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Abstract

Fingerprinting systems in the presence of collusive attacks are analyzed as a game
between a fingerprinter and a decoder, on the one hand, and a coalition of two or more
attackers, on the other hand. The fingerprinter distributes, to different users, different
fingerprinted copies of a host data (covertext), drawn from a memoryless stationary
source, embedded with different fingerprints. The coalition members create a forgery
of the data while aiming at erasing the fingerprints in order not to be detected. Their
action is modelled by a multiple access channel (MAC). We analyze the performance
of two classes of decoders, associated with different kinds of error events. The decoder
of the first class aims at detecting the entire coalition, whereas the second is satisfied
with the detection of at least one member of the coalition. Both decoders have access
to the original covertext data and observe the forgery in order to identify member/s
of the coalition. Motivated by a worst-case approach, we assume that the coalition of
attackers is informed of the hiding strategy taken by the fingerprinter and the decoder,
while they are uninformed of the attacking scheme. Single letter expressions for the
error exponents of the two kinds are obtained, a decoder that is optimal with respect to
the two kinds of errors is introduced, and the worst-case attack channel is characterized.

1 Introduction

In fingerprinting systems several copies of the same host data are embedded with different
fingerprints (that designate, e.g., the different digital signatures or serial numbers of the
copies they are provided with) and distributed to different users . The fingerprints identify
one of many users in order to enable copyright protection. In this situation, two or more
users can form a coalition, and collusive attacks on the fingerprinting system are possible and
have to be taken into account in the code design. Each of the coalition members contributes
his distinct fingerprinted copy in order to create a better forgery. Hence, the fingerprinting
problem can be thought of as a game between the fingerprinter and the coalition of attackers.



As mentioned in [32], the fingerprinting game is closely related to (and is actually an ex-
tension of) the watermarking game, that in turn can be modelled as a coded communication
system equipped with side information, for a single user as opposed to one of many users.
Watermarking systems have been studied from the information theoretic point of view in
several works1 (see e.g., [4], [7], [8], [14], [19], [21], [23], [24], [25], [30], [31] and [33]). Several
researchers (see, e.g., [1]-[3], [5], [6], [9], [12], [15], [17], [18], [26], [27], [29], [34]-[36] and
references therein) have proposed and analyzed fingerprinting systems that aim at protec-
tion against collusion attacks under various conditions. The research in this problem area
has largely focused on combinatorial analysis and algorithmic issues, whereas there has been
much less work on information–theoretic aspects. As an exception to the last statement, we
mention several papers, such as [2], [20], [32] and [34].

In [32], we have presented and analyzed a game-theoretic model of private2 fingerprinting
systems in the presence of colluding attacks. The players of the game are on the one hand
an encoder-decoder and on the other hand, a few attackers. The decoder is facing the rather
complicated goal of reliably identifying coalition members based on the forgery and the
covertext. The distortion between the forgery and the original data should not exceed a
certain level. A realistic worst-case approach, taken in [32], is based on the assumption that
the attackers are informed of the covertext distribution and the coding-decoding strategy
(up to a random secret key), whereas the encoder and decoder are not informed of the
attack strategy. Thus, the encoder and decoder are assumed to adopt a random coding
strategy as a means of protection against malicious attackers. Random coding is enabled
by a secret key that specifies the particular codebook that has been drawn, which is shared
by the encoder and decoder. The action of the attackers is allowed to be stochastic, and
therefore one can model the attack by a MAC, whose output is the forgery and whose inputs
are fingerprinted copies that are observed by the coalition members. The problem of the
maximin game between the fingerprinter and the MAC applied by the users is addressed in
[32]. Two types of decoders are considered: a single-output (SO) decoder whose single output
is a message index and a multiple-output (MO) decoder whose output is a list containing L
message indices (where L is the size of the coalition). The two decoders aim at detecting
only one member of the coalition. When the SO decoder is concerned, an error is declared if
its output does not belong to the coalition, whereas when the MO decoder is concerned, an
error is declared when none of its outputs belongs to the coalition. The reason for aiming
at this goal (adopted also in, e.g., [2],[29] and references therein) is that when the forgery
is required to resemble to at least one of the fingerprinted copies observed by the attacker
target of detecting the entire coalition is impossible since the attacker can decide to almost
ignore one of its inputs, and thus prevent reliable decoding of the input that was ignored.
It is assumed in [32] that the encoder uses constant composition (CC) codes and under this
assumption, a single-letter expression for the capacity of the private fingerprinting game with
respect to (w.r.t.) the two types of decoders is found, and it is shown that their capacities

1For a more comprehensive survey, see [32].
2Two models of the game may be considered: the private game in which the covertext is available also

at the decoder’s side, and the public game, where it is only available to the encoder.
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are the same. Asymptotically optimal strategies, taken by the adversaries, are characterized.
Also, lower bounds on the error exponents of the two types of decoders are derived.

In this paper, we analyze private fingerprinting systems from a different perspective. Two
kinds of error events are investigated. An error of the first kind is associated with a decoder
that aims at decoding the entire coalition, whereas an error of the second kind is associated
with a decoder whose target is to identify at least one member of the coalition. The setup
of the game is similar to the one investigated in [32], with a few modifications.

• The first modification is that here, a more refined analysis of error exponents is per-
formed while in [32], the capacity is the main quantity of interest (although some lower
bounds on the error exponents are provided as well).

• The second difference between this paper and [32] concerns the distortion constraint
imposed on the attacker. In this paper, the distortion between each of the fingerprinted
copies observed by the attacker and the forgery he produces should be kept small,
whereas in [32] it was sufficient to maintain a small amount of distortion between
the forgery and one of the observed fingerprinted copies. This difference stems from
the need to prevent an attack strategy that almost ignores one of its inputs, thereby
rendering the goal of identifying the entire coalition impossible. Moreover, although
ignoring one of the observed fingerprinted copies is a “legitimate” attack, it makes no
sense that an effort will be made by the attacker to enlarge his coalition (by purchasing
as many legal copies as possible), and then, at the end, ignore some of them.

We define the the achievable error exponent of the first/second kind as a number E such
that there exists a random CC scheme, whose asymptotic performance in terms of average
probability of error (in the logarithmic scale) of the first/second kind is given by E, assuming
the attacker knows the encoding-decoding scheme and can adopt the worst-case strategy
associated with the kind of error of interest. Single-letter lower and upper bounds are
provided for the error exponents of the first and second kinds. In the case of an error of
the first kind, the lower and upper bounds coincide, while when the error of the second kind
is concerned, they coincide for a certain range of low rates. Another important result is
that we show that one can use a universal decoder (used also in [32]) that is asymptotically
optimal for the error of the first kind as well as an error of the second kind. We also deduce
lower bounds on the capacities of the fingerprinting games corresponding to the two kinds
of errors.

The paper is organized as follows: In Section 2, some notation conventions are defined.
A statement of the problem, which is relevant to the entire paper, is given in Section 3. In
Section 4 we describe our main results concerning the set of achievable error exponents, and
Section 5 is devoted to a discussion of the results. Finally, the proofs of the theorems appear
in Sections 6 and 7 and proofs of lemmas are deferred to Section 8.
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2 Notation and Definitions

Henceforth, we adopt the following notation conventions. Random variables (RV’s) will be
denoted by capital letters, while their realizations will be denoted by the respective lower
case letters. Random vectors of dimension n will be denoted by boldface letters. Thus, for
example, if X denotes a random vector (X1, . . . , Xn), then x = (x1, . . . , xn) will designate
a specific sample value of X. The alphabet of a scalar RV, X, will be designated by the
corresponding caligraphic letter X . The n-fold Cartesian power of a generic alphabet A,
that is, the set of all n-vectors over A, will be denoted An.

