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1. Introduction

The roots of this article reside as much in curricular pragmatism as in program-
matic, ideologic convictions. By curricular pragmatism we mean the anankian[1]
drive for one single course in Mathematics for Architecture Students at the Tech-
nion – Israel Institute of Technology, course that would encapsulate as much for-
mative knowledge as deemed feasible. The need for an “Object Oriented”, fast
approach, compact course, arises from curricular constraints: once the second half
of a tandem of three-hours per week, semestrial courses (the first one comprised el-
ements of Matrix Algebra and Introduction to Calculus), it was reduced to a single
semestrial course, of two weekly-hours (the Algebra-Calculus half being abandoned
completely). Moreover, this reduction in scope was accompanied by an augmenta-
tion of the Syllabus: while the previous geometric course comprised only symmetry
(albeit treated in some detail[2]), the new Course was envisioned as a comprehen-
sive introduction to incidence and symmetry of geometrical objects, an approach
that is commonly hold to represents the corner-stone, the main goal of a Course
of this type. (The chosen basic reference text being [Baglivo and Graver, 1983]).
Thus, apart and beyond the absolute importance of Euler’s Formula relative to the
corpus of classical mathematics and the role it played in its development (Betti
numbers[3] and Homology in general, on one hand and the Global Gauss-Bonnet
Theorem[4] on the other hand being, not the least of its outshoots), its simplicity,
yet potency (in the sense of representing an jumping board, an opening towards a
variety of subjects belonging to the fields of Topology and Geometry) recommend
Euler’s Theorem as natural candidate for a cornerstone, a red-thread running along
and directing the whole Course.

Since a second purpose of any such course is to help develop geometric intuition
and spatial imaginative powers, Euler’s Theorem introduces one effortlessly in the
realms of geometric creativity, by its natural generalizations into two directions:
(a) high genus and non orientable surfaces s.a. the Klein Bottle and The Projective
Plane (thus representing an excursum in Non-Euclidian geometries and also into
patterns and tilings), and (b) Star and Uniform Polyhedra. (We shall indicate how
and where these objects and ideas arise.)
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Moreover, this approach allows for a perfect integration between the metric and
topological aspects, thus presenting the dialectics of Mathematics, represented by
the computational-arithmetic/figurative-geomet-
ric dichotomy.[5]

We shall show in what manner the path outlined herein facilitates a potent yet
flexible Curriculum: one can put more accent on Graph Theory or, alternatively,
on ”rigid” geometry, on incidence and topology or rather upon trigonometric com-
putations. Through Graphs one attains such applications as: organization graph of
architectural structures (introducing duality and planarity), traversability, routing,
connectedness, classification of architectural plans. Even the very approach to the
proofs shines light on different aspects of Geometry.

Upon these manifold proofs and the different light they shine upon the kaleido-
scopic aspects of Geometry, we shall dwell (alas, briefly!) in the following section.

2. The Mathematics

The five Platonic solids, their role in the development of Geometry and Philo-
sophical ideas of classical Greece (see [Crowe], p. 2) as well as and the inevitable
Keplerian cosmogonical vision[6] with its sense of wonder (see [Crowe], p. 4) provide
the best introduction into the realm of Polyhedra. Therefore the proof of the exis-
tence of only five Platonic Solids provides an excellent motivation for introducing
Euler’s Theorem.[7]

Our proof of choice, the first one to present our students, is basically Euler’s
original one, based upon first triangulating the polyhedron, and then one by one
removing the resulting triangles, while showing that the number V −E+F remains
invariant during this process. As a special didactic trick, we present Gamow’s vari-
ant of this proof, (see [Gamow, 1988] )[8]. In Gamow’s presentation the polyhe-
dron’s edges are viewed as dams, the polyhedron as an isle, and the exterior of the
resulting map as the sea. As a special flourish, we present this as a last defense
against a Spanish Armada invading the Netherlands, sometimes in a mythical 16-th
century (see Figure 1). The advantage of this proof resides in it simplicity and in
the fact that it introduces the extremely important notion of triangulation. But it
provides us with even more depth: since an essential step in the proof is the re-
moval of the upper face f0 (see Figure 1) and the projection of the reminder of the
polyhedron on the plane[8], this allows us to discuss the Stereographic Projection.
(Considering projections can also lead to Steiner’s proof of Euler’s Theorem[9] – see
[Sommerville, 1942, p. 142] ). Moreover, faces as homeomorphic images of the disk
and the topological concept of map (as opposed to that of a mere graph embedding)
come under study naturally. From this point on, the possibilities are practically
unlimited. The most direct road leads to counting the regular tilings of the plane
and to that of Archimedian solids and semi-regular tilings of the plane.

