering algorithms, parameterized by DMC tran-
sition probabilities, that overcome the above obstacles and are shown to be universal
with respect to the class of finite–state filters, in the sense described above, when
their DMC parameters coincide with the actual DMC generating the noisy sequence.
The algorithms and analysis apply to sources over arbitrary finite alphabets, arbi-
trary DMCs (subject to a full–rank assumption detailed below), and arbitrary loss
functions. The first universal filtering algorithm we propose, which we shall call the
dynamic IP universal filter (IP for incremental parsing), uses the data dependent
LZ78 dynamic parsing rule to accumulate context dependent weights. This algorithm
uses artificial randomization in mapping accumulated weights to filtering decisions.2

The second algorithm, the static IP universal filter, uses a deterministic parsing de-
rived from the LZ78 parsing of the “counting sequence”, and does not require artificial
randomization. A key component of our analysis is a mapping between filtering and
prediction that allows us to “transfer” results from prediction theory to the filtering
setting. For example, the mapping readily establishes the finite–memory approxima-
bility of any general finite–state filter.

A preliminary version of the basic approach pursued in this work appears in [1],
which treats the special case of a binary source corrupted by a binary symmetric
channel (BSC) with performance measured by the Hamming loss. The setting of
causal filtering of noisy individual sequences was considered also in [10, Section 5],
where a scheme was devised to compete with an arbitrary finite set of delay, memory,
and rate constrained schemes (particularizing to the filtering problem when the rate
and delay constraints are removed). Another related work is the recent [11] which
treats the problem of universal denoising. This is similar to the filtering problem,
except that a denoiser is allowed to base its estimate of the clean data symbol at time
t on the entire noisy sequence, and, thus, unlike a filter, is not constrained to operate
in a causal fashion. The problem of universal filtering with respect to the class of 0–th
order finite–memory filters has a long history, and was originally referred to in the
literature as the sequential compound Bayes problem (see [6] and references therein).
Indeed, our static IP universal filter determines the filtering decision to apply in each
context, by applying the algorithm of [6] to a subsequence of the noisy data. Finally,
the problem of universal noisy prediction [8, 9] is also relevant. In the noisy prediction
problem it is assumed that zt is not available for estimating xt so that the estimate
of xt is based only on z1, . . . , zt−1. In [8] it is shown that the LZ78 driven universal
prediction algorithm of [3] is, without modification, also universal for binary noisy
prediction with respect to the class of finite–state noisy predictors. Such a result does
not hold in the filtering setting, even if the statistics used to formulate the prediction
of xt in the algorithm of [3] include the sample zt.

The paper is organized as follows. In Section 2 we introduce some basic notation.
Section 3 formally defines the universal filtering problem and introduces some con-
cepts that will be used later. Section 4 presents a correspondence between filtering

2We conjecture that universality is retained without the randomization.

and prediction that underlies many of our proofs, including the result of Section 5
showing that general finite–state filters are no more powerful, asymptotically, than
finite–memory filters. Section 6 presents the dynamic IP universal filter, while Sec-
tion 7 presents the non-randomized static IP universal filter. Some proofs are omitted
in this extended abstract.

2 Notation and preliminaries

We will let X ,Z, X̂ denote, respectively, the finite alphabets of the clean, noisy,
and reconstructed source. We assume some given (arbitrary) total ordering on the
elements of the alphabets, as well as on the elements of other finite sets that will be
considered. The notation xn will denote the sequence x1, . . . , xn. A |X | × |X̂ | matrix
Λ will denote the loss function, with the x, x̂–th entry Λ(x, x̂) specifying the loss
incurred when estimating clean symbol x by x̂. DMC channel transition probabilities
will be denoted by a |X |× |Z| matrix Π, with the x, z–th entry Π(x, z) specifying the
probability that the channel output is z given that the input is x. The z–th column of
Π will be denoted by πz and the x̂–th column of Λ by λx̂. As in [11], Π is assumed to
be of full row rank. For any finite set, U , RU will denote the space of |U|-dimensional
column vectors with real-valued components indexed by the elements of U according
to the total ordering, while M(U) will denote the simplex consisting of the elements
of RU with non-negative components summing up to 1. The empirical distribution
of a sequence un ∈ Un will be denoted by pun ∈ M(U), i.e., pun [u] is the fraction of
appearances of u in un.

