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Abstract

It is classical that every Riemann surface carries non-constant meromorphic func-
tions, implying that every Fuchsian groupG has non-constantG-automorphic (mero-
morphic) functions.

In higher dimensions n ≥ 3 the only locally conformal mappings are restrictions
of Möbius transformations, and since they are injective, an extension of the classical
existence theorem requires to look at quasimeromorphic mappings.

Following partial results by Martio, Srebro and Tukia on the problem of existence
or non-existence of non-constant quasimeromorphic G-automorphic mappings (G
being a discrete Möbius group acting on the hyperbolic space Hn) we now give a
complete characterization of all discrete Möbius groups G acting on hyperbolic space
Hn, that admit non-constant G-automorphic quasimeromorphic mappings, for any
n ≥ 2.

Following results by Tukia and Peltonen on the existence of non-constant quasimero-
morphic mappings on complete C∞ Riemannian manifolds, we now prove the exis-
tence of such mappings on manifolds with boundary, of lower differentiability class.
Since the proofs are based on the existence of fat triangulations, we extend a classical
result of Munkres by showing that every C1 manifold Mn with boundary consisting
of finitely many compact components has a fat triangulation. We also prove that
any fat triangulation of ∂Mn can be extended to Mn.
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Notation

R̂n = Rn
⋃
{∞} - the one point compactification of Rn

Sn−1 - the unit (n− 1)-sphere in Rn

Hn - the hyperbolic n-space
ACL - absolutely continuous on lines
ACLp - absolutely continuous on lines with partial derivatives in Lp

loc

Jf - Jacobian
f ′(x), Df(x) - the formal derivative of f at x
KO, KO(f) - the outer dilatation of f
KI , KI(f) - the inner dilatation of f
K,K(f) - the maximal dilatation of f
Bf - the branch set of f
G B< X - the group G acts on the space X
Bn - the unit ball in Rn, the ball model of Hn

Hn
+ - the half-space model of Hn

Isom+(Hn) - the group of orientation-preserving isometries of Hn

deucl - Euclidean distance
dhyp - Hyperbolic distance
A(f) - the axis of the elliptic transformation f
σ < τ - σ is a face of τ
K - complex
|K| - the polyhedron of the complex K
St(a,K) - the star of a in K
Q - orbifold
XQ - the underlying space of the orbifold Q
Diff(Rn) - the group of diffeomeorphisms of Rn

f : X
∼
→ Y - f is a homeomorphism between X and Y

int U - the interior of U
cl U - the closure of U
ΣQ - the singular locus of the orbifold Q
i(x, f) - the local topological index of f at x
N (x) - the set of neighbourhoods of x
](τ, σ) - the dihedral angle of σ < τ
σ1 tδ σ2 - the simplices σ1 and σ2 are δ-transverse
V olj(σ) - the Euclidean j-volume of σ
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diamσ - the Euclidean diameter of σ
T , T1, T2 - triangulations
Nf , Ni - geometric neighbourhoods
O+(n) - the special orthogonal group
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Chapter 1

Introduction

1.1 The Main Problems

Quasiconformal (qc), quasiregular (qr) and quasimeromorphic (qm) mappings in
Rn, n ≥ 2 represent natural generalizations of conformal, analytic, and meromorphic
functions in C, respectively. The theory of these mappings represents an extension
of the geometric and metric function theory in the plane.

In dimension n = 2, the study of quasimeromorphic mappings reduces to the
study of quasiconformal mappings, namely injective quasiregular mappings. This is
a consequence of the fact that any qm mapping is of the form f = g ◦ h, where h is
quasiconformal and g is meromorphic. On the other hand, by Liouville’s theorem,
any non-constant (n.c.) 1-quasimeromorphic mapping, i.e. with dilatation equal to
one, is the restriction of a Möbius transformation. Therefore a meaningful theory
in the case n ≥ 3 requires dilatation greater than one.

Moreover, since in general the classical methods of complex analysis can not be
applied for the study of quasiregular and quasimeromorphic mappings in Rn, the
methods of proof usually are more direct and mainly of a geometric nature. The
class of quasiregular mappings was introduced in 1966 by Yu. G. Reshetnyak. The
study of quasiregular and quasimeromorphic mappings was continued and further
enhanced starting from 1969 by O. Martio, S. Rickman and J. Väisälä. Their ap-
proach was more geometric than that the original one of Reshetnyak, whose methods
were analytic in nature.

The notion of qm extends to mappings f : Mn → R̂n, R̂n = Rn
⋃
{∞}, where

Mn is an n-manifold, by using coordinate charts..
Let G be a discrete group of Möbius transformations on the hyperbolic space

Hn. Following Martio and Srebro ([MS1]) a qm mapping f : Hn → R̂n is called
automorphic iff f ◦ g = g, for all g ∈ G.

Our study concerns mainly two problems:

1. Characterize all discrete Möbius groups acting on Hn which have n.c. qm
mappings.
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2. Determine the existence of n.c. qm mappings f : Mn → R̂n; where Mn is an
orientable n-manifold with or without boundary.

The two problems are classical and completely solved for n = 2. In fact, every
Riemann surface carries non-constant meromorphic mappings and therefore every
discrete Möbius group acting on C or on B2 has non-constant automorphic mappings
(see [Fo], [K]).

The question whether n.c. qm mappings exist for any n ≥ 3 was originally posed
by Martio and Srebro in [MS1]; subsequently in [MS2] they proved the existence of
the above mentioned mappings in the case of finite co-volume groups, i.e. groups
such that V olhyp(Hn/G) < ∞. Also, it was later proved by Tukia ([Tu]) that the
existence of n.c. automorphic qm mappings is assured in the case when G acts
torsionfree on Hn. Moreover, since for torsionfree discrete Möbius groups G, Hn/G
is a (analytic) manifold, the next natural question to ask is whether there exist n.c.

qm mappings f : Mn → R̂n; where Mn is an orientable n-manifold. An affirmative
answer to this question is due to Peltonen ([Pe]) in the case of connected, orientable
C∞Riemannian manifolds (see B.2.1 below).

In contrast with the above results it was proved by Srebro ([Sr]) that, for any
n ≥ 3, there exists a Kleinian group G B< Hn with no non-constant, G-automorphic
functions f : Hn → Rn. More precisely, he showed that for any n ≥ 3 there exists a
Kleinian group G (i.e. a discrete Möbius group) containing elliptics of unbounded
orders with non-degenerate fixed set, and that these groups do not have non-constant
G-automorphic qm mappings.

To obtain a complete answer to the existence problem we consider the case when
the orders of all elliptics with non-degenerate fixed set are bounded, and show that
such groups do carry n.c. qm automorphic mappings, in any dimension n ≥ 3.
This result, in conjunction with Srebro’s non-existence theorem, gives a complete
characterization of those Kleinian group which admit non-constant G-automorphic
quasimeromorphic mappings.

The classical methods employed in proving the existence in the case n = 2 do
not apply in higher dimensions. Therefore, different methods are needed. Follow-
ing other researchers, we shall employ the classical “Alexander trick” (see [Al]).
According to the Alexander method, first one constructs a G-invariant chessboard
triangulation (Euclidian or hyperbolic) of Hn, i.e. a triangulation whose simplices
satisfy the condition that every (n − 2)-face is incident to an even number of n-
simplices. Then one alternately maps in G-invariant manner the simplices of the
triangulation onto the interior and the exterior of the standard simplex in Rn using
qc maps. If the dilatations of the qc maps constructed above are uniformly bounded,
then the resulting mapping will be quasimeromorphic and G-automorphic.

If the simplices are uniformly fat (that is they satisfied a uniform non-degeneracy
condition – for the formal definition see Section A.3 below), then the restrictions of
the mapping to the simplices can be made quasiconformal with uniformly bounded
dilatations, yielding a quasimeromorphic mapping. (see [MS2], [Tu] ).
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Another natural direction of study stems from Tukia’s and Peltonen’s theorems:
since they proved the existence of quasimeromorphic mappings for complete (ana-
lytic) hyperbolic manifolds and C∞ complete Riemannian manifolds, respectively.
We want to prove the existence of quasimeromorphic mappings for manifolds with
boundary, and when the regularity condition is relaxed. To this end we extend a
classical theorem of Munkres regarding the existence of triangulation of manifolds
with boundary, to the case of fat triangulations (see Theorem 2.2.1).

The existence of triangulations for C1 manifolds without boundary has been
known since the classical work of Whithead ([Wh], 1940). This result was extended
in 1960 by Munkres ([Mun]) to include Cr manifolds with boundary, 1 ≤ r ≤ ∞ .
To be more precise, he proved that any Cr triangulation of the boundary can be
extended to a Cr triangulation of the whole manifold.

Earlier, in 1934-1935, Cairns ([Ca1], [Ca2]) proved the existence of triangula-
tions for compact C1 manifolds and for compact manifolds with boundary having a
finite number of compact boundary components. It should be noted that, although
far better known and widely cited, Whitehead’s work is rooted in Cairns’ studies.
Moreover Cairns’ and Whitehead’s studies complement each other. Moreover, the
Cairn’s method produced fat triangulations, while Munkres’ method produced fat
simplices only away from the boundary.

The interest in the existence of a fat triangulations was rekindled by the study of
quasiregular and quasimeromorphic functions, since the existence of a fat triangu-
lations is crucial, as we have noted above, to the proof of existence of quasiregular
(quasimeromorphic) mappings (see [MS2], [Tu]). In 1992 Peltonen ([Pe]) proved
the existence of fat triangulations for C∞ Riemannian manifolds, using methods
partially based upon another technique of Cairns (originally developed for triangu-
lating manifolds of class Cr, r ≥ 2).

Recently, the existence of fat triangulations has been revived in the context
of Combinatorial Geometry and its various applications. Mashing and fattening
methods for ‘mesh improvement’ – albeit for finite Euclidean triangulations (mostly
in R2 and R3) were developed – see, e.g. [E], [PA], [Rup], [BCER].

1.2 Preliminaries

1.2.1 Quasimeromorphic mappings

We bring below the basic definitions and results concerning quasiregular and quasimero-
morphic mappings that are needed here. The main reference text we employ is [Ric2].
Additional relevant material can be found in [V].

Definition 1.2.1 Let D ⊆ Rn be a domain; n ≥ 2. A mapping f : D → Rm is
called ACL (absolutely continuous on lines) iff:
(i) f is continuous

6



(ii) for any n-interval Q = Q̄ = {ai ≤ xi ≤ bi | i = 1, . . . , n} in D, f is absolutely
continuous on almost every line segment in Q, parallel to the coordinate axes.

Definition 1.2.2 f : D ⊆ Rn → Rm is ACLp iff its derivatives are locally Lp

integrable, p ≥ 1.

If D ⊆ Rn is a domain and if f : D → Rn, then f ∈ ACLp iff f is continuous
and belongs to the Sobolev space W 1

p,loc (see [Ric2], pp. 5-11).

Definition 1.2.3 Let D ⊆ Rn be a domain; n ≥ 2 and let f : D → Rn be a
continuous mapping. f is called

1. quasiregular iff (i) f is ACLn

and
(ii) there exists K ≥ 1 such that

|f ′(x)|n ≤ KJf (x) a.e. (1.2.1)

where f ′(x) denotes the formal derivative of f at x, |f ′(x)| = sup
|h| = 1

|f ′(x)h|,

and where Jf (x) = detf ′(x).
The smallest K that satisfies (1.2.1) is called the outer dilatation KO(f) of f .

2. quasiconformal iff f : D → f(D) is a quasiregular homeomorphism.

3. quasimeromorphic iff f : D → R̂n, R̂n = Rn
⋃
{∞} is quasiregular, where

the condition of quasiregularity at f−1(∞) can be checked by conjugation with
auxiliary Möbius transformations.

Remark 1.2.4 For other, equivalent definitions of quasiregularity, see [Car], [He],
[Ric2], [V].