But the main advantage lies, first and foremost, in the fact that one can introduce
the notion of graph in a light, natural manner, and with them a variety of problems
of great significance in the theoretical setting and of vast practical importance, such
as planarity and duality (via “the 5 brothers problem” (see [Bagivo and Gramer,
1988]) and the “gas-light-water graph” (see [Baglivo and Graver, 1988], [Tietze,
1965])) and thus to the Theorems of Kuratowsky and Whitney (see [Baglivo and
Graver, 1988], [Tietze, 1965]). Trees are the simplest truly interesting graphs and
they provide us with a third Proof of Euler’s Theorem: Von Staudt’s proof[10]
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Figure 1. The First Proof

based upon spanning trees. Paradoxically, the benefit of this proof is that it does
not extend to surfaces of positive genus – thus allowing yet a different insight into
the topology of surfaces. Applications of Euler’s Theorem, such as Kuratowski’s
Theorem are now natural – through the inequality E < 3V−6 (“The little inequality
that could”). Its dual inequality E < 3F − 6 provides us with an easy proof of the
Six Color Theorem (and with an excuse to wander into a discussion of the Four
Color Theorem).

Planarity and maps conduct us immediately to consider other surfaces than the
plane or the sphere, such as the torus and compact, orientable surfaces of higher
genus, and also non-orientable surfaces, in particular the Möbius strip, the Klein
bottle and the projective plane (see Figure 2). Also, as an immediate – yet some-
what collateral – development, maximal planar graphs and Fundamental Architec-
tural Arrangements (see [Baglivo and Graver, 1983], pp. 115-119) ensue.

Yet another Proof is needed if one considers further generalizations, such as Star
Polyhedra and the even more general Uniform Polyhedra[11] (see Figure 3).

For these one has to appeal to the Spherical Area proof (or Legendre’s Proof)
(see [Coxeter, 1963] ).
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Figure 2. Topological Models

Figure 3. Star and Uniform Polyhedra

While a formal treatment of surface coverings is, of course, out of the courses
scope, its rudiments are highly intuitive. Moreover, a much more technical instru-
ment becomes now tangible: a numerical solution to compute the elements (sides,
dihedral angles, radii, etc.) of a Uniform Polyhedron. The method above – based
upon a many variable adaptation of Newton’s Tangent Method for solving equa-
tions – is the one developed in [Har’el, Zvi, 1993]. Even if in the beginning the
students tend to oppose (at an instinctive, self-preserving level) the meanders of
its computation, in the end, the concreteness and clarity of the numerical results
obtained rewards them with a better insight and understanding of the objects they
studied until this point only on a descriptive, visual way. This is an intrinsic result
sprouting from the very depths of mathematical thought and understanding (but
we shall resume this discussion again in the last Section).[13]
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Figure 4. An Archimedian Solid and its Spherical Counterpart

3. Didactical Aspects

At this stage is only natural that one should try and estimate the Didacti-
cal/Methodolgical benefits of this Course structure. We do believe this approach
unifies the different aspects/parts of the course, giving a coherent perception that
expunges false compartmentalization (sadly so often permeating Mathematics Cur-
ricula and, indeed, Education). Following the natural road opened by Euler’s The-
orem allows the student to recognize Geometry as the “Art of posing questions”
( [Gromov, 1998] ) – as opposed to the mere ability to solve standard, technical
exercises, the revered torturer of our high-school days – and to view it not like a
perpetual unpalatable compromise between dual, mutually exclusive entities: Figu-
rative Expression and Computational Technique, but rather to perceive its dialectic
nature, as the interplay between two aspects, two functions of the mind, since “Our
brain has two halves: one is responsible for the multiplication of polynomials and

languages, and the other half is responsible for the orientation of figures in space