The following concepts and definitions are central to the description and analysis
of the universal filtering algorithms in the sequel. Let h be a (column) vector–valued
function h : Z → RX having the property that, for a, b ∈ X ,∑

z∈Z

h(z)[b]Π(a, z) = δ(a, b)
4
=

{
1 if a = b
0 otherwise,

(1)

where h(z)[b] denotes the b–th component of h(z) [6]. It is readily verified that our
assumption of a channel matrix with full row rank guarantees the existence of a
mapping h satisfying (1).3 For any function v, v : Z → X̂ , let ρ(v) ∈ RX denote the
column vector with x–th component

ρ(v)[x] =
∑

z

Λ(x, v(z))Π(x, z). (2)

In words, ρ(v)[x] is the expected loss of the estimator v when the underlying symbol is

x. Let V denote the (finite) set of mappings taking Z into X̂ , i.e., V =
{

v : Z → X̂
}

and, for ξ ∈ RZ , let Bh(ξ, ·) ∈ V be defined by

Bh(ξ, ·) = arg min
v∈V

[∑
z

ξ[z]h(z)

]T

· ρ(v)

 . (3)

3In particular, for the case |X | = |Z|, there exists a unique such h given by h(z)[b] = Π−1(z, b).

Under the interpretation (which loosely applies in the sequel) that
∑

z ξ[z]h(z) is a
probability distribution on X , Bh(ξ, ·) corresponds to that mapping or estimate of
x, as a function of z, that minimizes the expected loss, if the DMC Π inputs are
distributed according to

∑
z ξ[z]h(z).

3 The universal filtering problem

An individual data sequence xn is assumed to be corrupted by a DMC with probability
transition matrix Π resulting in a random noisy sequence Zn. Thus, fixing xn,

Pr(Zn = zn) =
n∏

t=1

Π(xt, zt). (4)

A filter is a sequence of probability distributions X̂ = {X̂t}, where X̂t : Z t →
M(X̂). The interpretation is that, upon observing zt, the reconstruction for the

underlying, unobserved, xt is given by the symbol x̂ with probability X̂t(z
t)[x̂]. A

deterministic filter is a special case for which X̂t(z
t) puts all the mass on a single (zt

dependent) reconstruction value. The normalized cumulative loss of the scheme X̂
on the individual pair (xn, zn) is defined by

LX̂(xn, zn) =
1

n

n∑
t=1

∑
x̂∈X̂

Λ(xt, x̂)X̂t(z
t)[x̂] (5)

(each inner summation can be interpreted as an expectation w.r.t. the randomization).

The expected loss of X̂ in a semi–stochastic setting on the individual clean data
sequence xn is defined by ELX̂(xn, Zn), with Zn distributed according to (4).

We now formally define the notion of a finite–state filter: X̂ will be said to be
a finite–state filter with finite state–space S if there exists a next–state function
g : S ×Z → S, a reconstruction function f : S ×Z →M, and an initial state s ∈ S
such that

X̂t(z
t) = f(st, zt), st+1 = g(st, zt), s1 = s. (6)

We let GS denote the class of all finite–state filters with state space S and define

φS(x
n) = min

X̂∈GS
ELX̂(xn, Zn), (7)

with the expectation on the right–hand side assuming the semi–stochastic setting.
The quantity φS(x

n) is thus the loss incurred in the semi–stochastic setting by the
best finite–state filter on S for xn. A Markov filter of order k is a finite–state filter with
state space S = Zk and st = zt−1

t−k. We let Fk denote the class of all finite–memory
filters of order k and let µk(x

n) denote the loss incurred in the semi–stochastic setting
by the best k–th order finite–memory filter for xn, in analogy to (7). It can be shown
that φS(x

n) and µk(x
n) are achieved by deterministic filters.

The universal filtering problem is to construct a filtering algorithm X̂ satisfying

lim sup
n→∞

[ELX̂(xn, Zn)− φS(x
n)] ≤ 0 (8)

for all finite S and x∞ ∈ X∞, or, in words, to find an X̂ with expected loss in the
semi–stochastic setting that is asymptotically no larger than φS(x

n), for any fixed S,
and for all individual clean data sequences x∞ ∈ X∞.