The set of probability mass functions (pmf’s), defined on a alphabet X , will be denoted
by P(X ), and the set of conditional pmf’s from U to X will be denoted P(X|U), i.e.,

P(X|U) =

{
P (X|U) : P (x|u) ≥ 0,

∑

x′∈X
P (x′|u) = 1, ∀(u, x) ∈ U × X

}
. (1)

The notation 1 {A}, where A is an event, will designate the indicator function of A, i.e.,
1 {A} = 1 if A occurs, and 1 {A} = 0 otherwise. We adopt the convention that if a set T

is empty, then mint∈T f(t) = ∞, and similarly, maxt∈T f(t) = −∞. The notation cn
·
= dn,

for two sequences {cn}n≥1 and {dn}n≥1, will express asymptotic equality in the exponential

scale, i.e., limn→∞ 1
n

log cn

dn
= 0. Similarly, cn

·≥ dn will stand for lim infn→∞ 1
n

log cn

dn
≥ 0, and

so on.
The empirical pmf, induced by a vector x ∈ X n, is the vector P̂x =

{
P̂x(a), a ∈ X

}
,

where P̂x(a) is the relative frequency of the letter a in the vector x. The set of empirical
pmf’s induced by all n-vectors in X n will be denoted by Pn(X ), i.e.,

Pn(X ) =
{

P̂x

}
x∈Xn

. (2)

The type class Tx (or T (P̂x)) is the set of n-vectors x̃ such that P̂x̃ = P̂x. Similarly, the joint

empirical pmf induced by two n-vectors, x,y, is the vector P̂xy =
{

P̂xy(a, b), a ∈ X n, b ∈ Yn
}

,

where P̂xy(a, b) is the relative frequency of (xi, yi) = (a, b). The type class Txy (or T (P̂xy)) is

the set of all pairs of n-vectors x̃ ∈ X n, ỹ ∈ Yn, such that P̂x̃ỹ = P̂xy. The conditional type

class Ty|x (or Tx(P̂y|x)), for a given x, is the set of all n-vectors ỹ ∈ Yn such that Txỹ = Txy,

and the conditional empirical pmf P̂y|x is defined by P̂y|x(y|x) = P̂xy(x,y)

P̂x(x)
, ∀x ∈ X : P̂x(x) > 0.

For a given empirical pmf P̂ ∈ Pn(A), define the set of conditional empirical pmf’s,

Pn(B, P̂ ) =
{

P ∈ P(B|A) : nP̂ (a)P (b|a) is an integer for all (a, b) ∈ A× B
}

. (3)

The variational distance between two pmfs P and P ′, defined on the same set A, will be
denoted by ||P − P ′||, i.e.,

||P − P ′|| =
∑
a∈A

|P (a)− P ′(a)|. (4)
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Information-theoretic quantities, such as the entropy of the random variable X, whose pmf
is P , will be denoted by either HP (X) or H(P ) interchangeably. Similarly, the mutual
information between X and Y given U , with joint pmf P will be denoted by IP (X; Y |U),
etc. The divergence, or Kullback-Leibler distance, between two pmf’s P and Q on A, where
|A| < ∞, is defined as D(P‖Q) =

∑
a∈A P (a) log P (a)

Q(a)
, where we use the convention that

0 log 0 = 0 and p log p
0

= ∞.
Information-theoretic quantities governed by empirical measures induced by the n-vectors

u,x,y, will have a special notation, e.g.,

Ĥx , HP̂x
(X)

Îx;y|u , IP̂uxy
(X; Y |U). (5)

The notation U ↔ X ↔ Y will signify that the RV’s U,X, Y , in this order, form a
Markov chain.

We shall have a particular interest in strongly exchangeable channels. A strongly ex-
changeable channel is defined as a conditional distribution PY|XX̃ with input alphabet (X n)2

and output alphabet Yn for which, for every x′ ∈ X n,x ∈ X n, y ∈ Yn and every permutation
π of {1, . . . , n},

PY|XX′(y|xx′) = PY|XX′(πy|πxπx′). (6)

Obviously, every DMC is strongly exchangeable.

3 Statement of the Problem

As mentioned earlier, the setup of the game considered in this paper resembles the one
investigated in [32] with several modifications discussed in the Introduction. Nevertheless,
for the sake of completeness, we include the entire description of the modified game here.

Let U ,X and Y be finite sets designating the alphabets of a covertext symbol, finger-
printed symbol and forgery symbol, respectively. For convenience, we assume3 U = X . Let U
designate the random covertext sequence within which the fingerprints will be hidden. The
n-vector U is composed of n i.i.d. RV’s whose joint pmf is denoted by P n

U with single-letter
marginal pmf PU , and we shall assume that minu∈U PU(u) > 0. The fingerprinter creates, at
random, M = b2nRc fingerprinted versions of the covertext, denoted Xi, i = 1, . . . , M , and
will be referred to as a codebook.

A secret key, Kn, is an RV, independent of the fingerprints and the covertext, known to
both the encoder and decoder, but unknown to the attacker. Let Kn stand for the alphabet
of Kn, and let PKn stand for the distribution of Kn.

Definition 1. A rate-R fingerprinting encoder of block-length n is a function which maps
the secret key realization kn, the covertext data u, and the watermark message m ∈Mn into

3It is natural to make this assumption, because one of the things one wants to keep secret is the very
existence of fingerprints. If U 6= X , it would be immediately apparent that the image or signal is fingerprinted.
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a stegotext vector (or, fingerprinted vector) x, i.e.,

fn : Kn × Un ×Mn → X n, (7)

where

Mn = {1, . . . , M} . (8)

Having created the fingerprinted copies Xi, i ∈ Mn, the encoder distributes them arbi-
trarily to M different users. We assume that the distributed copies should meet the following
distortion constraint w.r.t. a given distortion level D1, i.e.,

Pr {d1(U,Xi) ≤ nD1} = 1 ∀i ∈Mn, (9)

where d1 : U×X → R+ denotes a single-letter distortion measure and d1(u,x) =
∑n

j=1 d1(uj, xj)
for u ∈ Un and x ∈ X n.

Let Wa and Wb be the two4 users that take part in the coalition. It is assumed that
Wa,Wb are independent and both uniformly distributed over the set Mn. Let Xa and Xb

stand for the two corresponding sequences of fingerprinted data received by the users Wa

and Wb. Namely, Xa and Xb are available to the attacker who creates the forgery, Y, as the
output of an attack channel PY|XaXb

from X n ×X n to Yn.
Let d2 : X × Y → R+ denote another single-letter distortion measure, and denote

d2(x,y) =
∑n

i=1 d2(xi, yi) for x ∈ X n and y ∈ Yn. The attacker is assumed to meet
the following distortion constraint5

Pr {d2(Xa,Y) ≤ nD2 and d2(Xb,Y) ≤ nD2} = 1. (10)

Denote by Pd2
n the set of channels satisfying (10).

The decoder observes the realization of the secret key (and thus, knows the particular
codebook that has been drawn), the covertext U and the forgery Y and its aim is to detect
members of the coalition. Thus, it is a function φn : Kn × Un × Yn →M2

n.
As mentioned earlier, we analyze two kinds of errors: the first refers to a decoder that

aims at decoding the two messages (detecting the entire coalition), and the second refers to
a decoder that is less ambitious and is satisfied with correct decoding of at least one of the
messages. We refer to the resulting errors as error of the first kind and error of the second
kind, respectively. The quadruple Fn = (PKn , fn,Mn, φn) will be referred to as a rate R
randomized fingerprinting code.

Definition 2. Let Nn(D1) be the set of mappings η : Un → P(X|U), s.t.

EP̂u×η(u)d1(U,X) ≤ D1 ∀u ∈ Un, (11)

and η(u) ∈ Pn(X , P̂u), ∀u ∈ Un.

4In the general fingerprinting game, the coalition may have more than two members. However, for the
sake of simplicity, we focus on the case of two coalition members. The results can be extended to a general
coalition size.

5In [32], the constraint was Pr {d2(Xa,Y) ≤ nD2 and d2(Xb,Y) ≤ nD2} = 1.
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We shall focus on the following subclass of fingerprinting codes:

Definition 3. A rate-R constant composition (CC) fingerprinting code of block-length n
is a code with the following structure of a secret key and encoder: the fingerprinted copies
Xi, i ∈Mn, are drawn independently given U, uniformly over a single conditional type class
Tx|u for all u. The choice of the conditional type class is defined by a mapping6 η ∈ Nn(D1),
i.e., it is given by Tu(η(u)).

In the sequel, we shall use the abbreviation

Tη(u) = Tu(η(u)). (12)

Denote by Fd1
n (R) the set of rate-R randomized CC fingerprinting codes induced by a map-

ping ηn ∈ Nn(D1). A code Fn ∈ Fd1
n (R) is therefore defined by the triple (ηn, R, φn).