One can extend the definitions above to oriented, connected C∞ Riemannian
manifolds as follows: let Mn, Nn be to oriented, connected C∞ Riemannian n-
manifolds, n ≥ 2, and let f : Mn → Nn be a continuous function. One can
define the formal derivative of f by using coordinate charts.

Definition 1.2.5 Let Mn, Nn be oriented, connected C∞ Riemannian n-manifolds,
n ≥ 2, and let f : Mn → Nn be a continuous function. f is called locally quasiregular
iff for every x ∈ Mn, there exist coordinate charts (Ux, ϕx) and (Vf(x), ψf(x)), such
that f(Ux) ⊆ Vf(x) and g = ψf(x) ◦ f ◦ ϕ−1

x is quasiregular.

If f is locally quasiregular, then Txf : Tx(M
n)→ Tf(x)(N

n) exist for a.e. x ∈Mn

(see [V], 26.4).
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Definition 1.2.6 LetMn, Nn be to oriented, connected C∞ Riemannian n-manifolds,
n ≥ 2, and let f : Mn → Nn be a continuous function. f is called quasiregular iff
(i) f is locally quasiregular
and
(ii) there exists K, 1 ≤ K <∞, such that

|Txf |
n ≤ KJf(x) (1.2.2)

for a. e. x ∈Mn.
A quasiregular homeomorphism is called a quasiconformal mapping.

Remark 1.2.7 For more details regarding the definition of quasiconformal and
quasiregular mappings on manifolds, see [Suo].

Definition 1.2.8 Let f :Mn → Nn be a quasiregular mapping. The set Bf = {x ∈
Mn | f is not a local homeomorphism at x} is called the branch set (or critical set)
of f .

Definition 1.2.9 Let f : D → Rn be an orientation preserving map. The local
topological index of f at x is defined as:

i(x, f) = inf
U ∈ N (x)

sup
y

|f−1(y) ∩ U |

If f : Mn → Nn is quasiregular, then there exists K ≥ 1 such that the following
inequality holds a.e. in Mn:

Jf(x) ≤ K ′ inf
|h|=1

|Txfh|
n (1.2.3)

By analogy with the outer dilatation we have the following definition:

Definition 1.2.10 The smallest number K ′ that satisfies inequality (1.2.3) is the
inner dilation KI(f) of f , and K(f) = max(KO(f), KI(f)) is the maximal dilatation
of f . If K(f) <∞ we say that f is called K-qr.

The dilations are K(f), KO(f) and KI(f) are simultaneously finite or infinite.
Indeed, the following inequalities hold: KI(f) ≤ Kn−1

O (f) and KO(f) ≤ Kn−1
I (f).

We bring a few facts regarding the index of quasiregular mapping: First, note
that if f : Mn → Nn be a quasiregular mapping, then i(x, f) ≥ 1. Moreover:
x ∈ Bf iff i(x, f) > 1. Also, let f : D → Rn, D ⊆ Rn, n ≥ 3, be a non-constant
quasimeromorphic mapping. Then:

1. The local topological index cannot be uniformly too large on all the points of
a non-degenerate continuum F . To be more precise, the following inequality
holds:

inf
x ∈ F

i(x, f) < nn−1KI(f) .

(See e.g. [Ric2], III. 5.9.)

However:
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2. The local topological index can be arbitrarily large at an isolated point (see
[Ric1], pp. 263-264).

Note that, by classical results of Reshetnyak, if f : D → Rn is a non-constant
quasiregular mapping, then:

1. f is open (i.e. it maps open sets in D onto open sets in ), discrete (i.e. f−1(y)
is a discrete set for any y ∈ Rn) and orientation-preserving (see e.g. [Ric2],
VI. 5.7.);

and

2. f maps sets of zero measure onto sets of zero measure (see e.g. [Ric2], [V] ).

We conclude this section with the following remark: If D ⊆ Rn is a domain
and if f : D → Rn is an L-bilipschitz map, then that is f is quasiconformal and
K(f) ≤ L(f)2(n−1) (see [V]).

1.2.2 Kleinian Groups and Elliptic Transformations

We bring the basic definitions and results concerning Kleinian groups which are
needed here. For proofs see [Abi], [AP2], [Ms], [Th1].

We denote by Hn the hyperbolic n-space. We shall employ either one of the
Poincaré conformal models: the unit ball model Bn = {x = (x1, . . . , xn) ∈ Rn

∣∣ ||x|| <
1}, equipped with the metric ds2 = dx2

(1−r2)2
, where dx denotes the Euclidean length

element and r denotes the distance from the origin; or the half-space model Hn
+ =

{x = (x1, . . . , xn) ∈ Rn
∣∣xn > 0} equipped with the metric ds2 = dx2

(xn)2
. In both

models planes are generalized half-spheres orthogonal to ∂Bn, respectively ∂Hn
+. In

particular, geodesic lines are generalized half-circles orthogonal to ∂Bn, respectively
∂Hn

+.
Let Isom+(Hn) denote the group of orientation-preserving isometries of Hn. If

f ∈ Isom+(Hn), then it extends to a homeomorphism of ∂Bn. Thus, by Brouwer
fixed-point theorem, f has a fixed point in the compact set Bn ∪ ∂Bn . We classify
hyperbolic isometries by their fixed points, as follows:

Definition 1.2.11 A transformation f ∈ Isom+(Hn), f 6= Id is called:

1. elliptic iff f has a fixed point in Hn;

2. parabolic iff f has no fixed points in Hn and has exactly one fixed point in ∂Hn;

3. loxodromic iff f has no fixed points in Hn and exactly two fixed points in ∂Hn.

Definition 1.2.12 Let G be a topological group, and let H ⊆ G. Then H is called
discrete iff H, with the induced topology, is a discrete space.
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Note that H ⊆ G is discrete iff the identity is an isolated element of H.
It is also well known that if G < Isom+(Hn) is a discrete group of orientation-

preserving isometries, then |G| ≤ ℵ0 .
Recall that a group G of homeomorphisms acts properly discontinuously on a a

locally compact topological space iff the following conditions hold for any g ∈ Gx:
(a) the stabilizer of x, Gx = {g ∈ G | g(x) = x} is finite; and (b) there exists a
neighbourhood Vx of x, such that (b1) g(Vx) ∩ Vx = ∅, for any g ∈ G \Gx; and (b2)
g(Vx) ∩ Vx = Vx. While every discontinuous group is discrete, not every discrete
group is properly discontinuous (see [Ms], [AP2]). However, the following holds:
G < Isom+(Hn) is properly discontinuous iff G acts discretely on ∂Hn.

Definition 1.2.13 A properly discontinuous group G < Isom+(Hn) is called a
Kleinian group.

Let G < Isom+(Hn) be a discrete group. If G contains no elliptic elements,
then Hn/G is a complete hyperbolic manifold. If G does contain elliptic elements,
then Hn/G is a complete hyperbolic orbifold. Recall that a smooth geometric n-
orbifold Q is – loosely speaking – a connected Hausdorff space XQ (the underlying
space) locally modelled on Rn, modulo a finite group G < Diff(Rn) – the group of
diffeomorphisms of Rn. The elements of G are called folding maps. More generally,
let Mn be a smooth manifold, and let G be a group that acts properly discontinuous
on Mn. Then Mn/G is a smooth orbifold.

Note however that, in general, XQ '/ Q. Indeed, Q is not necessarily a manifold.
(For example any manifold with boundary M has an orbifold structure, where the
points on the boundary ∂Mn have neighbourhoods homeomorphic to Rn/Z2, where
Z2 acts by reflection in hyperplane.) However, any 2-dimensional orbifold is home-
omorphic to a manifold. Moreover, any 3-dimensional orbifold whose folding maps
are all orientation-preserving is homeomorphic to a manifold. In particular, if G
is a Kleinian group acting with torsion on H3, then XQ = H3/G is topologically a
manifold.

If f ∈ G is an elliptic transformation, where G < Isom(Hn) is a discrete group,
then there exists m ≥ 2 such that fm = Id, and the smallest m satisfying this
condition is called the order of f . In the 3-dimensional case the fixed point set of
f i.e. Fix(f) = {x ∈ H3|f(x) = x}, is a hyperbolic line and will be denoted by
A(f) – the axis of f. In dimension n ≥ 4 the fixed set (or axis of f) of an elliptic
transformation is a k-dimensional hyperbolic plane, 0 ≤ k ≤ n − 2 . An axis A is
called degenerate iff dimA = 0. In dimensions higher than n = 3, different elliptics
may have fixed sets of different dimensions.

If G is a discrete group, G is countable so we can write G = {gj}j≥1 and let
{fi}i≥1 ⊂ G denote the set of elliptic elements of G. Therefore the set A = {Afi

}
is countable, hence the set S = {Cj} of connected components of the singular set
A∗ =

⋃
i

Ai is also countable. Moreover, by the discreteness of G, it follows that the

set A – and hence S – have no accumulation points in Hn.
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Remark 1.2.14 Given any finitely generated Kleinian group acting on H3 the num-
ber of conjugacy classes of elliptic elements is finite (see [FM]). However, this is not
true for Kleinian groups acting upon Hn, n ≥ 4 ; (for counterexamples, see [FM],
[Po] and [H]).

Remark 1.2.15 Hamilton ([H], Theorem 4.1.) constructed examples of Kleinian
groups G acting on H4 such that there exists an infinite sequence {fn}n∈N ⊂ G of
elliptic transformations, with ord(fn)→∞ and such that the fixed set of each fn is
degenerate.

If the discrete group G is acting upon Hn, then by the discreteness of G, there
exists no accumulation point of the elliptic axes in Hn. Moreover, if G contains no
elliptics with intersecting axes, and if G contains no order two elliptics, then the
distances between the axes are bounded from bellow (see [GM1]). Otherwise it is
possible that disthyp(Ai, Aj) −→

i, j
∞. However our proof of Theorem 2.1.1 holds in

all cases.
Let f ∈ Isom(Hn) be an elliptic transformation, let g ∈ Isom(Hn), and let

x ∈ A(x), such that f ◦ g = f . Then the order of g divides i(x, f) (see [Sr]). It
follows, by Remark 2.1.10 that the following holds:

Proposition 1.2.16 ([Sr], Proposition 1.2.) Let G be a Kleinian group, acting
upon Hn, n ≥ 3. If G has elliptic elements of arbitrarily large orders with non-
degenerate fixed sets, then any G-invariant quasimeromorphic mappings is constant.

Moreover we have the following theorem:

Theorem 1.2.17 ([Sr], Theorem 3.1.) For any n ≥ 2, there exits a Kleinian
group G, acting upon Hn, which contains elliptic elements gk, with non-degenerate
fixed sets, such that ord(gk) = k, k ≥ 2.

1.2.3 Triangulations

We recall a few classical definitions and notations:

Definition 1.2.18 Let a0, . . . , am ∈ Rn. a0, . . . , am are called independent iff the
vectors vi = a0ai , i = 1, ..., m are linearly independent.

The set σ = a0a1 . . . am = {x = αiai |αi ≥ 0,
∑
αi = 1} is called the m-simplex

spanned by a0, . . . , am. The points a0, . . . , am are called the vertices of σ.
The numbers αi are called the barycentric coordinates of σ. The point σ̃ =

∑
αi

m+1

is called the barycenter of σ.
If {a0, . . . , ak} ⊆ {a0, . . . , am}, then τ = a0 . . . ak is called a face of σ, and we

write τ < σ.

Definition 1.2.19 Let A,B ⊂ Rn. We define the join A∗B of A and B as A∗B =
{αa+ βb | a ∈ A, b ∈ B ; α, β ≥ 0, α+ β = 1}. If A = {a}, then A ∗B is called the
cone with vertex a and base B.
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Definition 1.2.20 A collection K of simplices is called a simplicial complex if

1. If τ < σ, then τ ∈ K.

2. Let σ1, σ2 ∈ K and let τ = σ1 ∩ σ2. Then τ < σ1, τ < σ1.

3. K is locally finite.

|K| =
⋃
σ ∈ K

σ is called the underlying polyhedron (or polytope) of K.

