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Abstract— We consider the problem of universal delay–limited
simulation of an unknown information source of a certain
parametric family (e.g., the family of memoryless sources or
Markov sources), given a training sequence from that source
and a stream of purely random bits. In the delay–limited
setting, the simulation algorithm generates a random sequence
sequentially, by delivering one symbol for each training symbol
that is made available after a given initial delay, whereas the
random bits are assumed to be available on demand. The goal of
universal simulation is that the probability law of the generated
sequence be identical to that of the training sequence, with
minimum mutual information between the random processes
generating both sequences. We characterize the optimal delay–
limited simulation scheme and upper-bound the expected number
of random bits it consumes. As in the non-sequential case, this
upper bound is related to the entropy rate of the source.

I. INTRODUCTION

Simulation of random processes is about artificial generation
of random data with a prescribed probability law, by using a
certain deterministic mapping from a source of purely random
(independent equally likely) bits into sample paths. The sim-
ulation problem finds applications in speech and image syn-
thesis, texture reproduction, generation of noise for purposes
of simulating communication systems, and cryptography.

The simulation problem of sources and channels has been
investigated by several researchers, see, e.g., [1], [2], [3], [4],
[5], [6]. In all these works, the common assumption is that
the probability law of the desired process is perfectly known.
Recently, Merhav and Weinberger [7] considered a universal
version of this problem for finite–alphabet sources, in which
the assumption of perfect knowledge of the target probability
law is relaxed. Specifically, the target source P to be simulated
is assumed in [7] to belong to a certain parametric family
P (like the family of finite–alphabet memoryless sources,
Markov sources of a given order, etc.) but is otherwise
unknown, and a training sequence Xm = (X1, . . . , Xm) that
has emerged from this source is available. In addition, the
simulation scheme is provided with a stream of k purely
random bits Uk = (U1, . . . , Uk) that are independent of Xm.
The goal of the simulation scheme is to generate an output
sequence Y n = (Y1, . . . , Yn), n ≤ m, corresponding to the
simulated process, such that Y n = φ(Xm, Uk), where φ is a
deterministic function that does not depend on the unknown
source P , and which satisfies the following two conditions:
C1. The probability distribution of Y n is exactly the n-

dimensional marginal of the probability law P corre-

1 This work was done while N. Merhav was visiting Hewlett–Packard
Laboratories, Palo Alto, CA, U.S.A.

sponding to Xm for all P ∈ P .
C2. The mutual information I(Xm;Y n) is as small as pos-

sible, simultaneously for all P ∈ P (so as to make the
generated sample path Y n as “original” as possible).

In [7], the smallest achievable value of the mutual information
as a function of n, m, k, and the entropy rate H of the source
P is characterized, and simulation schemes that asymptotically
achieve these bounds are presented. It is shown in [7] that in
order to satisfy Condition C1, it is necessary that the output
Y n be a prefix of a sequence Y m having the same type [8]
as Xm with respect to P (when P is the entire class of i.i.d.
sources over a finite alphabet, this means that Xm and Y m

have the same composition, namely yield the same empirical
distribution [9]). Moreover, it is shown that for k large enough,
the optimal simulation scheme essentially takes the first n
symbols of a randomly selected sequence of the same type
as Xm. A different perspective on universal simulation is
investigated in [10], where xm is assumed to be an individual
sequence not originating from any probabilistic source.

In this paper, we investigate the universal simulation prob-
lem in a sequential, delay–limited setting. In this setting, upon
observing an initial training (d − 1)-tuple Xd−1, where d is
some fixed initial delay, the simulation scheme is requested to
output one symbol Yt for every additional symbol Xt+d−1