The fact that we focus on the wide class of CC fingerprinting encoders can be justified
by practical considerations. As explained in [32], any practical randomized encoder should
have some enumeration mechanism, where one first randomly selects a number under the
uniform distribution in some range (in particular, an integer according to the key), and then
this number is mapped to a codeword (given U). It is desired then that to implement this
mapping, one should not need (exponentially) large tables but can use a simple function. It
is well known that there are indeed simple ways to enumerate sequences which belong to the
same type class. See, for example, [10], where such an enumeration method is proposed, and
the same idea can be easily extended to conditional type classes.

For a given realization of a secret key, Kn, let the output of the decoder be given by
Ŵ = (Ŵ1, Ŵ2) = φn(Kn,U,Y). An error of the first kind occurs when not all coalition
members are correctly detected7 and an error of the second kind occurs if no coalition
member is correctly detected by the decoder, hence, the average probability of error of the
first and second kinds are given by

P (1)
e

(
Fn, PY|XaXb

)
,

Pr
{{

Ŵ 6= (Wa,Wb) and Ŵ 6= (Wb,Wa)
}

or
{

Wa = Wb and Ŵ1 6= Wa and Ŵ2 6= Wa

}}

P (2)
e

(
Fn, PY|XaXb

)
, Pr

{
Ŵ1 6= Wa and Ŵ1 6= Wb and Ŵ2 6= Wa and Ŵ2 6= Wb

}
, (13)

respectively, where the probability is induced by the covertext, the members of the coalition,
the ensemble of all possible codebooks, and the action of the attack channel PY|XaXb

, when
the randomized code Fn is employed.

Definition 4. An achievable rate R w.r.t. error of the first kind is one for which there exists
a sequence Fn ∈ Fd1

n (R), n ≥ 1 such that

lim supn→∞ sup
PY|XaXb

∈Pd2
n

P
(1)
e

(
Fn, PY|XaXb

)
= 0.

6We require that η ∈ Nn(D1) in order to consider conditional types such that constraint (9) is met.
7In the rare case where Wa = Wb, it is sufficient that either Ŵ1 = Wa or Ŵ2 = Wa.
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Definition 5. The CC capacity of the private fingerprinting game w.r.t. a error of the first
kind C(1)(PU , D1, D2) is defined as the supremum of all achievable rates.

Similar definitions apply for the achievable rate and the CC capacity w.r.t. error of the
second kind C(2)(PU , D1, D2). In fact, the capacity is a function of the distortion levels
D1, D2 and the covertext symbol distribution PU .

Define the negative normalized log error probability of the fingerprinting game w.r.t.
error of the first and second kind when the code Fn = (ηn, φn, R) is applied

e(i)
n (PU , D1, D2, ηn, φn, R) , − 1

n
log P (i)

e (ηn, φn, R, PY|XaXb
), (14)

i=1,2, respectively.

Definition 6. The error exponents of the fingerprinting game w.r.t. error of the first and
second kind at rate R are defined by

e(i)(PU , D1, D2, R) , lim inf
n→∞

max
ηn∈Nn(D1),φn

min
PY|XaXb

∈Pd2
n

e(i)
n (PU , D1, D2, ηn, φn, R), (15)

i = 1, 2, respectively.

Our main goal in this paper is to establish a closed form expression for the error exponents
of the fingerprinting game w.r.t. error of the first and second kinds at rate R.

4 Main Results

For a given measure PŨX ∈ P(U × X ), define the set

Pd2(PŨX , D2) ,{
PX̃Y |ŨX ∈ P(X × Y|U × X ) : PX|Ũ = PX̃|Ũ , max{Ed2(X, Y ), Ed2(X̃, Y )} ≤ D2

}
, (16)

where the conditional measures PX|Ũ and PX̃|Ũ are the appropriate marginals of PŨX ×
PX̃Y |ŨX , and the expectations are w.r.t. PŨX × PX̃Y |ŨX .

For a given pmf P = PŨXX̃Y ∈ P(U × X 2 × Y) define the quantities

εa(PŨXX̃Y , R)

,
∣∣∣min

{
IP (X; X̃Y |Ũ)−R , IP (X̃; XY |Ũ)−R , IP (X̃; Y |Ũ) + IP (X; X̃Y |Ũ)− 2R

}∣∣∣
+

εb(PŨXX̃Y , R) ,
∣∣∣IP (X̃; Y |Ũ) + IP (X; X̃Y |Ũ)− 2R

∣∣∣
+

(17)

Define the following quantities for i = {a, b}
Ei(PU , D1, D2, R)

, min
PŨ

max
PX|Ũ

min
PX̃Y |ŨX

[
D(PŨXX̃Y ||PU × PX|Ũ × PX̃|Ũ × PY |XX̃) + εi(PŨXX̃Y , R)

]
, (18)
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where the outmost minimization is over PŨ ∈ P(U), the maximization is over PX|Ũ such that

Ed1(Ũ ,X) ≤ D1, and the inner minimization is over PX̃Y |ŨX ∈ Pd2(PŨX , D2). The measure
PY |XX̃ is the appropriate marginal distribution induced by PŨXX̃Y . Note that

D(PŨXX̃Y ||PU × PX|Ũ × PX̃|Ũ × PY |XX̃) = D(PŨ ||PU) + IP (X; X̃|Ũ) + IP (Ũ ; Y |XX̃).

(19)

For convenience we denote

D(PŨXX̃Y , PU) = D(PŨXX̃Y ||PU × PX|Ũ × PX̃|Ũ × PY |XX̃). (20)

The following theorem provides a single-letter expression of the error of the first kind.

Theorem 1. For all PU , D1, D2, R

e(1)(PU , D1, D2, R) = Ea(PU , D1, D2, R). (21)

The proof of Theorem 1 appears in Section 6. It is composed of a lower bound and an
upper bound on e(1)(PU , D1, D2, R) which coincide.

As for the error of the second kind, define:

Ẽb(PU , D1, D2, R) , min
PŨ

max
PX|Ũ

min
PX̃Y |ŨX[

D(PŨXX̃Y ||PU × PX|Ũ × PX̃|Ũ × PY |XX̃) + εb(PŨXX̃Y , R)
]
, (22)

where the outmost minimization is over PŨ ∈ P(U), the maximization is over PX|Ũ such

that Ed1(Ũ , X) ≤ D1, and the inner minimization is over

PX̃Y |ŨX ∈ Pd2(PŨX , D2) : min{IP (X; X̃Y |Ũ), IP (X̃; XY |Ũ)} ≥ R.

Let R0(PU , D1, D2) be the lowest rate for which the constraint
min{IP (X; X̃Y |Ũ), IP (X̃; XY |Ũ)} ≥ R appearing in the minimization becomes effective.
The following theorem provides lower and upper bounds on the error exponent of the second
kind.

Theorem 2. For all PU , D1, D2, R,

Eb(PU , D1, D2, R) ≤ e(2)(PU , D1, D2, R) ≤ Ẽb(PU , D1, D2, R), (23)

with equality whenever R ∈ [0, R0(PU , D1, D2)].

The proof of Theorem 2 appears in Section 7.
The term εi(PŨXX̃Y , R) which appears in Ei(PU , D1, D2, R), can be interpreted as the

error exponent conditioned on the event that (U,X, X̃,Y) lies within the type-class corre-
sponding to PŨXX̃Y , and the term D(PŨXX̃Y ‖PU × PX|Ũ × PX̃|Ũ × PY |XX̃) is a result of the
averaging over the types.
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5 Discussion

The asymptotically optimal decoder is the same decoder as in [32] denoted φ∗n that is informed
of u and the codebook, observes the forgery y and operates as follows:

(ŵ1, ŵ2) = argminw1, w2 6=w1
|Txw1xw2 |uy|, (24)

where ties are broken arbitrarily. Since this decoder achieves the lower bound on the average
probability of error of the two kinds, it can be regarded as a universal decoder for the class
of channels Pd2

n , w.r.t. random CC coding.
The fact that the maximizations over φn in (15) are performed separately for the two

kinds of error exponents implies that the decoding rule can be chosen to minimize the kind
of error of interest. In spite of this fact, it turns out that the same decoder is asymptotically
optimal for the two kinds of errors, regardless of the encoding scheme.