Definition 1.2.21 A complex K ′ is called a subdivision of K iff

1. K ′ ⊂ K;

2. if τ ∈ K ′, then there exists σ ∈ K such that τ ⊆ σ.

If K ′ is a subdivision of K we denote it by K ′ CK.
Let K be a simplicial complex and let L ⊂ K. If L is a simplicial complex, then

it is called a subcomplex of K.

Definition 1.2.22 Let a ∈ |K|. Then

St(a,K) =
⋃

a∈σ
σ ∈ K

σ

is called the star of a ∈ K.

If S ⊂ K, then we define: St(S,K) =
⋃
a ∈ S

St(a,K).

Definition 1.2.23 Let σ = a0a1 . . . am and let f : σ → Rp. The map f is called
linear iff for any x =

∑
αiai ∈ σ, it holds that f(x) =

∑
αif(ai).

Let K,L be complexes, and let f : |K| → |L|. Then f is called linear (relative to
K and L) iff for any σ ∈ K, τ = f(σ) ∈ L.

The map f : K → L is called piecewise linear (PL) iff there exists a subdivision
K ′ of K such that f : K ′ → L is linear.

If (i) f : K → L is a homeomorphism of |K| onto |L|, (ii) f |σ is linear and (iii)
τ = f |σ ∈ L, for any σ ∈ K, then f is called a linear homeomorphism.

Definition 1.2.24 A cell γ is a bounded subset of Rn defined by:

γ = {x ∈ Rn |
∑

j

αijxj ≥ βi; i = 1, . . . , p},

for some constants αi,j and βi.
The dimension m of γ is defined as min{dimΠ | γ ⊂ Π,Π a hyperplane in Rn}.
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Let γ be an m-dimensional cell. The (m−1)-cells βj of ∂γ are called its (m−1)-
faces, the (m−2)-faces of each βj are called the (m−2)-faces of γ, etc. By convention
∅ and γ are also faces of γ.

A cell complex is defined in the same manner as a simplicial complex, more
exactly, a cell complex K is a collection of cells that satisfy conditions 1.– 3. of
Definition 1.2.20.

Subcomplexes are also defined analogous to the simplicial case. In particular, the
q skeleton Kq of K, Kq = {γ | γ ∈ K, dimγ ≤ q} is a subcomplex of K.

Lemma 1.2.25 Let K be cell complex. Then K has a simplicial subdivision.

Proof See [Mun], Lemma 7.8 and Appendix B.2.3.
¤

We define the concept of embedding for complexes, but first we need some basic
definitions:

Definition 1.2.26 Let K be a simplicial complex.

1. f : |K| → Mn is Cr differentiable (relative to |K| ) iff f |σ ∈ Cr(σ), for any
simplex σ ∈ K.

2. f : |K| → Mn is non-degenerate iff rank(f |σ) = dim(σ), for any simplex
σ ∈ K.

Definition 1.2.27 Let σ be a simplex, and let f : σ → Rn, f ∈ Cr. If a ∈
σ we define dfa : σ → Rn as follows: dfa(x) = Df(a) · (x − a), where Df(a)
denotes the formal derivative Df(a) = (∂fi/∂x

j)1≤i,j≤n, computed with respect to
some orthogonal coordinate system contained in Π(σ), where Π(σ) is the hyperplane
determined by σ. The map dfa : σ → Rn does not depend upon the choice of this
coordinate system.

Note that dfa|σ∩τ is well defined, for any σ, τ ∈ St(a,K). Therefore the map
dfa : St(a,K) → Rn is well-defined and continuous, and it is called – analogous to
the case of differentiable manifolds – the differential of f .

Remark 1.2.28 In contrast to the differential case, the tangent space Tf(p)(M
n) is

a union of of polyhedral tangent cones, Therefore it possess no natural vector space
structure (see [Th2], p. 196).

Definition 1.2.29 Let K be a simplicial complex, let Mn be a Cr submanifold of
RN , and let f : K →Mn be a Cr map. Then f is called

1. an immersion iff dfσ : St(σ,K)→ Rn is injective for each and every σ ∈ K;

2. an embedding iff it is an immersion and a homeomorphism on the image f(K);

3. a Cr triangulation iff it is an embedding such that f(K) =Mn.

Remark 1.2.30 If the class of the map f is not relevant, f will be called simply a
triangulation.
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1.2.4 Fat Triangulations

We shall employ mainly Cheeger’s definition ([CMS]) of fatness:

Definition 1.2.31 Let τ ⊂ Rn ; 0 ≤ k ≤ n be a k-dimensional simplex. The
fatness ϕ of τ is defined as being:

ϕ = ϕ(τ) = inf
σ<τ

dimσ = l

V ol(σ)

diaml σ
(1.2.4)

The infimum is taken over all the faces of τ , σ < τ , and V oleucl(σ) and diamσ
stand for the Euclidian l-volume and the diameter of σ respectively. (If dimσ = 0,
then V oleucl(σ) = 1, by convention.)
A simplex τ is ϕ0-fat, for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0. A triangulation (of a sub-
manifold of Rn) T = {σi}i∈I is ϕ0-fat if all its simplices are ϕ0-fat. A triangulation
T = {σi}i∈I is fat if there exists ϕ0 > 0 such that all its simplices are ϕ0-fat.

Remark 1.2.32 There exists a constant c(k) that depends solely upon the dimen-
sion k of τ s.t.

1

c(k)
· ϕ(τ) ≤ min

σ<τ
dimσ = l

](τ, σ) ≤ c(k) · ϕ(τ) , (1.2.5)

and

ϕ(τ) ≤
V ol(σ)

diaml σ
≤ c(k) · ϕ(τ) ; (1.2.6)

where ](τ, σ) denotes the (internal) dihedral angle of σ < τ .

We give a formal definition of the notion of (internal) dihedral angle (see also
[Som] IV. 2, IX. 15), but first we need a few preliminary definitions:

Definition 1.2.33 A simplicial cone Ck ⊂ Rk ⊂ Rn, is defined as: Ck =
⋂k

j = 1

Hj ,

where Hj are open half spaces in general position, such that 0 ∈ Hj , j = 1, . . . , k.

Lk−1 = Ck
⋂
Sn−1 is called a spherical simplex.

Definition 1.2.34 Consider the simplices σk < τm, and let p ∈ σk. Define the nor-
mal cone: C⊥(σk, τm) = {−→px | x ∈ τm, −→px⊥ σk}, where −→px denotes the ray through x
and base-point p.

The spherical simplex L(σk, τm) associated to C⊥(σk, τm) is called the link of σk

in τm.

Remark 1.2.35 C⊥(σk, τm) does not depend upon the choice of p.

Definition 1.2.36 Denote by ](τ k, σm) the normalized volume of L(σk, τm), where
the normalization is such that the volume of Sn−1 equals 1, for any n ≥ 2.

14



Although briefer, Peltonen’s definition of fatness is less convenient for actual
computations:

Definition 1.2.37 A k-simplex τ ⊂ Rn (or Hn); 2 ≤ k ≤ n is ϕ-fat if there exists
ϕ ≥ 0 such that the ratio r

R
≥ ϕ; where r denotes the radius of the inscribed

sphere of τ (inradius) and R denotes the radius of the circumscribed sphere of τ
(circumradius).
A triangulation of a submanifold of Rn (or Hn) T = {σi}i∈I is ϕ-fat if all its
simplices are ϕ-fat. A triangulation T = {σi}i∈I is fat if there exists ϕ ≥ 0 such
that all its simplices are ϕ-fat; ∀i ∈ I.

Remark 1.2.38 For other equivalent definitions of fatness, see [Ca1], [Ca2], [Mun].

The reminder of this work is structured as follows: In Chapter 3 we present our
main results, their proofs being sketched in Chapter 4. The full proofs are presented
in Appendices A, and B, which represent our papers [S2], [S3], respectively.
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Chapter 2

Results

In this chapter we list our main results. We present here a sketch of the proofs and
methods employed therein. The details are given in Appendices A and B, which
form our papers [S2] and [S3], respectively.

2.1 The Existence of Automorphic Quasimeromor-

phic Mappings

The following existence theorem , that represents a generalization of previous results
of Tukia ([Tu]) and Martio and Srebro ([MS2]), is the main result in this topic. While
we present bellow an outline of the proof, the full details are given in Appendix A,
which forms the paper [S2].

Theorem 2.1.1 Let G be a Kleinian group with torsion acting upon Hn, n ≥ 3.
If the elliptic elements (i.e. torsion elements) of G with non-degenerate fixed set
have uniformly bounded orders, then there exists a non-constant G-automorphic
quasimeromorphic mapping f : Hn → R̂n.

The theorem above, together with Srebro’s non-existence theorem, gives the
following complete characterization of the discrete groups which carry non-constant
automorphic mappings:

Theorem 2.1.2 Let G be a Kleinian group acting on Bn. Then G admits non-
constant automorphic qm-mappings iff:

1. n = 2;

2. n ≥ 3, and the orders of the elliptic elements of G having non-degenerate fixed
sets are bounded.

Note that, by applying Remark 1.2.14, it follows that we get the following corol-
lary:
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Corollary 2.1.3 Let G be a finitely generated Kleinian group with torsion acting
upon H3. Then there exists a non constant G-automorphic quasimeromorphic map-

ping f : H3 → R̂3.

The idea of the proof of Theorem 2.1.1 is, in a nutshell, as follows: Based upon
the geometry of the elliptic transformations construct a fat triangulation T1 of N

∗
e =

(N̄e ∩ Bn)/G. Since Mp = (Bn/G) \N∗
e is an analytic manifold, we can apply

Peltonen’s result to gain a triangulation T2 of Mp. Therefore the set T
∗
e = Te/G will

be endowed with two triangulations: the restrictions of T1 and T2.
’Mash’ T1 and T2 i.e. ensure – by applying infinitesimal moves of the vertices

so that the two triangulation will intersect in general position with respect to each
other, and by performing suitable subdivisions – that the given triangulations inter-
sect into a new triangulation T0 (see [Mun], Theorem 10.4).

Modify T0 to receive a new fat triangulation T of Bn/G.
In the presence of degenerate components Ak = A(fk) of the singular sets, where

the transformations fk have arbitrarily large orders, a modification of this construc-
tion is needed – see Section A.

Apply Alexander’s trick to receive a quasimeromorphic mapping f :Bn/G→ R̂n.

The lift f̃ of f to Bn represents the required G-automorphic quasimeromorphic
mapping.

We employ a method for fattening triangulations developed in [CMS]. While
for full details we refer the interested reader to [CMS], we bring in Appendix B.2.3
a succinct presentation of the main steps of the fattening process. The essential
tool of this method is the following result, which represents a slight modification of
[CMS], Lemma 6.3. :

Proposition 2.1.4 Let T1, T2 be two fat triangulations of open sets U1, U2 ⊂ Mn,
U1 ∩U2 6= ∅ having common fatness ≥ ϕ0. Then there exist fat triangulations T ′1 , T

′
2

and there exist open sets U ⊂ U1 ∩ U2 ⊂ V , such that

1. (T ′1 ∩ T
′

2 )
∣∣
Ui \ V

= Ti , i = 1, 2 ;

2. (T ′1 ∩ T
′

2 )
∣∣
U
= T ;

where

3. T is a fat triangulation of U .

A different proof for the case n = 3 is given in [S1]. In this proof we develop
and use a technique for mashing distinct fat triangulations while preserving fatness,
technique that employs mainly elementary tools. This technique can be adapted to
higher dimensions and it is also relevant in Computational Geometry and Mathe-
matical Biology (see [S4]).
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2.2 The Existence of Fat Triangulations and the

Existence of Quasimeromorphic Mappings on

Manifolds

The main results we have proved in this topic are listed below. An outline of the
proof is given in the next chapter and the full proof is given Appendix B, which
forms the paper [S3]. The following theorem represents a generalization of [Mun],
Theorem 10.6.