and all the things important in real life. Mathematics is Geometry when you have

to use both halves.” [Arnold, 1997].
Moreover, the focus on Polyhedra facilitates the use of Constructive Projects as
Marking Tool, thus addressing the demiurgical skills of the students, and adding
yet another unifying, summarizing tool at the Course end. Indeed, Architecture
students have not only the ability and the habit to express themselves in a construc-
tive manner, they do posses propensity, the proclivity for this Renaissance type of
expression: material and spiritual, combined (see Figure 4). Also, it is this author’s
firm belief that “People are much smarter when they can use their full intellect”
( [Thuston, 1990] ). Even more: creative freedom and trust are stronger moving
forces and better guaranties of novel, original ideas (for the final projects) then
some constrictive exam frame. Trigonometric equations may be tedious and boring,
but the become your equations when they help finalize a project. (See, for example
the two Origami polyhedra of Figure 5).
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Figure 5. A Cornucopia of Models

Figure 6. Two Origami polyhedra

4. Beyond Euler’s Theorem

When the matter is so vast and so generous and the audience is so artistically
inclined yet technically able, like in our context, one should not restrict himself to
the mere Mathematical and Didactical considerations, but should rather ask himself
what is the deepest possible impact of his Course, and what is the intellectual
message it should convey.

It is stated in [Consiglieri and Consiglieri, 2003] that “...mathematics does not

lead to emotional forms but abstract ones; that responsibility belongs to aesthetics”.
This statement may conform to the common feeling of practicing artists. Neverthe-
less, it contradicts the very cultural tradition that resides at the inner core of the
choice of any Course in Mathematics for Architects, the fact that “Classical math-

ematics is a quest for structural harmony.” ( [Gromov, 1998] ) As yet another of the
Titans of Contemporary Mathematics confesses: “Mathematics has a remarkable

beauty, power and coherence, more than we could have ever expected” ([Thurston],
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1990) and “Mathematics is like a flight of fancy ” ([Thurston], 1990). And again,
in Freudenthal’s words: “... mathematics is an interplay of content and form ”[13].
Yet couldn’t this serve as a concise, functional definition of Art?

And even if we restrict ourselves to a more mundane, practical level: if a Course
offers his listeners a plethora of examples, a gallery of fantastic forms, to fertilize,
to help germinate and to serve as nutrient for growth Pure Art, wouldn’t it served
his purpose? With this question that contains a hope, a belief in positive answer,
we conclude our essay.
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6. Notes

[1] From ”Ananke” – Greek goddess, personification of unalterable necessity,
compulsion, or of the force of destiny. Also ”anankastic syndrome” – perfectionis-
tic traits expressed as meticulous conscientiousness, preoccupation with rules and
procedures, rigidity of behaviour.

[2] In an even earlier incarnation it also comprised elements of Differential Ge-
ometry of Surfaces – see [Har’el, 1985].

[3] This notion requires some mathematical formalism: Let X be a topological
space. The k-th Betti number βk of X is defined as the rank of the k-th homology
group of X : βk = rankHk .

[4] Let S be a compact surface. Then
∫∫

S
KdA = 2πχ(S), where K represents

the Gauss curvature and χ(S) is the Euler characteristic of S.

[5] See [Arnold, 1997] and Section 3 below.

[6] Of nested cosmological regular polyhedra.

[7] The geometric, angle based proof, is also presented, but more like an after-
thought, an instructive variation.

[8] Thus reducing the problem to proving that, for the new map V −E+F = 1.

[9] The basic idea of Steiner (and Lhuilier’s) proof is to project the polyhedron
orthogonally on a plane, obtaining a polygon covered twice by a set of polygons,
then express the sum of the angles of these polygons in terms of V,E, F .

[10] The main steps of Von Staudt’s proof are as follows: Build the spanning
tree of the vertex set – the number of its edges will be E1 = V − 1. Construct also
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the dual tree (of the face set) – the number of edges will be E2 = F − 1. Since the
trees are disjoint we have: E = E1 +E2 = V + F − 2, i.e. V −E + F = 2.

[11] A proof that made this author to chose Mathematics as his profession – it,
and Cantor’s Diagonal Proof.

[12] And, of course, Regular and Uniform Polyhedra direct us to the study of
Symmetry Groups.

[13] Indeed, mathematicians refer to their object of study (or should we say
“passion”?!) in esthetic terms: “What a Beautiful Theorem!”, a “lovely idea”, a
“nice”, “beautiful” or even “elegant proof”.
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