Since |Txx′|uy| .
= enĤxx′|uy , the alternative decoder which is also asymptotically optimal

is given by

(ŵ1, ŵ2) = argminw1, w2 6=w1
Ĥxw1xw2 |uy. (25)

As the value of maxmin exponent is determined by the dominant joint type class (of the
covertext sequence, the two fingerprinted copies of the coalition members and the forgery),
an attack channel denoted P ∗

Y|XX̃
that assigns equal probability to all the conditional type

classes Ty|xx̃ such that the distortion constraint is not violated and is uniform within each
conditional type class is introduced. Namely,

P ∗
Y|XX̃

(y|x, x̃) =
1 {max{d2(x,y), d2(x̃,y)} ≤ nD2}

cn,x,x̃|Ty|xx̃| (26)

where cn,x,x̃ is the appropriate polynomial normalization factor. This channel is shown to be
a worst-case attack channel w.r.t. the error exponent of the first kind, and it is also used in
the derivation of the upper bound on the error exponent of the second kind Ẽb(PU , D1, D2, R)
(in (23)).

The proof of Theorems 1 and 2 involves the following lemma (proved independently also
in [28]) whose proof appears in Section 8.

Lemma 1. For all a ∈ [0, 1] and every integer M ≥ 1,

1

2
min{1,Ma} ≤ 1− (1− a)M ≤ min{1, Ma}, (27)

hence,

1− (1− a)M .
= min{1,Ma}. (28)

This lemma implies that the union bound on the random coding error exponent is tight,
and this lemma can also be used in other contexts such as in [13] to simplify the derivation.

10



The derivation performed in this paper provides us also with lower bounds on the capac-
ities of the fingerprinting systems corresponding to the two kinds of errors, which are given
by the smallest rates for which Ei(PU , D1, D2, R) = 0, i = a, b. It is easily verified that this
yields the following lower bounds

C(1)(PU , D1, D2) ≥ max
PX|U

min
PY |XX̃

min

{
I(X̃; Y |UX), I(X; Y |UX̃),

1

2
I(XX̃; Y |U)

}

C(2)(PU , D1, D2) ≥ max
PX|U

min
PY |XX̃

1

2
I(XX̃; Y |U), (29)

where U ∼ PU , X̃ is an RV which is independent of X given U and satisfies PX̃|U = PX|U ,

and U ↔ (X, X̃) ↔ Y , the maximizations are over {PX|Ũ : EPŨPX|U d1(U,X) ≤ D1} and the

minimizations are over
{

PY |X̃X : max{EPXX̃PY |X̃X
d2(X,Y ), EPXX̃PY |X̃X

d2(X̃, Y )} ≤ D2

}
.

The difference between the lower bound on the error exponent of the second kind,
Eb(PU , D1, D2, R), and the lower bound on the error exponent of the MO decoder of [32] is
that while in Eb(PU , D1, D2, R) (see (18)) the minimization is over PX̃Y |ŨX ∈ Pd2(PŨX , D2),
the bound in [32] includes a minimization over PX̃Y |ŨX such that PX|Ũ = PX|U and

max{Ed2(X, Y ), Ed2(X̃, Y )} ≤ D2. This difference stems from the different distortion con-
straints imposed on the attacker.

In spite of the differences between the model of the ordinary MAC and the present sce-
nario (see the discussion in the Introduction), the lower bound on the capacity C(1)(PU , D1, D2)
bears some resemblance to the capacity region of the MAC. The capacity region of the MAC
given input distributions P1(X), P2(X̃) is given by the set of rate pairs (R1, R2), satisfying

0 ≤ R1 ≤ I(X; Y |X̃) ; 0 ≤ R2 ≤ I(X̃; Y |X) ; 0 ≤ R1 + R2 ≤ I(X, X̃; Y ). (30)

In the case of two users who (use the same codebook and hence) have the same rate, R1 =
R2 = R, the corresponding upper limit is R ≤ min{I(X; Y |X̃), I(X̃; Y |X), 1

2
I(X, X̃; Y )},

the minimizer depending on which of the above three lines is crossed first by the 45-degree
line R1 = R2. The expression for the error exponent Ea(PU , D1, D2, R) also resembles the
lower bound of the error exponent of the classical MAC (see [16]). That bound is given by

min
VUXX̃Y

[
D(VXX̃Y |U‖PX|UPX̃|UPY |XX̃ |PU)

+ max{I(X; X̃Y |U)−R1, I(X̃; XY |U)−R2, I(X̃; Y |U) + I(X; X̃Y |U)−R1 −R2}
]
,

(31)

where U is some auxiliary RV (used for time sharing) with distribution on some finite al-
phabet8, PX|U and PX̃|U are conditional distributions (that can be optimized) defined on

P(X|U) and P(X̃ |U), respectively, with X , X̃ being the inputs alphabets of the channel,
and the minimization is over VUXX̃Y ∈ P(U × X × X̃ × Y) with marginals VUX = PUX

8It is proved in [16] that the size of the alphabet of U can be 4 without loss of generality.
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and VUX̃ = PUX̃ . The main differences between (31) and Ea(PU , D1, D2, R) stem from the
distortion constraints imposed on both parties of the fingerprinting game and from the fact
that we consider a coalition of two users sharing the same codebook and thus operating at
the same rate. It should be noted that while U in Ea(PU , D1, D2, R) represents a covertext
symbol, in [16] it stands for a time-sharing symbol. A modification of the derivation per-

formed in this paper (the lower bound on P
(1)
e

(
Fn, PY|XaXb

)
), can be used to show that the

bound of [16] is tight in the random coding sense.

6 Proof of Theorem 1

6.1 Proof of the Direct Part of Theorem 1

The performance of the decoder φ∗n (see (24)) will serve as an upper bound on the average
probability of error attainable by the optimal decoder. The encoder is a CC fingerprinting
code defined by a mapping η ∈ Nn(D1) that satisfies the following condition

η(u) = η(πu) (32)

for all u ∈ Un and every permutation π of {1, ..., n}. In other words, the channel from U to
X is strongly exchangeable.

Without loss of generality9 one can assume that the transmitted messages indices are
(1, 2). With a little abuse of notation, we shall denote by PM

u the joint pmf of {Xi}M
i=1

conditioned on the event U = u, and by PM
u,x1,x2

the joint pmf of {Xi}M
i=1 conditioned on

the event U = u,X1 = x1,X2 = x2.
Assuming the covertext is u, the codewords observed by the attacker are x1,x2, and y is

the forgery, the probability that the proposed decoder (24) fails to decode the entire coalition
is given by

Pr {error |ux1x2y}
= PM

u,x1,x2

{∃(i, j) 6= (1, 2) : |Txi,xj |uy| ≤ |Tx1,x2|uy|
}

.
=

∑

Tx′|ux1y: |Tx′|ux1y|≤|Tx2|ux1y|
PM

u,x1,x2

{∃k ≥ 3 : Xk ∈ Tx′|ux1y

}

+
∑

Tx′|ux2y: |Tx′|ux2y|≤|Tx1|ux2y|
PM

u,x1,x2

{∃k ≥ 3 : Xk ∈ Tx′|ux2y

}

+
∑

Tx′x′′|uy: |Tx′x′′|uy|≤|Tx1,x2|uy|
PM

u,x1,x2

{∃i ≥ 3, j ≥ 3 : (Xi,Xj) ∈ Tx′x′′|uy

}
(33)

(34)

9The case w1 = w2 can be treated similarly.
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.
= max

Tx′|ux1y: |Tx′|ux1y|≤|Tx2|ux1y|

[
1−

(
1− |Tx′|ux1y|

|Tη(u)|
)M−2

]

+ max
Tx′|ux2y: |Tx′|ux2y|≤|Tx1|ux2y|

[
1−

(
1− |Tx′|ux2y|

|Tη(u)|
)M−2

]

+ max
Tx′x′′|uy: |Tx′x′′|uy|≤|Tx1,x2|uy|

PM
u,x1,x2

{∃i ≥ 3, j ≥ 3 : (Xi,Xj) ∈ Tx′x′′|uy

}

=

[
1−

(
1− |Tx2|ux1y|

|Tη(u)|
)M−2

]
+

[
1−

(
1− |Tx1|ux2y|

|Tη(u)|
)M−2

]

+ max
Tx′x′′|uy: |Tx′x′′|uy|≤|Tx1,x2|uy|

PM
u,x1,x2

{∃i ≥ 3, j ≥ 3 : (Xi,Xj) ∈ Tx′x′′|uy

}
, (35)

where the three summands in (33) are corresponding to (i) error only in Ŵ2, (ii) error only
in Ŵ1, and (iii) error in both Ŵ1 and Ŵ2.