Theorem 2.2.1 LetMn be an n-dimensional C∞ Riemannian manifold with bound-
ary, having a finite number of compact boundary components. Then any uniformly
fat triangulation of ∂Mn can be extended to a fat triangulation of Mn.

Remark 2.2.2 We prove that the theorem above also holds when the compactness
condition of the boundary components is replaced by the condition that ∂M n is en-
dowed with a fat triangulation T such that inf

σ ∈ T
diamσ > 0.

Since every PL manifold of dimension n ≤ 4 admits a (unique, for n ≤ 3)
smoothing (see [Mun1], [Mun], [Th2]), and every topological manifold of dimension
n ≤ 3 admits a PL structure (cf. [Moi], [Th2]), we obtain from our results the
following corollary:

Corollary 2.2.3 Let Mn be an n-dimensional, n ≤ 4 (resp. n ≤ 3), PL (resp.
topological) connected manifold with boundary, having a finite number of compact
boundary components. Then any fat triangulation of ∂Mn can be extended to a fat
triangulation of Mn.

By applying Alexander’s Trick to Theorem 2.2.1, we obtain the following theorem
about the existence of quasimeromorphic mappings. This theorem represents a
generalization of Peltonen’s Theorem (see [Pe], II.3.).

Theorem 2.2.4 Let Mn be a connected, oriented C1 Riemannian manifold without
boundary or having a finite number of compact boundary components. Then there
exists a non-constant quasimeromorphic mapping f : Mn → R̂n.

And thus, by Corollary 2.2.3 we obtain, in addition, the following corollary:

Corollary 2.2.5 Let Mn be a connected, oriented C1 n-dimensional manifold (n ≥
2), without boundary or having a boundary consisting of a finite number of compact
boundary components.
Then in each of the following cases there exists a non-constant quasimeromorphic
mapping f : Mn → R̂n:

1. Mn is a PL manifold and n ≤ 4;
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2. Mn is a topological manifold and n ≤ 3.

In the proof of Theorem 2.2.4 we again use Alexander’s Trick, Peltonen’s result
and Cheeger’s fattening method.

We conclude by noticing that the arguments of the proofs of Theorems 2.1.1 and
Theorem 2.2.1 extend to include any orientable (see [Dr], p. 46) geometric orbifold
with tame singular locus (at least in dimension 3) and with isotropy groups (see e.g.
[Th2]) with bounded orders. Moreover, since the constructions applies also in the
case when the groups Γi contain orientation-reversing elements, one can extend The-
orem 2.1.1 to prove the existence of G-automorphic quasimeromorphic mappings,
for any group G < Isom(Hn). In this case one employs (following Reshetnyak)
a somewhat different definition of quasiregularity, with Jf(x) being replaced by
|Jf(x)|. This allows for orientation-reversing quasiregular (and quasimeromorphic)
mappings (see [Vu] 10.8, 10.9).
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Appendix A

The Existence of
Quasimeromorphic Mapping
To appear in Ann. Acad. Sci. Fenn., Series I A Math., 31, 2006.

ABSTRACT. Let G be a Kleinian group G acting on Bn , n ≥ 2. We show that
if the orders of the elliptic elements in G which have non-degenerate fixed set are
bounded, then G carries non-constant G-automorphic quasimeromorphic mappings.
This together with an earlier non-existence theorem by Srebro gives a complete
characterization of Kleinian groups that admit non-constant quasimeromorphic au-
tomorphic mappings.

A.1 Introduction

Definition A.1.1 Let D ⊆ Rn be a domain; n ≥ 2 and let f : D → Rn be a
continuous mapping. f is called

1. quasiregular iff (i) f belongs to W 1,n
loc (D) and

(ii) there exists K ≥ 1 such that:

|f ′(x)|n ≤ KJf (x) a.e. (A.1.1)

where f ′(x) denotes the formal derivative of f at x, |f ′(x)| = sup
|h| = 1

|f ′(x)h|,

and where Jf (x) = detf ′(x).

2. quasiconformal iff f : D → f(D) is a quasiregular homeomorphism.

3. quasimeromorphic iff f : D → R̂n, R̂n = Rn
⋃
{∞} is quasiregular, where

the condition of quasiregularity at f−1(∞) can be checked by conjugation with
auxiliary Möbius transformations.

The smallest number K that satisfies (B.3.1) is called the outer dilatation of f .
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One can extend the definitions above to oriented, connected C∞ Riemannian
manifolds as follows:

Definition A.1.2 Let Mn, Nn be oriented, connected C∞ Riemannian n-manifolds,
n ≥ 2, and let f : Mn → Nn be a continuous function. f is called locally quasiregular
iff for every x ∈ Mn, there exist coordinate charts (Ux, ϕx) and (Vf(x), ψf(x)), such
that f(Ux) ⊆ Vf(x) and g = ψf(x) ◦ f ◦ ϕ−1

x is quasiregular.

If f is locally quasiregular, then Txf : Tx(M
n)→ Tf(x)N

n exist for a.e. x ∈ Mn.

Definition A.1.3 Let Mn, Nn be oriented, connected C∞ Riemannian n-manifolds,
n ≥ 2, and let f : Mn → Nn be a continuous function. f is called quasiregular iff
(i) f is locally quasiregular
and

(ii) there exists K, 1 ≤ K <∞, such that

|Txf |
n ≤ KJf(x) (A.1.2)

for a. e. x ∈Mn.

Recall that a group G of homeomorphisms acts properly discontinuously on a
locally compact topological space X iff the following conditions hold for any g ∈
Gx , x ∈ X: (a) the stabilizer Gx = {g ∈ G | g(x) = x} of x is finite; and (b) there
exists a neighbourhood Vx of x, such that (b1) g(Vx) ∩ Vx = ∅, for any g ∈ G \Gx ;
and (b2) g(Vx) ∩ Vx = Vx .

Definition A.1.4 A discontinuous group of orientation-preserving isometries of Bn

is called a Kleinian group.

It is well known that a discontinuous group is discrete (see [Ms]).

Definition A.1.5 Let f : Bn → R̂n, and let G be a Kleinian group acting upon Bn.
The function f is called G-automorphic iff:

f(g(x)) = f(x) ; for any x ∈ Bn and for all g ∈ G ; (A.1.3)

Recall the definition of elliptic transformations:

Definition A.1.6 A Möbius transformation f :Bn → Bn, f 6= Id is called elliptic
iff f has a fixed point in Bn.

The existence of non-constant automorphic meromorphic functions in dimension
n = 2 represents a classical result which follows from the existence of meromorphic
functions on Riemann surfaces (see [Fo], [K]).
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The question whether quasimeromorphic mappings (or qm-mappings, in short)
exist in any dimension n ≥ 3 was originally posed by Martio and Srebro in [MS1] ;
subsequently in [MS2] they proved the existence of the fore-mentioned mappings in
the case of co-finite groups i.e. groups such that V olhyp(Bn/G) <∞ (the important
case of geometrically finite groups being thus included). Also, it was later proved
by Tukia ([Tu]) that the existence of non-constant quasimeromorphic mappings is
assured in the case when G acts torsionless upon Bn. Moreover, since for torsionless
Kleinian groups G, Bn/G is a (analytic) manifold, the next natural question to

ask is whether there exist non-constant qm-mappings f : Mn → R̂n; where Mn is
an orientable n−manifold. A partial affirmative answer to this question is due to
Peltonen (see [Pe]); to be more precise she proved the existence of qm-mappings in
the case when Mn is a complete, connected, orientable C∞-Riemannian manifold.

Our main result is the following theorem:

Theorem A.1.7 Let G be a Kleinian group G acting on Bn , n ≥ 2. If the orders
of the elliptic elements of G which have non-degenerate fixed set are bounded, then
G admits non-constant G-automorphic quasimeromorphic mappings.

In contrast with the above results it was proved by Srebro ([Sr]) that, if G
is a Kleinian group acting on Bn, n ≥ 3, containing elliptic elements with non-
degenerate fixed set, of arbitrarily large orders, then G does not admit non-constant
G-automorphic qm-mappings; and showed that such groups exist in all dimensions
n ≥ 3.

This non existence result, together with Theorem A.1.7 gives a complete charac-
terization of those Kleinian groups which admit G-automorphic quasimeromorphic
mappings. Namely:

Theorem A.1.8 Let G be a Kleinian group acting on Bn. Then G admits non-
constant automorphic qm-mappings iff:

1. n = 2;

or

2. n ≥ 3, and the orders of the elliptic elements of G having non-degenerate fixed
sets are uniformly bounded.

Remark A.1.9 Given any finitely generated Kleinian group acting on B3 the num-
ber of conjugacy classes of elliptic elements is finite (see [FM]). However, this is not
true for Kleinian groups acting upon Bn, n ≥ 4 ; (for counterexamples, see [FM],
[Po] and [H]).

Remark A.1.10 Hamilton ([H], Theorem 4.1.) constructed examples of Kleinian
groups G acting on B4 such that there exists an infinite sequence {fn}n∈N ⊂ G of
elliptic transformations, with ord(fn) → ∞ and such that the fixed set of each fn
is degenerate. (For the relevant definitions, see Section A.2 below.) (Here ord(fn)
denotes the order of fn .)
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Note that by Remark A.1.9 we have the following corollary:

Corollary A.1.11 Let G be a finitely generated Kleinian group acting upon B3.

Then there exists a non constant G-automorphic qm-mapping f : B3 → R̂3.

The classical methods employed in proving the existence in the case n = 2 do not
apply in higher dimensions – indeed, for n ≥ 4, Bn/G is not even a manifold, but
an orbifold. Therefore, different methods are needed. Following other researchers,
we shall employ the classical “Alexander trick” (see [Al]).

A uniform bound for the dilatations can be attained (see [MS2], [Tu]) if the
considered triangulation is fat, i.e. such that each of its individual simplices may be
mapped onto a standard n-simplex, by a L-bilipschitz map, followed by a homothety,
for a fixed L. (For a precise definition of fatness see Section A.3 below.)

The idea of the proof of Theorem A.1.7 is, in a nutshell, as follows: Based upon
the geometry of the elliptic transformations construct a fat triangulation T1 of N∗

e ,
where N∗

e is a certain closed neighbourhood of the singular set of Bn/G. Since
Mp =

(
Bn \ Fix(G)

)
/G, Fix(G) =

{
x ∈ Bn | ∃g ∈ G \ {Id}, g(x) = x

}
is an

orientable analytic manifold, we can apply Peltonen’s result to gain a triangulation
T2 ofMp. Therefore, if the triangulations T1 and T2 are chosen properly, each of them
will induce a triangulation of N ∗

e \N
∗
e
′, for a certain N ∗

e
′ ( N∗

e (see Section A.2).
‘Mash’ T1 and T2 (in N∗

e \N
∗
e
′) i.e. ensure that the given triangulations intersect

into a new triangulation T0 (see [Mun], Theorem 10.4). Modify T0 to receive a new
fat triangulation T of Bn/G.

In the presence of degenerate components Ak = A(fk) of the fixed set of G,
where the transformations fk may have arbitrarily large orders, a modification of
this construction is needed – see Section A.4.

Apply Alexander’s trick to receive a quasimeromorphic mapping f :Bn/G→ R̂n.

The lift f̃ of f to Bn represents the required G-automorphic quasimeromorphic
mapping.

In [S3] we showed how to build T1 using a generalization of a theorem of Munkres
([Mun], 10.6) on extending the triangulation of the boundary of a manifold (with
boundary) to the whole manifold. Munkres’ technique also provided us with the ba-
sic method of mashing the triangulations T1 and T2. In this paper we present a more
direct, geometric method of triangulating N ∗

e and mashing the two triangulations.
We already employed this simpler method in [S1], where we proved Theorem A.1.7
in the case n = 3. The original technique used in [S1] for fattening the intersection
of T1 and T2 is, however, restricted to dimension 3. Therefore here we make appeal
to the method employed in [S3], which is essentially the one developed in [CMS].