4 Filtering as a prediction problem

In this section, we present a mapping from noise–free predictors to filters that will
be useful in transferring known results from the noise–free prediction setting to the
filtering setting. Let the finite sets Y , A be, respectively, a source alphabet and
a prediction alphabet (also referred to as the “action space”). A predictor F is a
sequence of functions Ft : Y t−1 →M(A) with the interpretation that the prediction
of the predictor F for time t is given by a ∈ A with probability Ft(y

t−1)[a]. Assuming
a given loss function ` : Y × A → R, for any n > 0 and yn ∈ Yn, we define the
normalized cumulative loss of the predictor F by

LF (yn) =
1

n

n∑
t=1

∑
a∈A

`(yt, a)Ft(y
t−1)[a]. (9)

Consider predictors for the source alphabet Y = Z and the action alphabetA = V ,
so that an action corresponds to selecting (at random) a function that maps Z to X̂ .

With any such predictor F we associate a filter X̂F in the following way:

X̂F
t (zt)[x̂] =

∑
v:v(zt)=x̂

Ft(z
t−1)[v]. (10)

This association yields the following lemma, where we recall the existence of a vector
valued function h(z) satisfying (1).

Lemma 4.1 Assume the semi-stochastic setting. For all n > 0 and xn ∈ X n we
have

ELX̂F (xn, Zn) = ELF (Zn), (11)

where LF (zn) is the normalized cumulative loss of an arbitrary predictor F (as defined
in (9)) for the prediction problem with Y = Z, A = V, and the loss function

`(z, v) = h(z)T · ρ(v). (12)

In words, Lemma 4.1 states that the observable LF (Zn) is an unbiased estimate of
ELX̂F (xn, Zn) which is a function of xn and therefore not observable.

5 Finite–memory approximations of
finite–state filters

The correspondence between filtering and prediction provided by Lemma 4.1 allows
us to easily establish Lemma 5.1 below, showing that the performance of the best
finite–state filter can be approached by a finite–memory filter of growing order. From

Lemma 5.1 we conclude that if a filter is universal with respect to the class of finite–
memory filters (φS(x

n) replaced by µk(x
n), for any nonnegative integer k, in (8)), it

is then also universal with respect to the larger class of finite–state filters.
The proof of Lemma 5.1 (and of Theorem 6.1 below) relies on known properties of

finite–state and finite–memory predictors, which we now define. Using the notation
of the previous section, F will be said to be a finite state predictor with state space S
if there exists a next state function ĝ : S×Y → S, an action function f̂ : S →M(A),
and an initial state s such that

Ft(y
t−1) = f̂(st), st+1 = ĝ(st, yt), s1 = s. (13)

A Markov predictor of order k is a special case for which S = Yk and st = yt−1
t−k.

Lemma 5.1 There exists a quantity C depending only on Λ and Π, such that for
any nonnegative integers k and n, any finite state space S, and any input sequence
xn,

µk(x
n) ≤ φS(x

n) +

(
C log |S|

k + 1

)1/2

. (14)

Proof sketch: Let F ∗ be the deterministic finite–state predictor with state space S,
such that XF ∗ (obtained via the association of Lemma 4.1) achieves φS(x

n). The-
orem 2 of [5] shows the existence of C depending only on `, as defined by (12),
such that for any k there exists a finite–memory predictor Fk satisfying LFk

(Zn) ≤
LF ∗(Z

n) + ((C log |S|)/(k + 1))1/2. The bound (14) follows by taking expectations
and invoking Lemma 4.1 for the predictor–filter pairs (F ∗, XF ∗) and (Fk, X

Fk).

6 Dynamic IP universal filter

Like the LZ78 compression algorithm, the dynamic IP universal filter presented in
this section parses the noisy observation sequence into distinct phrases such that each
phrase is the shortest string which is not a previously parsed phrase. This procedure
is most conveniently considered as a process of growing a tree, where each new phrase
is represented by a leaf in the tree. Upon observing the first noisy symbol z1, a tree
is constructed consisting of a root and |Z| leaves (labeled by the symbols z ∈ Z),
with the leaf labeled by z1 given weight 1, and the remaining leaves weight 0. At
each step, the current tree is used to create an additional phrase by following the
path corresponding to the incoming symbols. Once a leaf has been reached, the tree
is extended at that point, making the leaf an internal node, adding its |Z| offspring
to the tree, and giving the leaf corresponding to the observed symbol weight 1 while
assigning weight 0 to the remaining leaves. The weight of each internal node is defined
recursively as the sum of the weights of its |Z| offspring. The values of internal node
weights can be updated efficiently by incrementing a counter associated with each
node whenever that node is reached by the tree traversal determined by the incoming
symbols. We let w(zt) denote the weight of the node reached by constructing and
traversing the tree according to zt, and w̄(zt−1) ∈ RZ denote the vector whose z–th

component is given by the weight of the child node of (the node associated with) zt−1

indexed by the symbol z. We define the dynamic IP universal filter X̂∗ by

X̂∗
t (zt)[x̂] = Pr

{
Bh

([
w̄(zt−1) + U

√
w(zt−1) + 1

]
, zt

)
= x̂

}
, (15)

where Bh(·, ·) is defined by (3) and U is uniformly distributed on the cube
[
0,

√
6
|Z|

]Z
.