Next, we present a key lemma that will be used to evaluate (35) and the lower bound as
well. Recall the abbreviation (12).

Lemma 2. Let u,x, x̃,y ∈ Un ×X n ×X n ×Yn be given n-vectors such that x ∈ Tη(u), x̃ ∈
Tη(u). The quantity

PM , PM(x, x̃,u,y) = PM
u

{∃(i, j) ∈ {1, ..., M}2 s.t. (Xi,Xj) ∈ Tx,x̃|uy

}
(36)

satisfies

PM ≤ min {1, CM} (37)

PM ≥ qM−2 · CM

1 + CM

(38)

where

qM , qM(x, x̃,u,y) =

[
1− |Tx|ux̃y ∪ Tx|ux̃y|

|Tη(u)|
]M

, (39)

CM , CM(x, x̃,u,y) =

(
M
2

)
· |Tx,x̃|uy|
|Tη(u)|2 . (40)

The lemma is proved in Section 8.
Obviously, by (35) and (37) we have the upper bound

PM
u

{∃(i, j) 6= (1, 2) : |Txi,xj |uy| ≤ |Tx,x̃|uy|
}

≤ 2(1− qM−2) + max
Tx′x′′|uy: |Tx′x′′|uy|≤|Tx,x̃|uy|

PM
u

{∃i ≥ 3, j ≥ 3 : (Xi,Xj) ∈ Tx′x′′|uy

}

.
= 1− qM−2 + max

Tx′x′′|uy: |Tx′x′′|uy|≤|Tx,x̃|uy|
PM−2(ux′x′′y)

≤ 1− qM−2 + max
Tx′x′′|uy: |Tx′x′′|uy|≤|Tx,x̃|uy|

min {1, CM−2(ux′x′′y)}

= 1− qM−2 + min {1, CM−2} (41)
.
= max {1− qM−2, min {1, CM−2}} . (42)
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where (41) follows since CM(ux′x′′y) is increasing with |Tx′x′′|uy|. Thus,

Pr {error of the proposed decoder |ux1x2y}
·≤ max {1− qM−2(ux1x2y), min {1, CM−2(ux1x2y)}} , (43)

Next, denote

a = a(u,x, x̃,y) , |Tx|ux̃y ∪ Tx̃|uxy|
|Tx|u| , (44)

and note that since Tη(u) = Tx|u and qM = (1 − a)M , Lemma 1 provides the asymptotic
behavior of 1− qM and implies,

1− qM
.
= min {1,Ma} , (45)

and consequently,

max {1− qM−2 , min {1, CM−2}}
.
= max {min {1,Ma} , min {1, CM}}
= min {1, max {Ma , CM}} . (46)

For the sake of convenience, we shall denote

αM(P̂uxx̃y) , min {1, max {Ma , CM}} . (47)

We thus have established the upper bound

min
η∈Nn(D1),φn

max
PY|XX̃∈P

d2
n

P (1)
e (η, φn, R, PY|XX̃)

·≤ min
η∈Nn(D1),φn

max
PY|XX̃∈P

d2
n

∑
u,x,x̃,y

Pr(u,x, x̃,y)αM(P̂uxx̃y), (48)

where

Pr(u,x, x̃,y) = P n
U (u)

1{x ∈ Tη(u), x̃ ∈ Tη(u)}
|Tη(u)|2 PY|XX̃(y|xx̃). (49)

The next two lemmas, whose proofs appear in Section 8, conclude the proof of the direct
part of Theorem 1. Denote by N ex

n (D1) the set of mappings η ∈ Nn(D1) that satisfy (32).

Lemma 3. For every η ∈ N ex
n (D1),

min
φn

max
PY|XX̃∈P

d2
n

P (1)
e (η, φn, R, PY|XX̃)

·≤
∑
u,x,x̃

Pr(u,x, x̃)
∑

y: max{d2(x,y),d2(x̃,y)}≤nD2

αM(P̂uxx̃y)

|Ty|x,x̃| , (50)

where Pr(u,x, x̃) = P n
U (u)1{x∈Tη(u),x̃∈Tη(u)}

|Tη(u)|2 .
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Lemma 4.

min
η∈N ex

n (D1)

∑
u,x,x̃

Pr(u,x, x̃)
∑

y: max{d2(x,y),d2(x̃,y)}≤nD2

αM(P̂uxx̃y)

|Ty|x,x̃|

= min
η∈Nn(D1)

∑
u,x,x̃

Pr(u,x, x̃)
∑

y: max{d2(x,y),d2(x̃,y)}≤nD2

αM(P̂uxx̃y)

|Ty|x,x̃| (51)

.
= exp

(
−n min

PŨ

max
PX|Ũ

min
PX̃Y |Ũ,X

[D(PŨXX̃Y , PU) + εa(PŨXX̃Y , R)]

)
, (52)

where the outmost minimization is over PŨ ∈ Pn(U), the maximization is over PX|Ũ ∈
Pn(X , PŨ) : Ed1(Ũ , X) ≤ D1, and the innermost minimization is over PX̃Y |ŨX ∈ Pn(X ×
Y , PŨX) : s.t. PX̃|Ũ = PX|Ũ and max{Ed2(X, Y ), Ed2(X̃, Y )} ≤ D2.

The gap between the r.h.s. of (52) and Ea(PU , D1, D2, R) is only in that in (52), the
optimizations are over empirical measures while in (93) the optimizations are over sets of
continuous measures. Due to the continuity considerations, as n tends infinity, the r.h.s. of
(52) converges to Ea(PU , D2, R).

6.2 Proof of the Converse Part of Theorem 1

When deriving a lower bound on the average probability of error, one can assume (a) that
the attacker is constrained to use a strongly exchangeable channel and (b) that the channel
is known at the decoder’s side which can implement the maximum likelihood decoding rule.
The next lemma will be used to establish a lower bound on the probability of error of the
ML decoder under these assumptions.

Lemma 5. For any fixed codebook and a known channel that is strongly exchangeable, the ML
decoder assigns the same likelihood to two pairs of codewords that lie in the same conditional
type given (u,y).

Proof. Let Bu denote the codebook corresponding to u, i.e., the collection of codewords
{xi(u)}M

i=1. Let m, m′ be two message indices. Since (u,Bu,y) are known at the decoder,
the ML decoder should maximize the quantity Pr(m,m′|u,Bu,y) over all m ∈Mn m′ ∈Mn

m 6= m′. We have

Pr(m, m′|u,Bu,y)

(a)
=

Pr(m,m′,u,Bu)

Pr(u,Bu,y)
Pr(y|m,m′,u,Bu)

(b)
=

1
M2 Pr(u,Bu)

Pr(u,Bu,y)
PY|X,X̃(y|xm(u),xm′(u)) (53)

where (a) follows from Bayes rule, (b) follows from Bayes rule and the fact that Pr(y|u,m, m′,Bu) =
Pr(y|xm(u),xm′(u)), Pr(m,m′) = 1

M2 , and (u,Bu) is independent of the message indices.
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Hence, the ML decoder should maximize PY|X,X̃(y|xm(u),xm′(u)) over all message indices
m 6= m′. Since PY|X,X′ is strongly exchangeable, by definition (see (6)), if (xm̃(u),xm′′(u)) ∈
Txm(u),xm′ (u)|y one has

PY|X,X̃(y|xm(u),xm′(u)) = PY|X,X̃(y|xm̃(u),xm′′(u)) (54)

and the lemma follows.

Thus, the probability that the ML decoder fails (given u,x1,x2,y) is lower bounded as
follows:

Pr {error of ML decoder, known exchangeable channel |ux1x2y }
≥ PM

u,x1,x2

{∃(i, j) 6= (1, 2) : (xi,xj) ∈ Tx1x2|uy

}
. (55)

We can now use (38) to lower bound the probability of the event of interest.