This paper is organized as follows: in Section 2 we show how to triangulate
the closed neighbourhood N ∗

e of the singular set of Bn/G. Section 3 is dedicated
to the main task of mashing the triangulations and fattening the resulting common
triangulation. In Section 4 we show how to apply the main result in the construction
of a G-automorphic quasimeromorphic mapping from Bn to R̂n.
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A.2 Geometric Neigbourhoods

If G is a discrete Möbius group and if f ∈ G, f 6= Id is an elliptic transformation,
then there exists m ≥ 2 such that fm = Id. The smallest m satisfying this condition
is called the order of f , and it is denoted by ord(f). In the 3-dimensional case the
fixed point set of f i.e. Fix(f) = {x ∈ B3|f(x) = x}, is a hyperbolic line and will be
denoted by A(f) – the axis of f. In dimension n ≥ 4 the fixed set (or axis of f ) of
an elliptic transformation is a k-dimensional hyperbolic plane, 0 ≤ k ≤ n − 2 . An
axis A is called degenerate iff dimA = 0. In dimensions higher than n = 3, different
elliptics may have fixed sets of different dimensions.

If G is a discrete group, G is countable and so is the set of elliptics and the
set of connected components of Fix(G), which we denote by {fi}i≥1 and {Cj},
respectively.

Moreover, by the discreteness of G, the sets A = {Ai}i≥0 – and hence S = {Cj}
– have no accumulation points in Bn.

N(A) = N(f)
r r

O

{4}

A(f)

f = (4)

int{4}   A(f)+

Figure A.1: Geometric neighbourhood for n = 3 and m = 4. Here {4} denotes the
regular (hyperbolic) polygon with 4 sides.

H3 ≡ B3

Hence we can choose disjoint, G-invariant neighbourhoods Nj and N ′
j of Cj ,

N ′
j ( Nj . Indeed, first choose a neighbourhood N1 of C1, such that N̄1 ∩

⋃
j ≥ 2

Cj = ∅ ;

then recursively build a neighbourhoodNk of Ck, such thatNk ⊂ Bn\(N1∪· · ·∪Nk−1)
and N̄k ∩

⋃
j > k

Cj = ∅ , for all k ≥ 2. Denote Ne =
⋃

j ∈ N
Nj , N

′
e =

⋃
j ∈ N
N ′

j . Define

N∗
e = (N̄e ∩ Bn)/G, N∗

e
′ = (N̄ ′

e ∩ Bn)/G.
To produce the desired closed neighbourhood N ∗

e of the singular set of Bn/G and
its triangulation T1, we first consider the case where Ci = A(f), for some f ∈ G,
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and then construct a standard neighbourhood Nf = N
(
A(f)

)
of the axis of each

elliptic element of G such that Nf ' A(f)× In−k, where A(f) = Sk and where In−k

denotes the unit (n − k)-dimensional interval. The construction of Nf proceeds as
follows: By [Cox], Theorem 11 · 23. the fundamental region for the local action of
the stabilizer group of the axis of f , Gf = GA(f) = {g ∈ G | g(x) = x} is a simplex
or a product a simplices. Let Sf be the fundamental region (see Figure A.2).

Then we can define the generalized prism (or simplotope – see [Som], VII. 25.)
S⊥f , defined by translating Sf in a direction perpendicular to Sf , where the transla-

tion length is disthyp
(
Sf , A(f)

)
. It naturally decomposes into simplices (see [Som],

VII. 25. , [Mun], Lemma 9.4). We have thus constructed an f -invariant trian-
gulation of a prismatic neigbourhood Nf of A(f). We can reduce the mesh of
this triangulation as much as required, while controlling its fatness by dividing
Sf into similar simplices and partitioning Nf into a finite number of radial strata
of equal width %. In the special case when the minimal distance between axes
δ = min{disthyp

(
A(f), A(g)

)
| g elliptic, g 6= f} is attained we can chose % = δ/κ0,

for some integer κ0, and further partition it into ‘slabs’ of equal hight h. (In par-
ticular one can use this approach in the case when G acts on B3 and it contains no
order two elliptics, since in this particular case, according to a result of Gehring and
Martin [GM1], the minimum exists and is strictly positive.) Henceforth we shall call
the neighbourhood thus produced, together with its fat triangulation, a geometric
neighbourhood.

f

A(f)

σ

σ

σ
1

2

3

S
f
⊥

Figure A.2: Canonical decomposition into simplices of S⊥f , for n = 3

Since the stabilizer Stab(A1,...,k) of the intersection of axes A1,...,k = Ai1∩· · ·∩Aik

is a finite subgroup of O+(n), and since in any dimension there exist only a finite
number of such groups of orders ≤ M0, for any M0 ∈ N (see [Cox], Chap. 11.),
the angles between the axes of transformations of orders ≤ m0 admit a bound α =
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α(m0, n). Therefore, the intersection N(A1,...,k) = Nf1 ∩ · · · ∩ Nfk
of the geometric

neighbourhoods of several axes is also endowed with a natural fat triangulation,
invariant under the group G =<Gf1 , . . . , Gfk

>. (In the particular case n = 3 one
can choose as a geometric neighbourhood of A a regular or a semi-regular polyhedron
together with its interior (see Figure 3 below).

O

Q

P
M

A

Figure A.3: A Euclidean semi-regular polyhedron and two of its fundamental tetra-
hedra (n = 3)

If q ∈ Bn, dim q = 0, is a degenerate element of the singular locus, we replace
the tubular neighbourhood considered above by Pq ∪ intPq, where Pq is a regular
polytope invariant under the stabilizer Gq of q in G, together with its canonical
simplicial subdivision (see [Cox], 7 · 6.) . Indeed, every finite group generated by
reflections is the symmetry group of a regular polyhedron P (see [Cox], p. 209)
Moreover, the rotation group of P has order nl/2, where l is the number of faces of
P (see [Cox], pp. 227-231).

Remark A.2.1 As noted above, if G is a Kleinian group acting with torsion on
Bn, then Mp =

(
Bn \ Fix(G)

)
/G is a complete orientable manifold. Moreover,

since the isotropy groups of any point in QG = Bn/G are subgroups of O+(n), it
follows that Bn /G is complete orientable orbifold (see [Dr], p. 46). The singular
locus ΣQG

= Fix(G)/G of QG contains all the non-manifold points of QG, yet the
two sets are not equal. Indeed, in dimension n = 2 (n = 3) any orbifold (orientable
orbifold) is homeomorphic to a manifold. The local structure of ΣQG

at a point
xQ ∈ QG is determined by the stabilizer in G of its preimage in Bn, i.e. by the finite
subgroups of O+(n). (For instance, in dimension n = 3 only two infinite families
and three more special cases of branching points (of Fix(G) and thus of ΣQG

) can
occur – see [Th1], 5.6.) However, the global structure of ΣQG

can be very complicated
(see [Th1], 5.6.).
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A.3 Mashing and Fattening Triangulations

We present the main steps of the Munkres ([Mun], Chap. 10) and Chegeer ([CMS],
432-440) techniques, and we indicate how to adapt them to our particular setting.
First let us establish some definitions and notations:

Definition A.3.1 Let Mn be a PL-manifold. Two triangulations T1, T2 of Mn in-
tersect transversally iff for any p ∈Mn, there exist neighbourhoods U1, U2, U3 of p in
|T1|, |T2| and Mn, respectively, such that the triple (U1, U2, U3) is PL-homeomorphic
to a neighbourhood of 0 in (Rn × 0, 0× Rn,Rn × Rn).

To ensure the fatness of the common triangulation we need to make appeal to a
stronger notion of transversality, namely:

Definition A.3.2 Let σi ∈ K, dimσi = ki, i = 1, 2; such that diamσ1 ≤ diamσ2.
Denote by [σi] the affine subspace of RN generated by σi, and let <σi> denote the
subspace parallel to [σi], such that 0 ∈<σi> ⊂ RN ; i = 1, 2. We say that σ1, σ2 are
δ-transverse iff
(i) dim([σ1] ∩ [σ2]) = max(0, k1 + k2 − n);
(ii) 0 < δ < ]([σ1], [σ2]), where ]([σ1], [σ2]) = ](<σ1>,<σ2>), and where
](<σ1>,<σ2>) = min

(e1, e2)
arccos (e1, e2), ei ∈ (<σ1> ∩ <σ1>)

⊥∩ <σi> ,

||ei|| = 1 , i = 1, 2; where (e1, e2) denotes the standard inner product on Rn;
and if σ3 Ã σ1, σ4 Ã σ2, such that dimσ3 + dimσ4 < n = dimK, then
(iii) dist(σ3, σ4) > δ · d1 , where d1 = diamσ1 .
In this case we write: σ1 tδ σ2.

Definition A.3.3 Let τ ⊂ Rn ; 0 ≤ k ≤ n be a k-dimensional simplex. The fatness
ϕ of τ is defined as being:

ϕ = ϕ(τ) = inf
σ<τ

dimσ = l

V ol(σ)

diaml σ
(A.3.1)

The infimum is taken over all the faces of τ , σ < τ , and V oleucl(σ) and diamσ
stand for the Euclidian l-volume and the diameter of σ respectively. (If dimσ = 0,
then V oleucl(σ) = 1, by convention.)

A simplex τ is ϕ0-fat, for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0. A triangulation (of a sub-
manifold of Rn) T = {σi}i∈I is ϕ0-fat if all its simplices are ϕ0-fat. A triangulation
T = {σi}i∈I is fat if there exists ϕ0 > 0 such that all its simplices are ϕ0-fat.

Remark A.3.4 There exists a constant c(k) that depends solely upon the dimension
k of τ s.t.

1

c(k)
· ϕ(τ) ≤ min

σ<τ
dimσ = l

](τ, σ) ≤ c(k) · ϕ(τ) , (A.3.2)
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and

ϕ(τ) ≤
V ol(σ)

diaml σ
≤ c(k) · ϕ(τ) ; (A.3.3)

where ](τ, σ) denotes the (internal) dihedral angle of σ < τ . (For a formal defini-
tion, see [CMS], pp. 411-412, [Som].)

Remark A.3.5 The definition above is the one introduced in [CMS]. For equivalent
definitions of fatness, see [Ca1], [Ca2], [Mun], [Pe], [Tu].

The first step is that of mashing the triangulations T1, T2:
We approximate the triangulation T2 of Mp by a locally finite Euclidian triangu-

lation, by means of the secant map (see [Mun], p. 90). Also, the hyperbolic simplices
of T1 can be approximated arbitrarily well by Euclidean simplices, by considering
diamσ, σ ∈ T1 small enough (see [Tu]). Therefore the mashing and fattening of
triangulations reduces to that of Euclidean ones.

Next we ensure that the given triangulations intersect into a new triangulation
T0. This is first done locally by modifying these local triangulations coordinate chart
by chart, so they will be PL-compatible wherever they overlap. More precisely, we
first apply infinitesimal moves of the vertices so that the two triangulations will
intersect transversally. Next we perform suitable barycentric subdivisions of the
closed, convex polyhedral cells γ̄ = σ̄1∩σ̄2, σi ∈ Ti, i = 1, 2; in the following manner:
suppose each cell β ⊂ ∂γ already has a subdivision into simplices βi , i = 1, . . . , p ;
choose an interior point pγ ∈ int γ, construct the joins J(pγ , βi), i = 1, . . . , p ; and
consider all their simplices. (see [Mun], 10.2 - 10.3).

To extend the local triangulations to a global triangulation T0, we work in Rn,
by using the coordinate charts and maps. Here again we have to approximate the
given triangulation by a PL-map, such that the given triangulation and the one we
produce will be PL-compatible (see [Mun], Theorem 10.4). The existence of the
common triangulation T0 follows immediately (see [Mun], Theorem 10.5).