it observes, 1 ≤ t ≤ n. Thus, Y t depends on Xt+d−1

but, unlike the setting in [7], it is independent of Xt+d+i,
i ≥ 0. In order to generate an output sequence satisfying
conditions C1–C2 (with m = n + d − 1), the simulation
scheme has also access to a stream of purely random bits {Ui}
(the key), which are available “on demand.” This assumption
differs from the setting in [7] in that there is no fixed budget
of key bits; rather, we will be interested in the expected
number of key bits that the scheme consumes in order to
generate its output, where the expectation is with respect
to {Ui} and P . Thus, a delay–limited simulation scheme is
given by a sequence of conditional probability distributions
{Wt(Yt|Xt+d−1, Y t−1)}. It is well known from [1] that a
corresponding sequence of draws can be implemented with
an Elias decoder [11, pp. 479–482]. To output Yt, the Elias
decoder is tuned to the distribution Wt(·|Xt+d−1, Y t−1), and
uses the random bitstream as its input. As shown in [1], the
expected number of key bits that the decoder consumes to
(sequentially) produce Y n is upper-bounded by the conditional
entropy of the resulting product distribution W (Y n|Xn+d−1),
plus 3 bits.

A special, trivial case of the delay–limited universal simula-
tion problem is obtained when pure sequentiality is required,



namely when the allowed delay d is 1, and P is the entire
class of i.i.d. sources over a finite alphabet. In this case, due
to the constraint that Y n must be of the same type as Xn

in order to satisfy Condition C1, the simulation scheme can
only copy the input, and therefore H(Y n|Xn) = 0. Thus, the
problem becomes interesting as d grows.

As it turns out, for a broad class of families P , the optimal
simulation scheme that preserves the probability law (Con-
dition C1) while minimizing I(Y n;Xn+d−1) simultaneously
for all P ∈ P (Condition C2) takes a form that is reminiscent
of enumerative decoding schemes [12]. For example, when P
is the entire class of i.i.d. sources over a finite alphabet, the
simulation scheme draws a symbol a at time t with probability
equal to the empirical probability of a in any d-tuple zd such
that yt−1zd and xt+d−1 have the same composition (it is easy
to see, by induction, that such a sequence zd will always exist).
In other words, for any symbol a we have

Wt(a|Xt+d−1, Y t−1) =
na(Xt+d−1)− na(Y t−1)

d
(1)

where na(s) denotes the number of occurrences of a in a se-
quence s. The distribution assigned by the scheme is precisely
the one that an enumerative decoder would use to decode yt

given that yt+d−1 has the same composition as xt+d−1. The
corresponding conditional entropy H(Y n|Xn+d−1), which
upper-bounds (up to an additive constant) the expected key
length required for implementing the scheme, equals, after
normalization by the number of output symbols, the expec-
tation under P of the empirical entropy of d-tuples. By [13],
this expectation falls short of the entropy rate H by an O(1/d)
term. Since, by C2, H(Y n) = H(Xn), this term is precisely
the normalized mutual information between the input and
the output. The above results will actually be extended, in
Section III, to a more general setting, where the source P has
memory and P is a parametric subfamily of the entire class.

In the remainder of this extended abstract, Section II intro-
duces the main concepts and notation. Our main results are
then presented in Section III and discussed in Section IV.

II. NOTATION AND PROBLEM FORMULATION

Throughout the paper, random variables will be denoted by
capital letters and specific values they may take will be denoted
by the corresponding lower case letters. The same convention
will apply to random vectors, with an additional superscript
denoting their dimension. If the dimension is omitted, random
vectors will be denoted in bold. A generic parametric family
of sources will be denoted by P , and a particular source in
P , defined by a parameter vector θ taking values over some
parameter space Ω, will be denoted by Pθ. However, in a
context where the parameter value is either fixed or irrelevant,
we will omit it, denoting a source in P simply by P . The
(finite) source alphabet is denoted by A.

A finite-state machine (FSM) over a finite state space S
will be identified with its next-state function g : S × A →
S, and will be assumed to start at a given initial state s0 ∈

S. The class of all FSM sources over A driven by the next-
state function g and starting at state s0 will be denoted by
Fg,s0 . Thus, if P is a parametric subfamily of Fg,s0 and t
is a given positive integer, the probability of a t-vector xt =
(x1, x2, . . . , xt) drawn from P ∈ P , xi ∈ A, i = 1, . . . , t, is
given by

Pr{Xi = xi, i = 1, . . . , t} =
t∏

i=1

P (xi|si−1)
4
= P (xt)

where s1, s2, . . . , st ∈ S denotes the sequence of states
assumed by the FSM.