PM
u

{∃(i, j) 6= (1, 2) : (xi,xj) ∈ Tx,x̃|uy

}

= PM
u

{∃k ≥ 3 : Xk ∈ {Tx|ux̃y ∪ Tx̃|uxy} or ∃(i, j), i, j ≥ 3 : (Xi,Xj) ∈ Tx,x̃|uy

}

≥ max
{
PM

u

{∃k ≥ 3 : Xk ∈ {Tx|ux̃y ∪ Tx̃|uxy}
}

,PM
u

{∃(i, j), i, j ≥ 3 : (Xi,Xj) ∈ Tx,x̃|uy

}}

= max {1− qM−2, PM−2}

≥ max

{
1− qM−2, qM−4 · CM−2

1 + CM−2

}

≥ max

{
1− qM−2 , qM−2 · CM−2

1 + CM−2

}
, (56)

where (56) is due to the fact that qM is decreasing with M . Next, denote for convenience
q , qM−2 and C = CM−2

max

{
1− q , q · C

1 + C

}

= (1− q) · 1
{

1− q ≥ q · C

1 + C

}

+q · C

1 + C
· 1

{
1− q < q · C

1 + C

}

= (1− q) · 1
{

q ≤ 1 + C

1 + 2C

}

+q · C

1 + C
· 1

{
q >

1 + C

1 + 2C

}

≥
(

1− 1 + C

1 + 2C

)
· 1

{
q ≤ 1 + C

1 + 2C

}

+
1 + C

1 + 2C
· C

1 + C
· 1

{
q >

1 + C

1 + 2C

}

=
C

1 + 2C
(57)
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and obviously,

max

{
1− q , q · C

1 + C

}
≥ (1− q), (58)

thus, (57) and (58) imply

max

{
1− qM−2 , qM−2 · CM−2

1 + CM−2

}

≥ max

{
1− qM−2 ,

CM−2

1 + 2CM−2

}

≥ max

{
1− qM−2 ,

1

3
·min {1, CM−2}

}
(59)

.
= max {1− qM−2 , min {1, CM−2}} , (60)

where (59) follows because either CM−2 ≤ 1 and then CM−2

1+2CM−2
≥ CM−2

3
or CM−2 ≥ 1, and

consequently CM−2

1+2CM−2
≥ 1

3
.

The fact that the bounds (43) and (60) coincide yields that the average probability
of error (given u,x1,x2,y) of the proposed decoder (24) achieves the lower bound on the
average probability of error attainable by the ML decoder which corresponds to every strongly
exchangeable channel that is known at the decoder.

We have thus established the lower bound

min
η∈Nn(D1),φn

max
PY|XX̃∈P

d2
n

P (1)
e (η, φn, R, PY|XX̃)

·≥ min
η∈Nn(D1)

max
PY|XX̃∈P

d2,ex
n

∑
u,x,x̃,y

Pr(u,x, x̃,y)αM(P̂uxx̃y), (61)

where Pr(u,x, x̃,y) is as in (49) and

Pd2,ex
n =

{
PY|XX̃ ∈ Pd2

n : PY|XX̃ is strongly exchangeable
}

. (62)

The gap between (48) and (61) stems only from the fact that the set over which the maxi-
mization is performed in the lower bound is Pd2,ex

n while in the lower bound the set is Pd2
n .

To bridge this gap, we introduce the attack channel P ∗
Y|XX̃

given in (26), and to conclude

the proof we note that

min
η∈Nn(D1)

max
PY|XX̃∈P

d2,ex
n

∑
u,x,x̃,y

Pr(u,x, x̃,y)αM(P̂uxx̃y)

≥
∑

u,x,x̃,y

Pr(u,x, x̃)P ∗
Y|XX̃

(y|xx̃)αM(P̂uxx̃y)

.
=

∑
u,x,x̃

Pr(u,x, x̃)
∑

y: max{d2(x,y),d2(x̃,y)}≤nD2

αM(P̂uxx̃y)

|Ty|x,x̃| , (63)

applying Lemma 4 and its proceeding remark, the converse part of Theorem 1 follows.
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7 Proof of Theorem 2

7.1 Proof of the Lower Bound of Theorem 2

When the error of the second kind is concerned, the probability that the proposed decoder
(24) fails to decode at least one member of the coalition is given by

Pr {error of the proposed decoder |ux1x2y}
= PM

ux1,x2

{∃i ≥ 3, j ≥ 3 : |Txi,xj |uy| ≤ |Tx1,x2|uy|
}

=
∑

Tx′x′′|uy: |Tx′x′′|uy|≤|Tx1,x2|uy|
PM

u,x1,x2

{∃i ≥ 3, j ≥ 3 : (Xi,Xj) ∈ Tx′x′′|uy

}

.
= max

Tx′x′′|uy: |Tx′x′′|uy|≤|Tx1,x2|uy|
PM

u,x1,x2

{∃i ≥ 3, j ≥ 3 : (Xi,Xj) ∈ Tx′x′′|uy

}

= max
Tx′x′′|uy: |Tx′x′′|uy|≤|Tx1,x2|uy|

PM−2(ux′x′′y). (64)

We have,

max
Tx′x′′|uy: |Tx′x′′|uy|≤|Tx1,x2|uy|

PM−2(ux′x′′y)

≤ max
Tx′x′′|uy: |Tx′x′′|uy|≤|Tx1,x2|uy|

min {1, CM−2(ux′x′′y)}

= min {1, CM−2(ux1x2y)} (65)

where the last step follows since CM(ux′x′′y) is increasing with |Tx′x′′|uy|. Now we use a

similar derivation to the one performed in Lemmas 3 and 4 (replacing αM(P̂uxx̃y) defined in

(47) by αM(P̂uxx̃y) = min {1, CM(ux1x2y)}), and this yields

min
η∈Nn(D1),φn

max
PY|XX̃∈P

d2
n

P (1)
e (η, φn, R, PY|XX̃)

(66)

max
φn

e(2)
n (PU , D2, η, φn, R)

·≥ min
P̂uxx̃y∈P(n)

d2
(η,D2)

[
D(P̂uxx̃y||PU × P̂x|u × P̂x̃|u × P̂y|xx̃) + εb(P̂uxx̃y, R)

]
. (67)

Since η ∈ Nn(D1), the mapping η is continuous, and thus, the r.h.s. of the above equality
converges to Eb(PU , D2, η, R). This concludes the proof of the l.h.s. of (23).

7.2 Proof of the Upper Bound of Theorem 2

Similarly to the argumentation used in the analysis of the error of the first kind, when
deriving a lower bound on the probability of error of the second kind, one can assume (a)
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that the attacker is constrained to use strongly exchangeable channels and (b) that the
channel is known at the decoder’s side which can implement an optimal decoding rule w.r.t.
the error of second kind. We next characterize this optimal decoder. Recall that Let Bu

denotes the codebook corresponding to u. First, note that given (u,y) and when the optimal
decoder for the error of second kind is used, if there exists another pair (xi,xj) where i ≥ 3
and j ≥ 3 such that (xi,xj) ∈ Tx1,x2|u,y an error occur with high probability, because, the
optimal decoder for the error of second kind minimizes

Pr(m1 not sent ,m2 not sent|u,Bu,y) = 1− Pr(m1 sent or m2 sent|u,Bu,y) (68)

among all m1,m2 ∈Mn, m1 6= m2, or alternatively, maximizes

Pr(m1 sent |u,Bu,y) + Pr(m2 sent|u,Bu,y)− Pr(m1 sent,m2 sent |u,Bu,y) (69)

multiplying by Pr(y|u,Bu)

Pr(m1 sent |u,Bu)
we obtain

Pr(y,m1 sent |u,Bu)

Pr(m1 sent |u,Bu)
+

Pr(y, m2 sent|u,Bu)

Pr(m1 sent|u,Bu)
− Pr(y,m1 sent, m2 sent |u,Bu)

Pr(m1 sent |u,Bu)

=
Pr(y, m1 sent |u,Bu)

Pr(m1 sent |u,Bu)
+

Pr(y,m2 sent|u,Bu)

Pr(m2 sent|u,Bu)
−

2
M2

( 2
M
− 1

M2 )
· Pr(y,m1 sent,m2 sent |u,Bu)

Pr(m1 sent,m2 sent |u,Bu)
,

(70)

where the last step follows since Pr(m1 sent |u,Bu) = Pr(m2 sent |u,Bu) = 2
M
− 1