We next present the main steps of the fattening process (for details see [CMS]):
One begins by triangulating and fattening the intersection of two individual

simplices belonging to the two given triangulations, respectively. First one shows
that if two individual simplices are fat and if they intersect δ-transversally, one can
choose the points pγ such that the barycentric subdivision γ̄∗ will be composed of
fat simplices. (See [CMS], Lemma 7.1.)

Next one shows that given two fat Euclidian triangulations that intersect δ-
transversally, then it is possible to infinitesimally move any given point of one of
the triangulations such that the resulting intersection will be δ∗-transversal, where
δ∗ depends only on δ, the common fatness of the given triangulations, and on the
displacement length (see [CMS], Lemma 7.3.).

By repeatedly applying this results to the simplices of dimensions 0 , . . . , n , of
the intersection of two fat triangulations, one can now prove the main fattening
result:
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Proposition A.3.6 ([CMS], Lemma 6.3.) Let T1, T2 be two fat triangulations of
open sets U1, U2 ⊂ Rn, Br(0) ⊆ U1∩U2, having common fatness ≥ ϕ0 and such that
d1 = inf

σ1 ∈ T1

diamσ1 ≤ d2 = inf
σ2 ∈ T2

diamσ2. Then there exist ϕ∗0-fat triangulations T
′

1 , T
′

2 ,

ϕ∗0 = ϕ∗0(ϕ0), of open sets V1, V2 ⊆ Br(0), such that

1. T ′i
∣∣
Br−8d2

(0)
= Ti

∣∣
Br−8d2

(0)
, i = 1, 2 ;

2. T ′1 and T ′2 agree near their common boundary.

Moreover:

3. inf
σ′1 ∈ T

′
1

diamσ′1 ≤ 3d1/2, inf
σ′2 ∈ T

′
2

diamσ′2 ≤ d2 .

We apply Proposition A.3.6 above to our particular context in the following
manner: Let T1, T2 be the triangulations of N ∗

e \N
∗
e
′ constructed above. To gain a

globally fat triangulation from the mashing of T1 and T2, we start by partitioning
N∗

e \N
∗
e
′ into (almost) cubes Q. If the diameters of the sets Q are small enough

we can apply Proposition A.3.6, for Q instead Br(0). Extend T0 by T2 on the face
included in ∂Ne and by T1 on the other faces, to receive the desired triangulation T .
(Further fattening of the triangulations induced on the lower dimensional faces may
be necessary. However, by the locally finiteness of the triangulation, the number of
steps required for fattening the lower dimensional intersections is finite and depends
solely upon the dimension n.) This gives the required globally fat triangulation of
Bn/G.

A.4 The Existence of Quasimeromorphic Mappings

We first prove the following lemma:

Lemma A.4.1 ([MS1], [Pe]) Let Mn ⊂ RN be an orientable n-manifold, let T be
a chessboard fat triangulation of Mn, let σ ∈ T , σ = (p0, . . . , pn) and let τ0 =
(p0,1, . . . , p0,n) denote the equilateral n-simplex inscribed in the unit sphere Sn−1.

Then there exists a orientation-preserving homeomorphism h = hσ : |σ| → R̂n s.t.

1. h(|σ|) = |τ0|, if σ is positively oriented
and
h(|σ|) = R̂n \ |τ0|, otherwise.

2. h(pi) = p0,i, i = 0, . . . , n.

3. h|∂|σ| is a PL-homeomorphism.

4. h|int|σ| is quasiconformal.
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Proof If det(p0, . . . , pn) > 0, then the PL-mapping h defined by condition 2 above
also satisfies conditions 1 , 3 and 4 . If det(p0, . . . , pn) < 0, we define h as follows:
h = ϕ−1◦J ◦ϕ◦h0, where ϕ is the radial linear stretching ϕ : τ0 → Rn, J denotes the
reflection in the unit sphere Sn−1 and h0 : |σ| → |τ0| is the orientation-reversing PL-
mapping defined by condition 2 . Recall that ϕ is onto and bilipschitz (see [MS2]).
Moreover, by a result of Gehring and Väisalä, ϕ is also quasicomformal (see [V]).

We can extend ϕ to R̂n by defining ϕ(∞) =∞. It follows that h indeed represents
the required PL-homeomorphism.

¤

The existence theorem of quasimeromorphic mappings now follows immediately:

Proof of Theorem A.1.7 Let T be the ϕ∗0-fat chessboard triangulation of Bn/G

constructed in Section A.3 above. Let f : Bn/G → R̂n be defined by: f ||σ| = hσ,
where h is the homeomorphism constructed in the lemma above. Then f is a local
homeomorphism on the (n− 1)-skeleton of T̃ too, while its branching set Bf is the

(n−2)-skeleton of T̃ . By its construction f is quasiregular and its (outer) dilatation

depends only ϕ∗0 and on the dimension n (see [Tu], Lemma E.). The lift f̃ of f to
Bn represents the required G-automorphic quasimeromorphic mapping.

In the case of degenerate components Ak of the fixed set S, the proof is es-
sentially the same as in the classical case of Riemann surfaces (see, e.g. [Fo], pp.
233-238). More precisely, we proceed as follows: We excise from Bn disjoint ball
neighbourhoods Bk of Ak. Let Sk = ∂Bk. Then each of the quotients Sk/G admits
a fat triangulation Tk. The manifold

(
Bn \

⋃
k ≥ 1

Bk

)
/G admits a fat triangulation

that extends the fat triangulation of Sk (see [CMS], p. 444 and [S3], Theorem 2.9.).
We build the simplices Pk with vertex Ak/G and base Tkl, where Tkl are simplices
belonging to Tk. Then each of the simplices Pk can be quasiconformally mapped
onto a half-space, with bounded dilatation which depends only on n and not on
the angles at the vertices Ai, even if the orders of the transformations fk are not
bounded from above (see [Car], Theorem 3.6.10. and Theorem 3.6.13.).

¤

Acknowledgment

The author would like to thank Prof. Uri Srebro for posing this problem and for
his enlightening remarks and suggestions. Many thanks are also due to Prof. Pekka
Tukia for his kind support and to Prof. Bronislaw Wajnryb for his help and advice.

30



Appendix B

Note on a Theorem of Munkres
Appeared in Mediterr. J. Math., vol. 2, no. 2(2005), 215 - 229.

ABSTRACT. We prove that given a C∞ Riemannian manifold with boundary,
having a finite number of compact boundary components, any fat triangulation
of the boundary can be extended to the whole manifold. We also show that this
result extends to C1 manifolds and to embedded PL manifolds of dimensions 2, 3
and 4. We employ these results to prove that manifolds of the types above admit
quasimeromorphic mappings onto R̂n. As an application we prove the existence of
G-automorphic quasimeromorphic mappings, where G is a Kleinian group acting on
Hn.

B.1 Introduction

The existence of triangulations for C1 manifolds without boundary has been known
since the classical work of Whithead ([Wh], 1940).

This result was extended in 1960 by Munkres ([Mun]) to include Cr manifolds
with boundary, 1 ≤ r ≤ ∞ . To be more precise, he proved that any Cr triangulation
of the boundary can be extended to a Cr triangulation of the whole manifold.

Earlier, in 1934-1935, Cairns ([Ca1], [Ca2]) proved the existence of triangulations
for compact C1 manifolds and for compact manifolds with boundary having a finite
number of compact boundary components. It should be noted that, although far bet-
ter known and widely cited, Whitehead’s work is rooted in Cairns’ studies, to whom
it gives due credit in the very opening phrase: “This paper is supplementary to

S.S. Cairns’ work on the triangulation ... of manifolds of class C 1”.
Moreover, the resulting triangulations were fat (that is they satisfied a uniform

non-degeneracy condition – for the formal definition see 1.2. below), while Munkres’
method produced fat simplices only away from the boundary (see Section 2.2).

Unfortunately, it seems that little interest existed during the following decades,
for studying generalizations of the results above ([Fe] representing a notable excep-
tion).
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The interest in the existence of a fat triangulations was rekindled by the study
of quasiregular and quasimeromorphic functions, since the existence of a fat tri-
angulations is crucial in the proof of existence of quasiregular (quasimeromorphic)
mappings (see [MS2], [Tu]) and in 1992 Peltonen ([Pe]) proved the existence of fat
triangulations for C∞ Riemannian manifolds, using methods partially based upon
another technique of Cairns (originally developed for triangulating manifolds of class
≥ C2).

In this paper we extend Munkres’ theorem to the case of fat triangulations of
manifolds with or without boundary and we show how to apply this main result in
order to prove the existence of quasimeromorphic mappings. Our main result is the
following theorem:

Theorem B.1.1 LetMn be an n-dimensional C∞ Riemannian manifold with bound-
ary, having a finite number of boundary components. Then any uniformly fat trian-
gulation of ∂Mn can be extended to a fat triangulation of Mn.

Here fat triangulations are defined as follows:

Definition B.1.2 Let τ ⊂ Rn ; 0 ≤ k ≤ n be a k-dimensional simplex. The fatness
ϕ of τ is defined as being:

ϕ = ϕ(τ) = inf
σ<τ

dimσ = j

V olj(σ)

diamj σ
(B.1.1)

The infimum is taken over all the faces of τ , σ < τ , and V olj(σ) and diamσ stand
for the Euclidian j-volume and the diameter of σ respectively. (If dimσ = 0, then
V olj(σ) = 1, by convention.)
A simplex τ is ϕ0-fat, for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0. A triangulation (of a sub-
manifold of Rn) T = {σi}i∈I is ϕ0-fat if all its simplices are ϕ0-fat. A triangulation
T = {σi}i∈I is fat if there exists ϕ0 ≥ 0 such that all its simplices are ϕ0-fat.

Remark B.1.3 There exists a constant c(k) that depends solely upon the dimension
k of τ such that

1

c(k)
· ϕ(τ) ≤ min

σ<τ
](τ, σ) ≤ c(k) · ϕ(τ) , (B.1.2)

and

ϕ(τ) ≤
V olj(σ)

diamj σ
≤ c(k) · ϕ(τ) ; (B.1.3)

where ](τ, σ) denotes the (internal) dihedral angle of σ < τ . (For a formal defini-
tion, see [CMS], pp. 411-412, [Som].)

Remark B.1.4 The definition above is the one introduced in [CMS]. For equivalent
definitions of fatness, see [Ca1], [Ca2], [Mun], [Pe], [Tu].
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The idea of the proof of Theorem 1.1. is first to build two fat triangulations: T1

of a product neighbourhood N of ∂Mn in Mn and T2 of intM
n, and then to “mash”

the two triangulations into a new triangulation T , while retaining their fatness.
While the mashing procedure of the two triangulations is basically that developed

in the original proof of Munkres’ theorem, the triangulation of T1 was modified, in
order to ensure the fatness of the simplices of T1. The existence of the second
triangulation is assured by Peltonen’s result.

Thus our main efforts should be dedicated to the task of fattening the newly
obtained triangulation into a new fat triangulation. However, such a technique was
already developed in [CMS], and we employ it here. (For a more direct approach
in dimensions 2 and 3 see [S1]. Also, for the treatment of the same problem in the
context of Computational Geometry, see [E].)

Once a fat triangulation of an orientable manifold Mn is provided, the construc-
tion of the required quasimeromorphic mapping is canonical (see [Al], [Pe], [MS2],
[Tu]) and is based upon the so called “Alexander Trick”, which we present here
succinctly: one starts by constructing a suitable triangulation of Mn. Since Mn is
orientable, a consistent orientation of all the simplices of the triangulation (i.e. such
that two given n-simplices having a (n − 1)-dimensional face in common will have
opposite orientations) can be chosen. Then one quasiconformally maps the simplices

of the triangulation into R̂n in a chessboard manner: the positively oriented ones
onto the interior of the standard simplex in Rn and the negatively oriented ones onto
its exterior. To ensure the existence of such a chessboard triangulation, we may have
to perform a barycentric type of subdivision, thus rendering a triangulation whose
simplices satisfy the condition that every (n− 2)-face is incident to an even number
of n-simplices. If the dilatations of the quasiconformal maps constructed above are
uniformly bounded – which condition is fulfilled if the simplices of the triangulation
are of uniform fatness – then the resulting map will be quasimeromorphic.