Our main result is the following:

Theorem 6.1 Assume the semi-stochastic setting. For all x∞ ∈ X∞, n > 0,
k ≥ 0,

ELX̂∗(x
n, Zn) ≤ µk(x

n) + hmaxΛmax

[
k · Ec(Zn)

n
+

√
6|Z|
n

E
√

c(Zn)

]
, (16)

where c(Zn) denotes the number of phrases in the incremental parsing of Zn, Λmax =
maxx,x̂ |Λ(x, x̂)|, and hmax = maxz ‖h(z)‖1. In particular, for all k,

lim sup
n→∞

[ELX̂∗(x
n, Zn)− µk(x

n)] ≤ 0. (17)

The proof of Theorem 6.1 is based on the filtering–prediction correspondence of
Section 4 and also relies on known properties of a dynamic IP predictor P that
operates as follows: P parses the source sequence, builds a tree, and assigns weights
to the nodes exactly as does the dynamic IP universal filter detailed above. The
prediction for time t is given by

Pt(y
t−1)[a] = Pr

{
b
(
w̄(yt−1) + U

√
w(yt−1) + 1

)
= a

}
, (18)

where b(ξ)
4
= arg mina∈A

∑
y∈Y ξ[y]`(y, a) (also known as the Bayes response to ξ)

and U is uniformly distributed on
[
0, 6

|Y|

]Y
. The predictor P is a slight variation on

the predictor proposed in [7], which, in turn, builds on the predictors of [3, Section
V] and [4]. It can be interpreted as an application of the prediction algorithm of [4]
along dynamically determined subsequences obtained by classifying each time index
t according to the node occupied by the tree traversal at time t.

Letting Mk denote the class of all finite–memory predictors of order k and `max =
maxz,v |`(z, v)|, we have the following:

Lemma 6.2 The dynamic IP predictor P defined in (18) satisfies, for all y∞ ∈
Y∞, n > 0, k ≥ 0,

LP (yn) ≤ min
F∈Mk

LF (yn) +
k · c(yn) · `max

n
+ `max

√
6|Y|

√
c(yn)

n
. (19)

Lemma 6.2 is proved using the methodology pioneered in [3], and applied to this
specific type of predictor in [7].

Proof of Theorem 6.1: Let P denote the incremental parsing predictor given by
(18) with Y = Z, A = V and the loss function `(z, v) = h(z)T · ρ(v). By examining

(3), (15), and (18) it is readily verified that X̂∗ = X̂P , where X̂P denotes the filter
associated with the predictor P , as specified in (10). It is also readily verified that
(under the association in (10)) to any k–th order finite–memory filter there exists
a k–th order finite–memory predictor associated with it, and vice versa, thus, by
applying Lemma 4.1,

E min
F∈Mk

LF (Zn) ≤ min
F∈Mk

ELF (Zn) =

min
F∈Mk

ELX̂F (xn, Zn) = min
X̂∈Fk

ELX̂(xn, Zn) = µk(x
n). (20)

On the other hand, from Lemma 6.2 it follows that for all sample paths

LP (Zn) ≤ min
F∈Mk

LF (Zn) +
k · c(Zn) · `max

n
+ `max

√
6|Z|

√
c(Zn)

n
. (21)

The proof is completed by taking expectations over both sides of (21), invoking
Lemma 4.1 for the left side, bounding the right side using (20), and noting that
`max = maxz∈Z,v∈V |h(z)T · ρ(v)| ≤ hmaxΛmax. Inequality (17) follows by the fact that
maxzn c(zn) = O(n/ log n) [12].

7 Static IP universal filter

We now describe a filtering algorithm that attains the performance of the best k–th
order finite–memory filter, for any k, without the use of artificial randomization. Our
algorithm and analysis is based on the following fundamental result concerning the
sequential compound Bayes problem.

Theorem 7.1 ([6]) The deterministic filtering algorithm X̂0 defined by

X̂0
t (zt)[x̂] =

{
1 if x̂ = Bh(pzt , zt)
0 otherwise,

satisfies ELX̂0(xn, Zn) ≤ µ0(x
n) + cn−1/2, for all xn, where c is a constant depending

only on Λ and h.