M2 and
Pr(m1 sent,m2 sent |u,Bu) = 2

M2 . Hence, the optimal decoder maximizes

Pr(y|u,Bu,m1 sent ) + Pr(y|u,Bu, m2 sent)− 2

2M − 1
· Pr(y|u,Bu,m1 sent ,m2 sent )

= Pr(y|u,Bu,xm1) + Pr(y|u,Bu,xm2)−
2

2M − 1
· Pr(y|xm1 ,xm2)

=
∑

m′

1

M

[
PY|XX′(y|xm1 ,xm′) + PY|XX′(y|xm′ ,xm1,)

]

+
∑

m′

1

M

[
PY|XX′(y|xm2 ,xm′) + PY|XX′(y|xm′ ,xm2)

]

− 1

2M − 1
· [PY|XX′(y|xm1 ,xm2) + PY|XX′(y|xm2 ,xm1)

]

, fu,Bu,y(xm1 ,xm2). (71)

Therefore, even for the optimal decoder (w.r.t. average probability of error of the second
kind) one has

Pr {error |ux1x2y}
= PM

u,x1,x2
{∃i ≥ 3, j ≥ 3 : fu,Bu,y(xi,xj) ≥ fu,Bu,y(x1,x2)|ux1x2y}

≥ PM
u,x1,x2

{∃i ≥ 3, j ≥ 3 : (xi,xj) ∈ Tx1,x2|uy, fu,Bu,y(xi,xj) ≥ fu,Bu,y(x1,x2)
}

. (72)
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Next by symmetry we have

PM
u,x1,x2

{∃i ≥ 3, j ≥ 3 : (xi,xj) ∈ Tx1,x2|uy, fu,Bu,y(xi,xj) ≥ fu,Bu,y(x1,x2)
}

= PM
u,x1,x2

{∃i ≥ 3, j ≥ 3 : (xi,xj) ∈ Tx1,x2|uy, fu,Bu,y(xi,xj) ≤ fu,Bu,y(x1,x2)
}

. (73)

To realize this, let Bu = {xm(u)}M
m=1 be a codebook and let i ≥, j ≥ 3, be a pair of indices

such that (xi,xj) ∈ Tx1,x2|uy, and fu,Bu,y(xi,xj) ≤ fu,Bu,y(x1,x2). Let π be a permuta-
tion such that (πxi, πxj, πu, πy) = (x1,x2,u,y) (such a permutation exists since (xi,xj) ∈
Tx1,x2|uy). Consider the codebook B′

u =
{
x1(u),x2(u),xi(u),xj(u), {πxm(u)}m6={1,2,i,j}

}
.

Obviously, by definition of π, we have fu,B′u,y(xi,xj) ≥ fu,B′u,y(x1,x2) and since

PM
u,x1,x2

{Bu} = PM
u,x1,x2

{B′
u} (74)

the symmetry argument holds.
Eqs. (73) yields

PM
u,x1,x2

{∃i ≥ 3, j ≥ 3 : (xi,xj) ∈ Tx1,x2|uy, fu,Bu,y(xi,xj) ≥ fu,Bu,y(x1,x2)
}

≥ 1

2
·PM

u,x1,x2

{∃i ≥ 3, j ≥ 3 : (xi,xj) ∈ Tx1,x2|uy

}
. (75)

Hence, (72) and (75) yield the lower bound

Pr {error |ux1x2y}
≥ 1

2
·PM

u,x1,x2

{∃i ≥ 3, j ≥ 3 : (xi,xj) ∈ Tx1,x2|uy

}

= PM−2(ux1x2y)

≥ qM−4(ux1x2y) · CM−2(ux1x2y)

1 + CM−2(ux1x2y)

≥ qM−4(ux1x2y) · 1

2
min {1, CM−2(ux1x2y)}

.
= qM(ux1x2y) · 1

2
min {1, CM(ux1x2y)} , (76)

where the first inequality follows from (38), and the second inequality follows because either
CM ≤ 1 and then CM

1+CM
≥ CM

2
or CM ≥ 1, and consequently CM

1+CM
≥ 1

2
. Now, recall

that qM(ux1x2y) = [1− a]M where a
.
=

max{|Tx1|ux2y|,|Tx2|ux1y|}
|Tx|u|

.
= e−n min{Îx1;x2y|u,Îx2;x1y|u}, so

whenever R ≤ min
{

Îx1;x2y|u, Îx2;x1y|u
}

, we have qM
.
= e−1 .

= 1. Hence, using an equivalent

of Lemma 3, the expression for the error exponent resulting from (76), is upper bounded (on
the exponential scale) by

min
P̂uxx̃y∈P(n)

d2
(η,D2),R≤min{Îx;x̃y|u,Îx̃;xy|u}[

D(P̂uxx̃y||PUη(P̂u)P̂y|xx̃) +
∣∣∣Îx̃;y|u + Îx;x̃y|u − 2R

∣∣∣
+
]

, (77)
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which differs from Ẽb(PU , D2, η, R) (see (22)) only by the fact that the minimization is over
empirical measures of order n rather than over the continuum. Since η is a continuous
mapping, the above expression converges to Ẽb(PU , D2, η, R). This concludes the proof of
the r.h.s. of (23).

Now, by definition of R0(η, D2) (following e.q. (22)), Eb(PU , D2, η, R) = Ẽb(PU , D2, η, R)
for all R ∈ [0, R0(η, D2)] and this concludes the proof of Theorem 2.

8 Proofs of Lemmas

Proof of Lemma 1

Proof. The r.h.s of (27) follows trivially. As for the l.h.s., it is easy to show that for all
a ∈ [0, 1],

1− (1− a)M ≥ Ma

1 + Ma
. (78)

To see that, note that if (1 − a)M ≤ 1
1+Ma

, we have 1 − (1 − a)M ≥ Ma
1+Ma

, and if (1 −
a)M ≥ 1

1+Ma
, we have 1 − (1 − a)M ≥ aM(1 − a)M−1 ≥ a·M

(1−a)(1+Ma)
, thus, 1 − (1 − a)M ≥

min
{

Ma
1+Ma

, M
(1−a)(1+Ma)

}
= Ma

1+Ma
.

The lemma follows since

Ma

1 + Ma
≥ 1

2
min {1,Ma} . (79)

Proof of Lemma 2

Proof. The first part of the lemma (37) follows trivially because

(
M
2

)
is the number of

possibilities of choosing a pair among the M vectors, and
|Tx,x̃|uy|
|Tx|u|2 is the probability that two

i.i.d. vectors uniformly distributed over Tx|u lie within Tx,x̃|uy.
In order to prove (38), note that

PM ≥ PM
u

{
There exists a single pair (i, j) s.t. (Xi,Xj) ∈ Tx,x̃|uy

}

= CM ·PM
u

{
(X1,X2) is the single pair in Tx,x̃|uy

∣∣ (X1,X2) ∈ Tx,x̃|uy

}
(a)
= CM ·PM

u

{
Xi 6∈ {Tx|ux̃y ∪ Tx̃|uxy}∀i ≥ 3, (Xi,Xj) 6∈ Tx,x̃|uy∀i, j ≥ 3

}
(b)

≥ CM

[
PM

u

{
Xi 6∈ {Tx|ux̃y ∪ Tx̃|uxy}∀i ≥ 3

}
+ PM

u

{
(Xi,Xj) 6∈ Tx,x̃|uy∀i, j ≥ 3

}− 1
]

= CM [qM−2 + 1− PM−2 − 1]

≥ CM [qM−2 − PM ] (80)
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where (a) is because if, for example, there exists i ≥ 3 such that Xi ∈ Tx|ux̃y, then Txi,x2|uy =
Tx1,x2|uy = Tx,x̃|uy, (b) follows since for two events A,B, 1 ≥ P (A ∪ B) ≥ P (A) + P (B) −
P (A ∩ B), thus, P (A ∩ B) ≥ P (A) + P (B) − 1, and the last step holds since by definition
PM is non decreasing with M .

Proof of Lemma 3

Proof. To establish the proof we shall show that the r.h.s. of (48) is upper bounded (in the
exponential scale) by the r.h.s. of (50), and that the r.h.s. of (61) is lower bounded by the
r.h.s. of (50).