We shall define the type class [8] Txm of a vector xm as the
set of all vectors x̃m ∈ Am such that P (x̃m) = P (xm) for
every source P ∈ P . The set of all type classes of vectors in
Am will be denoted by T m. For example, in case P = Fg,s0 ,
Txm is the set of all vectors having the same composition as
xm with respect to g [8], [9] (i.e., each state transition occurs
as many times in x̃m ∈ Txm as in xm, starting from state s0).
Given another sequence yn ∈ An, n ≤ m, r = m − n, let
Txm\yn = {zr ∈ Ar : ynzr ∈ Txm}, which is interpreted
as a “difference type.” For a family of FSM sources, if the
initial state is not assumed to be s0 but a generic state s ∈ S,
the type of xm and the difference type will be denoted T s

xm

and T s
xm\yn , respectively. Notice that for any sequence zr ∈

Txm\yn , T sn
zr = Txm\yn , where sn denotes the state to which

the FSM evolves with yn.
Next, for every type class T ∈ T m, we define

Pθ(T )
4
=

∑
x̃m∈T

Pθ(x̃m) = |T | · Pθ(xm) (2)

where xm is a sequence in T and, throughout, |T | denotes
the cardinality of T . Given some enumeration of T m, let
T (1), T (2), . . . , T (|T m|) denote the corresponding type classes.
For each j, 1 ≤ j ≤ |T m|, Pθ(T (j)) can be regarded
as a function of the parameter vector θ defining Pθ ∈ P .
Following [7], we will assume that the class of sources P
satisfies the following assumption:

A1. The set {Pθ(T (j))}|T
m|

j=1 (as functions of θ) is linearly
independent over Ω.

As shown in [7], Assumption A1 is satisfied for a broad class
of parametric families, including any i.i.d. exponential family
for suitable Ω, or any family Fg,s0 .

A simulation scheme with delay limitation d and horizon n
consists of a sequence of conditional probability distributions
{Wt(Yt|Xt+d−1, Y t−1)}n

t=1, where Xn+d−1 is the training
sequence and Y n is the output. The resulting conditional
distribution on Y n, which is regarded as a channel, will be
denoted by W (Y n|Xn+d−1), namely

W (Y n|Xn+d−1) =
n∏

t=1

Wt(Yt|Xt+d−1, Y t−1) .

Finally, let I(Xn+d−1;Y n) denote the mutual information
between Xn+d−1 and Y n that is induced by the source P and
the channel W . We seek a delay–limited simulation scheme



that meets conditions C1–C2 that were itemized in Section I,
for m = n + d− 1.

III. MAIN RESULTS

We first state a necessary and sufficient condition for any
simulation scheme (not necessarily with a delay limitation) to
satisfy Condition C1. Here, a simulation scheme is simply a
channel W (Y n|Xm), m ≥ n.

Lemma 1: Assume P satisfies Assumption A1. Then, a
channel W satisfies Condition C1 if and only if for all
sequences x ∈ Am and y ∈ An we have∑

x̃∈Tx

W (y|x̃) = |Tx\y| . (3)

Proof. Clearly, the probability law is preserved if and only if
for all y ∈ An and P ∈ P we have∑

Tx∈T m

P (x)
∑
x̃∈Tx

W (y|x̃) =
∑
z∈Ad

P (yz) .

Now, if no sequence in Tx is prefixed by y we have |Tx\y| =
0; otherwise, P (x) = P (yz) where z runs over all sequences
in |Tx\y|. Therefore,∑

z∈Ad

P (yz) =
∑

Tx∈T m

P (x)|Tx\y|

and thus the probability law is preserved if and only∑
Tx∈T m

P (x)

[
|Tx\y| −

∑
x̃∈Tx

W (y|x̃)

]
= 0 .

The claim then follows from Assumption A1.