This paper is organized as follows: in Section 2 we bring the proof of Theorem 1.1.
and we present the main techniques we employ: Peltonen’s method of triangulating
intMn, the adaptation to our context of the Proof of Munkres’ theorem on the
extension of the triangulation of ∂Mn to a product neighbourhood N of ∂Mn in
Mn, and the fattening method of the resulting common triangulation. In Section
3 we show how to apply the main result in the construction of quasimeromorphic
mappings from Mn to R̂n. In Section 4 we propose some generalizations. Finally,
in Section 5 we bring an application of our main results to the proof of existence
of G-automorphic quasimeromorphic mappings, where G is a Kleinian group acting
on Hn.
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B.2 Extending T1 to int Mn

B.2.1 Peltonen’s Technique

Peltonen’s method is an extension of one due to Cairns, developed in order to
triangulate C2-compact manifolds ([Ca3]). It is based on the subdivision of the
given manifold into a closed cell complex generated by a Dirichlet (Voronoy) type
partition whose vertices are the points of a maximal set that satisfy a certain density
condition. We give below a sketch of the Peltonen’s method and refer the interested
reader to [Pe] for the full details.

The construction devised by Peltonen consists of two parts:
Part 1 This part proceeds in two steps:
Step A Build an exhaustation {Ei} of Mn, generated by the pair (Ui, ηi), where:

1. Ui is the relatively compact set Ei \ Ēi−1 and

2. ηi is a number that controls the fatness of the simplices of the triangulation
of Ei, that will be constructed in Part 2, such that it will not differ too much
on adjacent simplices, i.e.:
(i) The sequence (ηi)i≥1 descends to 0 ;
(ii) 2ηi ≥ ηi−1 .

Step B

1. Produce a maximal set A, |A| ≤ ℵ0, such that A ∩ Ui satisfies:
(i) a density condition, and
(ii) a “gluing” condition (for Ui, Ui+1).

2. Prove that the Dirichlet complex {γ̄i} defined by the sets Ai is a cell complex
and every cell has a finite number of faces (so it can be triangulated in a
standard manner).

Part 2 Consider first the dual complex Γ and prove that it is a Euclidian simplicial
complex with a “good” density, then project Γ on Mn (using the normal map).
Finally, prove that the resulting complex can be triangulated by fat simplices.

Remark B.2.1 In the course of Peltonen’s construction Mn is presumed to be iso-
metrically embedded in some RN1 , where the existence of N1 is guaranteed by Nash’s
theorem (see [Pe], [Spi]).

B.2.2 The Extension of T1 to int Mn

We first establish some notations and definitions:
Let K denote a simplicial complex, and let K ′ < K denote a subcomplex of K.
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Definition B.2.2 Let fi : Ki
∼
→ Rn, i = 1, 2 be such that f(|Ki|) is closed.

We say that (K1, f1), (K2, f2) intersect in a subcomplex iff:
(i) f−1

i

(
f1(|K1|) ∩ f2(|K2|)

)
= |Li| ; where Li < Ki , i = 1, 2.

and
(ii) f−1

2 ◦ f1 : L1 → L2 is a linear isomorphism, i.e. (a) f : |L1|
∼
→ |L2| and (b) f |σ

is linear for any simplex σ ∈ L1.

Definition B.2.3 Let L < K. L is called full iff σ ∩ L either is a face of σ or else
it is empty; for any simplex σ ∈ K.

Remark B.2.4 If L < K is full, and σ ∈ K, then ∂σ ∩ L 6= ∂σ.

If (K1, f1), (K2, f2) intersect in a full subcomplex, then there exist a complex K
and a homeomorphism f : K → Rn such that the following diagram is commutative:

K1

?

Q
Q
Q
Q
Q
Qs

f1

i1

K Rn-f

K2

6

´
´
´
´
´
3́

f2

i2

Here i1, i2 are linear isomorphisms. The pair (K, f) is unique up to isomorphism.

Definition B.2.5 Let (K1, f1), (K2, f2) and (K, f) be as above. Then (K, f) is
called the union of (K1, f1) and (K2, f2).

Definition B.2.6 Let f : K → Rn be a Cr map, and let δ : K → R∗+ be a continu-
ous function. Then g : |K| → Rn is called a δ-approximation to f iff:
(i) There exists a subdivision K ′ of K such that g ∈ Cr(K ′,Rn) ;
(ii) deucl

(
f(x), g(x)

)
< δ(x) , for any x ∈ |K| ;

(iii) deucl
(
dfa(x), dga(x)

)
≤ δ(a) · deucl(x, a) , for any a ∈ |K| and for all x ∈

St(a,K ′).

Definition B.2.7 Let K ′ be a subdivision of K, U =
◦

U , and let f ∈ Cr(K,Rn), g ∈
Cr(K ′,Rn). g is called a δ-approximation of f (on U) iff conditions (ii) and (iii) of
Definition 2.6. hold for any a ∈ U .
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Definition B.2.8 Let K ′ be a subdivision ofK and let f ∈ Cr(K,Rn), g ∈ Cr(K ′,Rn)
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σ

0

0

0

k

σ
σ  = 

''
o

Figure B.1: Triangulation of a cell

σ′ = σ ×
[ k
n0
,
k + 1

n0

]
, k = 0, . . . , n0 − 2 ; (B.2.2)

σ′′ = σ ×
[n0 − 1

n0
, 1
)
; (B.2.3)
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and

σ◦ = σ ×
{ k

n0

}
; for any σ ∈ J . (B.2.4)

LetK denote the resulting cell complex: |K| = |J |×[0, 1). LetK be isometrically
embedded in M . The cells of the complex above may be divided into simplices
without subdividing the cells of type (2.4) . (See Fig. 1 for the case N = 2.)

For reasons that will become clear in the next section, we choose n0 = n0(ϕ∂M
, d0),

d0 = min
σ ∈ ∂M

diamσ, such that the fatness of any simplex σ ∈ K is ≥ ϕ0, for some

ϕ0 = ϕ0(ϕ∂M
, ϕ

int M
) and such that diamσ ≤ diam τ, for any σ ∈ K0, τ ∈ L0 ,

where K0, L0 are defined as follows:
Let K0 be the subcomplex of K such that |K0| = |J | ×

[
0 , k1

n0

]
, k1 = [5n0

6
],

(where [5n0

6
] denotes the integer part of 5n0

6
) and let ψ : ∂Mn × [0, 1) → Mn be a

product neighbourhood of ∂Mn (in Mn) . Then, if g makes the following diagram
commutative:

J × [0, 1) ∂Mn × [0, 1)-

J
J
JĴ

­
­

­­À
g ψ

f × id

Mn

then g|
K0

is a Cr embedding such that:

(i) g(K0) = g(K0) (in M
n)

and
(ii) ψ

(
∂Mn × [0, k2

n0
)
)
⊂ int g(K0), k2 = [4n0

5
].

Remark B.2.10 To determine the integer n0 with the required properties, further
subdivisions may be necessary – their number depending upon the respective ηi-s
given by Peltonen’s construction.

Now, if h : L→Mn is a Cr triangulation of intMn, then, by further (eventual)
subdivision, we may suppose (see [Mun] ) that: σ′ ∩ ψ

(
∂ Mn × [0, k3

n0
]
)
= ∅, k3 =

[3n0

4
] ; for all σ′ ∈ L; σ′ ∩ ψ

(
∂ Mn × { k2

n0
}
)
6= ∅.

Let L0 be the complex given by:





Li
0 =

{
σ ∈ L

∣∣ h(σ) ∪
(
Mn \ψ

(
∂ Mn × [0, k2

n0
)
))
6= ∅

}
;

Lf
0 =

{
faces of σ

∣∣ σ ∈ Li
0

}
;

L0 = Li
0 ∩ L

f
0 .

(B.2.5)

Then, by [Mun], Theorem 10.4, (see also Fig. 2) there exists g ′ : K ′
0 →Mn, h′ :

L′0 →Mn; where g′ is a δ-approximation of g and h is a δ-approximation of h, such
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that:
(i) g′(K ′

0) ∩ h
′(L′0) is full

and
(ii) The union of (K ′

0, g
′) and (L′0, h

′) is an embedding.

g(K )0

M

int M

k_
n0

k+1___
n0

1_
n0

1

J
h(L )0

n
n0

___-10n
n0

___-20n
n0

___-30

Figure B.2: Mashing the triangulations of ∂ Mn and intMn

Also, by applying again [Mun] Theorem 10.4, we may suppose that
(a) K ′

0

∣∣
|J | × [0, k4

n0
]
≡ K0

∣∣
|J | × [0, k4

n0
]

(b) g′
∣∣
|J | × [0, k4

n0
]
≡ g

∣∣
|J | × [0, k4

n0
]
; k4 = [n0

2
]

Then (K ′
0, g

′) ∪ (L′0, h
′) will be the sought for triangulation, but only if the

following condition also holds:

g′
(
|K0|

)
∪ h′

(
|L0|

)
=Mn . (B.2.6)

But this condition also takes hold in our case, by virtue of a more general result
about topological manifolds (see [Mun], pp. 36-38, 105).

¤

Remark B.2.11 The compactness condition in the theorem above is not essential
to the construction employed in the proof, more precisely to the ability to choose an
integer n0 with the required properties: it can be replaced by the condition that ∂M n
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is endowed with a fat triangulation such that inf
σ ∈ ∂M

diamσ > 0. Thus it is possible to

extended Theorem 2.9. to manifolds whose boundary is endowed with a uniformly
fat triangulation and that has a finite number of components. (See Section 5 for an
example of such a manifold.)

B.2.3 Fattening Triangulations

We bring here a succinct presentation of the main steps of the fattening process, for
full details see [CMS].

First let us establish some definitions and notations:

Definition B.2.12 Let σi ∈ K, dimσi = ki, i = 1, 2; such that diamσ1 ≤ diamσ2.
Denote by [σi] the affine subspace of RN generated by σi, and let <σi> ‖ [σi],
0 ∈<σi> ⊂ RN ; i = 1, 2. We say that σ1, σ2 are δ-transverse iff
(i) dim([σ1] ∩ [σ2]) = max(0, k1 + k2 − n);
(ii) 0 < δ < ]([σ1], [σ2]), where ]([σ1], [σ2]) = ](<σ1>,<σ2>), and where
](<σ1>,<σ2>) = min

(e1, e2)
arccos (e1, e2), ei ∈ (<σ1> ∩ <σ1>)

⊥∩ <σi> ,

||ei|| = 1 , i = 1, 2; where (e1, e2) denotes the standard inner product on RN ;
and if σ3 Ã σ1, σ4 Ã σ2, such that dimσ3 + dimσ4 < n = dimK, then
(iii) dist(σ3, σ4) > δ · d1 , where d1 = diamσ1 .
In this case we write: σ1 tδ σ2.

One begins by triangulating and fattening the intersection of two individual
simplices belonging to the two given triangulations, respectively. Given two closed
simplices σ̄1, σ̄2, their intersection (if not empty) is a closed, convex polyhedral cell:
γ̄ = σ̄1 ∩ σ̄2. If dimγ = 0 or dimγ = 1, then γ is already a simplex. If dimγ ≥ 2,
one canonically triangulates γ̄ by using the barycentric subdivision γ̄∗ of γ̄, defined
inductively upon the dimension of the cells of γ in the following manner: suppose
each cell β ⊂ ∂γ already has a subdivision into simplices βi , i = 1, . . . , p ; choose
an interior point pγ ∈ int γ, construct the joins J(pγ , βi), i = 1, . . . , p ; and consider
all their simplices.