Thus, the algorithm X̂0 competes effectively with the best 0–th order or memoryless
filtering algorithm, determined with full knowledge of the clean sequence xn.

We extend this algorithm to one which competes against the best k–th order finite–
memory filter by applying the algorithm X̂0 along subsequences of the noisy data zn.
Let T0,n denote the set of indices corresponding to the starting points of phrases in
an LZ78 incremental parsing of the “counting sequence” of length n, which consists
of all distinct strings of length 1 over the alphabet Z, followed by all distinct strings
of length 2, and so on. Similarly, let Tk,n denote the set of indices for which the depth
of the corresponding LZ78 tree traversal of the counting sequence is k. The static IP
universal filtering algorithm X̂s partitions Tk,n, for each k, into subsequences based

on the value of zt−1
t−k for t ∈ Tk,n, and applies the filtering algorithm X̂0 to the symbols

along each such subsequence (one subsequence for each k and aligned occurrence of
each possible k–tuple in zn), treating each subsequence independently.

Formally, let t1 = 1, ti+1 = ti + i|Z|i, and define

I(t)
4
= max{i : ti ≤ t},

K(t)
4
= t− tI(t) mod I(t) (= context length at t),

Tk,n
4
= {t ≤ n : K(t) = k}, Tk,n,z̃k(zn)

4
= {t ∈ Tk,n : zt−1

t−k = z̃k}.

We define the deterministic sequential filtering algorithm X̂s by

X̂s
t (z

t) = X̂0
|T

K(t),t,zt−1
t−K(t)

(zt)|(z[TK(t),t,zt−1
t−K(t)

(zt)]), (22)

where, for any set of distinct integers A = {i1 < . . . < im}, z[A]
4
= (zi1 , zi2 , . . . , zim).

One can interpret the algorithm X̂s as engaging in an LZ78-like incremental pars-
ing, but where the parsing is deterministic and not data driven. The following result
bounds the performance of the static IP universal filter X̂s.

Theorem 7.2 Assume the semi-stochastic setting. For all x∞ ∈ X∞ and any
fixed k,

ELX̂s(x
n, Zn) ≤ µk(x

n) + O((log n)−1/2). (23)

References
[1] A. Baruch and N. Merhav. Universal filtering and prediction of individual sequences corrupted

by noise. Proceedings, 37–th Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, September 22–24, 1999.

[2] M. Feder. Gambling using a finite state machine. IEEE Trans. Inform. Theory, 37(5):1459–
1465, September 1991.

[3] M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequences. IEEE
Trans. Inform. Theory, 38:1258–1270, July 1992.

[4] J. F. Hannan. Approximation to Bayes risk in repeated play. Contributions to the Theory of
Games, (3):97–139, 1957. Princeton University Press.

[5] N. Merhav and M. Feder. Universal schemes for sequential decisions from individual data
sequences. IEEE Trans. Inform. Theory, 39:1280–1292, July 1993.

[6] J. Van Ryzin, The sequential compound decision problem with m × n finite loss matrix,
Ann. Math. Stat., vol. 37, 1966, pp. 954–975.

[7] M. J. Weinberger and E. Ordentlich, On–line decision making for a class of loss functions via
Lempel–Ziv parsing, Proceedings, Data Compression Conference, March 28–30, 2000, Snowbird,
Utah.

[8] T. Weissman and N. Merhav, Universal prediction of individual binary sequences in the presence
of noise, IEEE Trans. Inform. Theory, 47(6):2151–2173, September 2001.

[9] T. Weissman, N. Merhav, and A. Baruch, Twofold universal prediction schemes for achieving
the finite-state predictability of a noisy individual binary sequence, IEEE Trans. Inform.
Theory, 47(5):1849–1866, July 2001.

[10] T. Weissman and N. Merhav. Finite-delay lossy coding and filtering of individual sequences,
IEEE Trans. Inform. Theory, 48(3):721–733, March 2002.

[11] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdú, M. J. Weinberger, Universal discrete
denoising: known channel, HP Labs. Tech. Rep., HPL-2003-29, February 2003. Submitted to
IEEE Trans. Inform. Theory.

[12] J. Ziv and A. Lempel, Compression of individual sequences via variable–rate coding, IEEE
Trans. Inform. Theory, 24:530–536, September 1978.