Notice that Lemma 1 implies that a simulation scheme
satisfying Condition C1, when trained with a sequence x, can
only output sequences y such that Tx\y is nonempty. In other
words, y must be a prefix of a sequence in Tx (in [7], such
a sequence y is said to be feasible with respect to x). Now,
a simulation scheme with delay limitation d and horizon n
defines simulation schemes that output Y t with training data
Xt+d−1, 1 ≤ t ≤ n. Clearly, these reduced-horizon schemes
preserve the probability law if so does the scheme with horizon
n, and therefore also satisfy Condition C1. It then follows that
every prefix yt of yn must be feasible with respect to xt+d−1.

Our main result states that the optimal simulation scheme
with delay limitation d and horizon n, in the sense of minimiz-
ing the mutual information I(Xn+d−1;Y n) simultaneously for
all P ∈ P among schemes that preserve the probability law
(and, therefore, satisfy the condition (3)), is given by

W ∗
t (yt|xt+d−1, yt−1) =

|Txt+d−1\yt |
|Txt+d−1\yt−1 |

. (4)

Equation (4) indeed defines a conditional probability distri-
bution on A since, for any pair of sequences x and y, the
definition of a difference type implies that

⋃
a∈A Tx\ya =

Tx\y. For the scheme (4) to preserve the probability law, we
need the following additional assumption on P:
A2. If Ty1 = Ty2 then for every x we have |Tx\y1

| = |Tx\y2
|.

Notice that this assumption holds trivially in the i.i.d. case,
since in this case Tx\y depends on y only through its type.
For a general FSM source, Tx\y may also depend on the final
state to which the FSM evolves with y. However, if P is an
entire class Fg,s0 parametrized by the transition probabilities,
then the assumption still holds since in this case two sequences
y1 and y2 of the same type bring the FSM to the same final
state (as the number of transitions between any pair of states
is the same for both sequences, with the initial and final states
being the only ones for which the nodes in the underlying
graph may have an outgoing degree which differs from the
incoming degree).

Theorem 1: Assume P satisfies assumptions A1 and A2.
(a) The channel W ∗ satisfies Condition C1.
(b) Assume P is a subfamily of a family Fg,s0 of FSM

sources. Given s ∈ S and z ∈ Ad, let Qs,z(·) denote
a probability distribution on A defined by

Qs,z(a) =
|T s

z\a|
|T s

z |
, a ∈ A.

Then, for any simulation scheme Wt with delay limitation
d that satisfies Condition C1 we have

H(Y n|Xn+d−1) ≤ nEs,zH(Qs,z) (5)

where the expectation is with respect to the distribution

Pr{s, z} =

[
1
n

n−1∑
t=0

Pr{st = s}

]
P (z|s) (6)

with equality in (5) if and only if Wt = W ∗
t .

Sketch of proof. Part (a) follows from showing, by induction
in n, that the simulation scheme satisfies the condition (3) of
Lemma 1. For n = 1 we have, for any x ∈ Ad and y ∈ A,∑

x̃∈Tx

W ∗(y|x̃) =
|Tx\y|
|Tx|

· |Tx| = |Tx\y| .

Assume now that the condition holds for n = t − 1, and for
y ∈ At let y = y′a, a ∈ A. Then,∑

x̃∈Tx

W ∗(y|x̃) =
∑
x̃∈Tx

W ∗(y′|x̃)
|Tx̃\y|
|Tx̃\y′ |

=
|Tx\y|
|Tx\y′ |

∑
x̃∈Tx

W ∗(y′|x̃) (7)

where the second equality follows from the fact that the
difference types depend on x̃ only through its type. By
Assumption A2, the multiset of sequences obtained by deleting
the last symbol of all x̃ ∈ Tx is a union of types, and
therefore by the induction hypothesis and since W ∗(y′|x̃) is
independent of the last symbol of x̃, the condition implies that
the summation on the right-hand side of (7) is the number of
sequences z such that y′z ∈ Tx, namely |Tx\y′ |.

As for Part (b), we present the proof for the i.i.d. case only.
In this case, it is easy to see that any simulation scheme Wt



satisfies

H(Yt|Xt+d−1, Y t−1) =∑
Tz∈T d

∑
y∈At−1

∑
x∈Tyz

H(Yt|x,y) Pr{Xt+d−1=x, Y t−1=y}.