Let PY|XX̃ be a given attack channel, which is a member of Pd2
n , and let π be one of the

n! permutations of {1, ..., n}. Denote by P π
Y|XX̃

the channel defined by

P π
Y|XX̃

(y|xx̃) = PY|XX̃(πy|πxπx̃), (81)

where πx designates the sequence x permuted according to π.
For a given watermarking channel PX|U ∈ Pd1

n denote

L(PY|XX̃) ,
∑
u

P n
U (u)

∑

x,x̃∈Tη(u)

1

|Tη(u)|2
∑
y

PY|XX̃(y|xx̃)αM(P̂uxx̃y). (82)

Since P n
U is memoryless, the encoder satisfies (32), αM(P̂uxx̃y) depends solely on the type

class Tuxx̃y, and since L(PY|XX̃) is an affine functional of PY|XX̃, we have

L
(
PY|XX̃

)
= L

(
P π

Y|XX̃

)
= L

(
1

n

∑
π

P π
Y|XX̃

)
. (83)

Note that 1
n

∑
π P π

Y|XX̃
is a strongly exchangeable channel, as if Txx̃y = Tx′x̃′y′ , there ex-

ists a permutation π̄ such that (x′x̃′y′) = (π̄xπ̄x̃π̄ỹ), and thus
∑

π PY|XX̃(πy|πxx̃) =∑
π PY|XX̃(πy′|πx′x̃′).

Thus, we can denote that 1
n

∑
π P π

Y|XX̃
(y|xx̃) =

PY|XX̃(Ty|xx̃|xx̃)
|Ty|xx̃| , and (83) implies

L
(
PY|XX̃

)
= L

(
PY|XX̃

(
Ty|xx̃|xx̃

)

|Ty|xx̃|

)
. (84)

Now, observe that (10) implies

PY|XX̃(Ty|xx̃|xx̃) ≤ 1 {max{d2(x,y), d2(x̃,y)} ≤ nD2} , (85)

and since L(PY|XX̃) is affine in PY|XX̃ we have

L
(
PY|XX̃

) ·≤ L
(
P ∗

Y|XX̃

)
, (86)

where P ∗
Y|XX̃

is defined in (26). Hence, the r.h.s. of (48) is upper bounded (in the exponential

scale) by the r.h.s. of (50).
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Proof of Lemma 4
First note that

∑
u,x,x̃

Pr(u,x, x̃)
∑

y: max{d2(x,y),d2(x̃,y)}≤nD2

αM(P̂uxx̃y)

|Ty|x,x̃|

=
∑
u

P n
U (u)

∑

x,x̃∈Tη(u)

1

|Tη(u)|2
∑

y: max{d2(x,y),d2(x̃,y)}≤nD2

αM(P̂uxx̃y)

|Ty|xx̃|

=
∑
u

P n
U (u)

∑

x∈Tη(u)

1

|Tη(u)|
∑

Tx̃|ux⊆Tη(u)

|Tx̃|xu|
|Tη(u)|

×
∑

Ty|uxx̃: max{d2(x,y),d2(x̃,y)}≤nD2

|Ty|uxx̃|
|Ty|xx̃| αM(P̂uxx̃y). (87)

Taking the minimum over η ∈ Nn(D1), one notices that the minimizer satisfies η(u′) =
η(u) whenever u′ ∈ Tu, because the quantity

∑

Tx̃|ux⊆Tη(u)

|Tx̃|xu|
|Tη(u)|

∑

Ty|uxx̃: max{d2(x,y),d2(x̃,y)}≤nD2

|Ty|uxx̃|
|Ty|xx̃| αM(P̂uxx̃y)

depends only on the joint type class of (u,x) thus the minimizing η ∈ Nn(D1) belongs
to N ex

n (D1) which proves (51). Next note that since η ∈ Nn(D1) is a mapping from u to
P(X|U), one can switch the order between the summation over u ∈ Un and the minimization
over η ∈ Nn(D1), i.e.,

min
η∈Nn(D1)

∑
u

P n
U (u)

∑

x∈Tη(u)

1

|Tη(u)|
∑

Tx̃|ux⊆Tη(u)

|Tx̃|xu|
|Tη(u)|

×
∑

Ty|uxx̃: max{d2(x,y),d2(x̃,y)}≤nD2

|Ty|uxx̃|
|Ty|xx̃| αM(P̂uxx̃y)

=
∑
u

P n
U (u) min

η(u): d1(u,x)≤nD1

∑

x∈Tη(u)

1

|Tη(u)|
∑

Tx̃|ux⊆Tη(u)

|Tx̃|xu|
|Tη(u)|

×
∑

Ty|uxx̃: max{d2(x,y),d2(x̃,y)}≤nD2

|Ty|uxx̃|
|Ty|xx̃| αM(P̂uxx̃y). (88)
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Now we use the method of types to evaluate the r.h.s. expression in the exponential scale

∑
u

P n
U (u) min

η(u): d1(u,x)≤nD1

∑

x∈Tη(u)

1

|Tη(u)|
∑

Tx̃|ux⊆Tη(u)

|Tx̃|xu|
|Tη(u)|

×
∑

Ty|uxx̃: max{d2(x,y),d2(x̃,y)}≤nD2

|Ty|uxx̃|
|Ty|xx̃| αM(P̂uxx̃y) (89)

.
= max

P̂u

e−nD(P̂u||PU ) min
η(u): d1(u,x)≤nD1

max
Tx̃|ux⊆Tη(u)

e−nÎx;x̃|u

× max
P̂y|uxx̃: max{d2(x,y),d2(x̃,y)}≤nD2

e−nÎu;y|xx̃αM(P̂uxx̃y)

= exp

{
−n

(
min max min

[
D(P̂u||PU) + Îx;x̃|u + Îu;y|xx̃ − 1

n
log αM(P̂uxx̃y)

])}
(90)

where the outmost minimization is over P̂u ∈ Pn(U), the maximization is over P̂x|u ∈
Pn(X , P̂u) and the inner minimization is over P̂x̃y|ux ∈ Pn(X×Y , P̂ux) such that the marginal

distributions satisfy P̂x̃|u = P̂x|u and max{d1(x,y), d1(x̃,y)} ≤ nD2. The last step follows

from the fact that P̂x|u = P̂x̃|u = η(P̂u).
From (19), we have,

D(P̂u||PU) + Îx;x̃|u + Îu;y|xx̃ = D(P̂uxx̃y||PU × P̂x|u × P̂x̃|u × P̂ŷ|xx̃)

= D(P̂uxx̃y, PU). (91)

Recall the definition of a (44), and note that a
.
=

max{|Tx|ux̃y|,|Tx|ux̃y|}
|Tη(u)|

.
= e−n min{Îx;x̃y|u,Îx̃;xy|u}.

We also have by (40), CM
.
= en(2R−Îx̃;y|u−Îx;y|ux̃). Hence, by (47), we have,

− 1

n
log αM(P̂uxx̃y) = − 1

n
log min {1, max {Ma , CM−2}}

.
=

∣∣∣min
{

min
{

Îx;x̃y|u, Îx̃;xy|u
}
−R , Îx̃;y|u + Îx;x̃y|u − 2R

}∣∣∣
+

=
∣∣∣min

{
Îx;x̃y|u −R , Îx̃;xy|u −R , Îx̃;y|u + Îx;x̃y|u − 2R

}∣∣∣
+

. (92)

Thus (88)-(92) imply

min
η∈Nn(D1)

∑
u,x,x̃

Pr(u,x, x̃)
∑

y: max{d2(x,y),d2(x̃,y)}≤nD2

αM(P̂uxx̃y)

|Ty|x,x̃|
.
= exp

(
−n min

PŨ

max
PX|Ũ

min
PX̃Y |Ũ,X

[D(PŨXX̃Y , PU) + εa(PŨXX̃Y , R)]

)
, (93)

where the outmost minimization is over PŨ ∈ Pn(U), the maximization is over PX|Ũ ∈
Pn(X , PŨ) : Ed1(Ũ ,X) ≤ D1, and the innermost minimization is over PX̃Y |Ũ ,X ∈ Pn(X ×
Y , PŨ ,X) : s.t. PX̃|Ũ = PX|Ũ and max{Ed2(X,Y ), Ed2(X̃, Y )} ≤ D2.
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[18] J. Löfvenberg and N. Wilberg, “Random codes for digital fingerprinting,” Report
Reg nr:LiTH-ISY-R-2059, Department of Electrical Engineering, Linköping Univer-
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