Since, by the i.i.d. assumption, P (x) = P (y)P (z) for x ∈
Tyz, we have∑

y∈At−1

∑
x∈Tyz

Pr{Xt+d−1 = x, Y t−1 = y}

= P (z)
∑

y∈At−1

P (y)
∑

x∈Tyz

W (y|x) . (8)

If W preserves the probability law then it does so for all
horizons t, 1 ≤ t ≤ n, and thus, by Lemma 1, we have∑

x∈Tyz
W (y|x) = |Tyz\y| = |Tz|. Therefore, the right-hand

side of (8) equals P (Tz) and, by Jensen’s inequality, we have

H(Yt|Xt+d−1, Y t−1) ≤∑
Tz∈T d

P (Tz)H

 1
P (Tz)

∑
y∈At−1

∑
x∈Tyz

Pr{x,y}Wt(·|x,y)


with equality if and only if Wt(·|x,y) depends only on Tx\y.
Consequently,

H(Yt | Xt+d−1, Y t−1) ≤

Ez H

 P (z)
P (Tz)

∑
y∈At−1

P (y)
∑

x∈Tyz

Pr{x,y}W (yyt|x)


where the expectation is on d-tuples and with respect to P .
Again by Lemma 1,

H(Yt|Xt+d−1, Y t−1) ≤ EzH

 1
|Tz|

∑
y∈At−1

P (y)|Tyz\yyt
|


= EzH

( |Tz\·|
|Tz|

)
.

Using the chain rule of conditional entropies it follows that

H(Y n|Xn+d−1) ≤ nEzH

( |Tz\·|
|Tz|

)
as claimed (for the i.i.d. case). The probability assignment
of the proposed scheme depends only on Tx\y and therefore
it achieves maximum conditional entropy. Moreover, consider
any law-preserving scheme W that depends on x only through
Tx\y. Then, with y = y′a, a ∈ A, Lemma 1 implies

|Tx\y| =
∑
x̃∈Tx

W (y|x̃) =
∑
x̃∈Tx

W (y′|x̃)Wt(a|x̃,y′)

= Wt(a|x,y′)
∑
x̃∈Tx

W (y′|x̃) . (9)

Using Assumption A2 as in the proof of Part (a), the summa-
tion in the right-hand side of (9) equals |Tx\y′ |, and therefore
Wt(a|x,y′) = W ∗

t (a|x,y′). Thus, W ∗
t is the only law-

preserving scheme whose assignment depends on x through
Tx\y.

Notice that the simulation scheme {W ∗
t } is strictly optimum

for every value of n, and not merely in an asymptotic sense.
Moreover, the simulation scheme is horizon-independent, and
therefore it also minimizes I(Xt+d−1;Y t) and preserves the
probability law for Y t for all t ≥ 1.

IV. DISCUSSION

When P = Fg,s0 , W ∗
t takes the form of an empirical

distribution. Since Txt+d−1\yt−1 is an FSM-type in T d (but
with initial state st−1), we can apply Whittle’s formula [15] to
show that W ∗

t (a) is the empirical conditional probability of a
given st−1 in any d-tuple in Txt+d−1\yt−1 (see (1) for the i.i.d.
case). Intuitively, the scheme aims at outputting a sequence
with the same composition as the input, as the latter becomes
sequentially available. Similarly, the conditional entropy in
Part (b) of the theorem takes the form of an expected empirical
entropy. For a stationary chain, the distribution (6) under which
the expectation is taken tends, as n → ∞, to the stationary
distribution of P (notice that the source is started at a given
initial state, and therefore may not be in stationary mode).
Thus, the mutual information achieved by the optimal scheme,
namely H(Xn) −H(Y n|Xn+d−1) (as Xn and Y n have the
same distribution), is the difference between the entropy of n-
tuples and n times the expected empirical entropy computed
over d-tuples. In the i.i.d. case, after normalization by n,
this difference is the expected divergence between the actual
distribution and the empirical distribution (over d-tuples),
whose asymptotic behavior with d is shown in [13] to be
O(1/d) (this result is generalized to Markov sources in [14]).
In contrast, consider the following straightforward adaptation
of the (non-sequential) simulation scheme of [7] to the delay–
limited setting: Upon observing Xkd and outputting Y (k−1)d,
k ≥ 1, the delay–limited scheme outputs a random d-tuple
of type TXkd\Y (k−1)d . Clearly, this blockwise scheme satisfies
the delay constraint, and by the results in [7] it achieves
a mutual information whose asymptotic behavior with d is
O((log d)/d).

When P is an arbitrary parametric subfamily of Fg,s0 , the
above interpretation as empirical distributions may no longer
hold. However, at least for exponential families, the asymptotic
expansion of the type size presented in [7] can be used to
show that the minimum mutual information still vanishes at
an O(1/d) rate.

As discussed in Section I, Es,zH(Qs,z) is also the expected
number of key bits consumed by the optimal scheme per
output symbol. For some sample paths, however, the number of
key bits may be unbounded, and a hard limit on the key length
(resulting in a deviation from the target distribution W ∗)
would affect exact preservation of the probability law. This
behavior differs from the schemes proposed in [7], for which a
suboptimal implementation of the target distribution affects the
mutual information, but not the output probability law. Such
a behavior is achieved in [7] by use of the randomness in the
input sequence Xm so that the probability law is preserved
for any given value of the key. The question of whether a
similar idea can be used in the delay–limited setting is under



investigation. However, when P is the entire class of i.i.d.
sources over A, a delay–limited simulation scheme exists
that still achieves mutual information which is O(1/d) while
satisfying Condition C1 and requiring a limited budget of key
bits for all sample paths. The reason is that in this case all the
probabilities can be written as rational numbers with d in the
denominator (see (1)), due to the interpretation as empirical
probabilities. Thus, if d is a power of 2, the Elias decoder will
always terminate after a finite number of input key bits. Now,
for an arbitrary d, using W ∗

t with delay limitation d′, where
d′ is the largest power of 2 not larger than d, clearly defines
(a fortiori) a simulation scheme with delay limitation d. Since
2d′ > d, it follows that the mutual information is still O(1/d).

While, as noted, a hard limit on the key length will in
general affect the exact preservation of the probability law,
by [1], the probability that the scheme will fail to produce
the requested sequence after processing k key bits, k >
nEs,zH(Qs,z), decays with exponent k − nEs,zH(Qs,z).
Thus, with probability one it produces an output.

The sequential, delay–limited simulation setting discussed
so far can be generalized to include the “batch” setting of [7]
as a particular case. In the generalized setting, a user requests
random symbols according to some arbitrary schedule, with
the only constraint that at any time the overall number of
requested symbols cannot exceed the number of training
symbols seen so far. To this end, the simulation scheme has
access to a supply of key bits that are delivered on demand, as
needed. Let `t(x) denote the length of the training sequence
already observed at the time Yt is requested. The instantaneous
delay dt is then defined as dt = `t(x)−t+1, and the schedule
is given by {dt}. Thus, we view this setting as one of varying
delay; in the setting discussed so far, we have dt = d for
all t, whereas in the batch case with training sequence Xm,
dt = m−t+1, 1 ≤ t ≤ n. The optimal scheme for this setting
is a straightforward generalization of W ∗, in which a symbol
requested after observation of x and following the output of
y is drawn with probability

W ∗
t (a|x,y) =

|Tx\ya|
|Tx\y|

, a ∈ A .

It is easy to see that for dt = m− t + 1, this scheme indeed
coincides with the scheme proposed in [7] for batch simulation
with an unlimited budget of key bits. The corresponding
conditional entropy takes the form

H(Y n|Xm) =
∑
s∈S

n−1∑
t=0

Pr{st = s}
∑

z∈Adt+1

P (z|s)H(Qs,z) .

(10)
Again, for dt+1 = m− t, using the chain rule of conditional
entropies it can be seen that (10) indeed coincides with the
result in [7].
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