One first shows that if the simplices are fat and if they intersect δ-transversally,
then one can choose the points such that the barycentric subdivision γ̄∗ will be
composed of fat simplices. (See [CMS], Lemma 7.1.) The proof of this assertion is
based upon the following two facts:

1. The following sets are compact:
S1 = {σ1 | diamσ1 = 1 , ϕ(σ1) ≥ ϕ0}, S2 = {σ2 | diamσ2 = 2(1 + δ) , ϕ(σ2) ≥
ϕ0}, S(φ0, δ) ⊂ S1∩S2 , S(φ0, δ) = {(σ1, σ2) | ∃v0 ∈ σ1 , ∀σ1 ; and σ̄1∩ σ̄2 6= ∅}.

2. There exists a constant c(ϕ) such that S = S ′, where
S = {σ1 ∩ σ2 | diamσ2 ≤ d2}, S

′ = {σ1 ∩ σ2 | diam c(ϕ)(1 + δ)d1},
i.e. the sets of all possible intersections remains unchanged under controlled
dilations of one of the families of simplices.
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Next one shows that given two fat Euclidian triangulations that intersect δ-transversally,
then one can infinitesimally move any given point of one of the triangulations such
that the resulting intersection will be δ∗-transversal, where δ∗ depends only on δ,
the common fatness of the given triangulations, and on the displacement length.
(See [CMS], Lemma 7.3.) By repeatedly applying this results to the simplices of
dimensions 0 , . . . , n , of the intersection of two fat triangulations, one can now prove
the main result of this section, namely:

Proposition B.2.13 ([CMS], Lemma 6.3.) Let T1, T2 be two fat triangulations
of open sets U1, U2 ⊂ Mn, U1 ∩ U2 6= ∅ having common fatness ≥ ϕ0. Then there
exist fat triangulations T ′1 , T

′
2 and there exist open sets U ⊂ U1 ∩ U2 ⊂ V , such that

1. (T ′1 ∩ T
′

2 )
∣∣
Ui \ V

= Ti , i = 1, 2 ;

2. (T ′1 ∩ T
′

2 )
∣∣
U
= T ;

where

3. T is a fat triangulation of U .

Now let T1, T2 be the triangulations of ∂Mn × [0, 1) and intMn, respectively,
as in the proof of Theorem 2.9. . Then the local fat triangulation obtained in
Proposition 2.13 extends globally to a fat triangulation of T1 ∩ T2, by applying
Lemma 10.2 and Theorem 10.4 of [Mun]. This concludes the proof of Theorem 1.1.

¤

B.3 The Existence of Quasimeromorphic Mappings

B.3.1 Quasimeromorphic Mappings

Definition B.3.1 Let D ⊆ Rn be a domain; n ≥ 2, and let f : D → Rm.
f is called ACL (absolutely continuous on lines) iff:
(i) f is continuous
and
(ii) for any n-interval Q = Q̄ = {ai ≤ xi ≤ bi | i = 1, . . . , n}, f is absolutely
continuous on almost every line segment in Q, parallel to the coordinate axes.

Lemma B.3.2 ([V], 26.4) If f : D ⊆ Rn → Rm is ACL, then f admits partial
derivatives almost everywhere.

The result above justifies the following definition:

Definition B.3.3 f : D ⊆ Rn → Rm is ACLp iff its derivatives are locally Lp

integrable, p ≥ 1.
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Definition B.3.4 Let D ⊆ Rn be a domain; n ≥ 2 and let f : D → Rn be a
continuous mapping. f is called

1. quasiregular iff (i) f is ACLn and
(ii) there exists K ≥ 1 such that:

|f ′(x)|n ≤ KJf (x) a.e. (B.3.1)

where f ′(x) denotes the formal derivative of f at x, |f ′(x)| = sup
|h| = 1

|f ′(x)h|,

and where Jf (x) = detf ′(x).

2. quasiconformal iff f : D → f(D) is a quasiregular homeomorphism.

3. quasimeromorphic iff f : D → R̂n, R̂n = Rn
⋃
{∞} is quasiregular, where

the condition of quasiregularity at f−1(∞) can be checked by conjugation with
auxiliary Möbius transformations.

The smallest number K that satisfies (B.3.1) is called the outer dilatation of f .

One can extend the definitions above to oriented, connected C∞ Riemannian
manifolds as follows: let Mn, Nn be to oriented, connected C∞ Riemannian n-
manifolds, n ≥ 2, and let f : Mn → Nn be a continuous function. One can define
the formal derivative of f by using coordinate charts. The ACLp (ACLn) property
can be defined directly, by using the fact that if U = int U ⊆ Rn and f : U → Rn

then f ∈ ACLp iff f is continuous and belongs to the Sobolev space W 1
p,loc (see [?],

pp. 5-11).

Definition B.3.5 Let Mn, Nn be oriented, connected C∞ Riemannian n-manifolds,
n ≥ 2, and let f : Mn → Nn be a continuous function. f is called locally quasiregular
iff for every x ∈ Mn, there exist coordinate charts (Ux, ϕx) and (Vf(x), ψf(x)), such
that f(Ux) ⊆ Vf(x) and g = ψf(x) ◦ f ◦ ϕ

−1
x is quasiregular.

If f is locally quasiregular, then, by Lemma 3.2. , Txf : Tx(M
n)→ Tf(x)N

n exist
for a.e. x ∈Mn.

Definition B.3.6 LetMn, Nn be to oriented, connected C∞ Riemannian n-manifolds,
n ≥ 2, and let f : Mn → Nn be a continuous function. f is called quasiregular iff
(i) f is locally quasiregular
and
(ii) there exists K, 1 ≤ K <∞, such that

|Txf |
n ≤ KJf(x) (B.3.2)

for a. e. x ∈Mn.

41



B.3.2 Alexander’s Trick

The technical ingredient in Alexander’s trick is the following lemma:

Lemma B.3.7 ([MS1], [Pe]) Let T be a fat triangulation of Mn ⊂ RN , and let
τ, σ ∈ T , τ = (p0, . . . , pn), σ = (q0, . . . , qn); and denote |τ | = τ ∪ int τ .

Then there exists a orientation-preserving homeomorphism h = hτ : |τ | → R̂n such
that:

1. h(|τ |) = |σ|, if det(p0, . . . , pn) > 0
and
h(|τ |) = R̂n \ |σ|, if det(p0, . . . , pn) < 0.

2. h(pi) = qi, i = 0, . . . , n.

3. h|∂|σ| is a PL homeomorphism.

4. h|int|σ| is quasiconformal.

Proof Let τ0 = (p0,0, . . . , p0,n) denote the equilateral n-simplex inscribed in the unit
sphere Sn−1. The radial linear stretching ϕ : int |τ | → B̄n is onto and bi-lipschitz
(see [MS2]). Moreover, by a result of Gehring and Väisalä, ϕ is also quasicomformal

(see [V]). We can extend ϕ to R̂n by defining ϕ(∞) =∞. Let J denote the reflection
in the unit sphere Sn−1 and let h0 : |σ| → |τ | denote the orientation-reversing PL
mapping defined by: h0(pi) = qi, i = 0, . . . , n. Then h = ϕ−1 ◦ J ◦ ϕ ◦ h0 is the
required mapping.

¤

The existence theorem of quasimeromorphic mappings now follows immediately:

Theorem B.3.8 Let Mn be a connected, oriented C∞ Riemannian manifold with-
out boundary or having a finite number of compact boundary components. Then
there exists a non-constant quasimeromorphic mapping f : Mn → R̂n.

Proof Let T be the fat triangulation provided by Theorem 2.9. , if ∂ Mn 6= ∅,
or by Peltonen’s theorem, otherwise. Furthermore, by performing a barycentric
type subdivision before starting the fattening process of the triangulation given by
Theorem 2.9. , ensure that all the simplices of the triangulation satisfy the condition
that every (n − 2)-face is be incident to an even number of n-simplices. Let f :

Mn → R̂n be defined by: f ||σ| = hσ, where h is the homeomorphism constructed
in the lemma above. Then f is a local homeomorphism on the (n − 1)-skeleton of
T too, while its branching set Bf is the (n − 2)-skeleton of T . By its construction
f is quasiregular. Moreover, given the uniform fatness of the triangulation T , the
dilatation of f depends only on the dimension n.

¤
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B.4 Smoothings

We succinctly present some immediate generalizations of Theorems 1.1. and 2.9. In
this Section we consider only submanifolds of a Euclidian space RN , and the metric
considered is that induced by the ambient space.

Theorem 1.1. was restricted to C∞ manifolds because the triangulation T2 of
intMn was obtained by applying Peltonen’s theorem; so our overall argument is
valid only for C∞ manifolds. But the class of any n-manifold may be elevated up to
C∞ (see [Mun], Theorems 4.8 and 5.13 ), so we can apply the methods of [Pe] on the
smoothed C∞ manifold, and then project the fat triangulation received to the original
structure. Since in the smoothing process we employed only δ-approximations that
are, by [Mun], Lemma 8.7. , α-approximations too, we will obtain a fat triangulation,
as desired. We can thus formulate the following corollary:

Corollary B.4.1 LetMn be an n-dimensional Cr , 1 ≤ r ≤ ∞ manifold with bound-
ary, having a finite number of compact boundary components. Then any fat trian-
gulation of ∂Mn can be extended to a fat triangulation of Mn.

Moreover, every PL manifold of dimension n ≤ 4 admits a (unique, for n ≤ 3)
smoothing (see [Mun1], [Mun], [Th2]), and every topological manifold of dimension
n ≤ 3 admits a PL structure (cf. [Moi], [Th2]). Therefore we can start with a PL
manifold (or even just a topological one in dimensions 2 and 3) and smooth it, thus
receiving

Corollary B.4.2 Let Mn be an n-dimensional, n ≤ 4 (resp. n ≤ 3), PL (resp.
topological) manifold with boundary, having a finite number of compact boundary
components. Then any fat triangulation of ∂Mn can be extended to a fat triangula-
tion of Mn.

Using again Alexander’s Trick renders the following result:

Corollary B.4.3 LetMn be a connected, oriented n-dimensional manifold (n ≥ 2),
without boundary or having a finite number of compact boundary components.
Then in the following cases there exists a non-constant quasimeromorphic mapping
f :Mn → R̂n:

1. Mn is of class Cr , 1 ≤ r ≤ ∞ , n ≥ 2;

2. Mn is a PL manifold and n ≤ 4;

3. Mn is a topological manifold and n ≤ 3.

Remark B.4.4 The dilatation may increase only when we linearize the tangent
cone at cone points. Fortunately, the nature of linearization process is such that,
when the cone angles are bounded from below, then the dilatations will be bounded
from above (see, e.g. [Th2]).
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B.5 Kleinian Groups

Since the construction of fat triangulations was motivated mainly by the study of
G-automorphic quasimeromorphic mappings with respect to a Kleinian group G,
i.e. a discontinuous group of orientation preserving isometries of Hn, it is natural
to employ Theorems 1.1. and 2.9. to prove the following result, that represents a
generalization of a result of Tukia ([Tu]):

Theorem B.5.1 Let G be a Kleinian group with torsion acting upon Hn, n ≥ 3.
If the elliptic elements (i.e. torsion elements) of G have uniformly bounded orders,
then there exists a non constant G-automorphic quasimeromorphic mapping
f : Hn → R̂n, i.e. such that

f(g(x)) = f(x) , for any x ∈ Hn and for all g ∈ G . (B.5.1)

While for full details we refer the reader to [S2] and – for a different fattening
method (albeit in dimension 3 only), to [S1] – we bring here the following sketch of
proof:
Proof By Lemma 3.7. it suffices to produce a fat G-invariant triangulation of
Hn. The singular locus L of Hn/G is the image, under the natural projection π :
Hn → Hn/G , of the union A =

⋃
i ∈ N

Afi
of the elliptic axes of G. (A = {Afi

}
i
is

a countable set, by the discreteness of G.) For each elliptic axes Afi
it is possible

to choose a collar Ni and triangulate it in an fi-invariant manner. Denote by Ti
the fi-invariant triangulation of Ni. Put N =

⋃
i ∈ N

Ni. Then Me = (Hn\N )/G is

a manifold with boundary. Then ∂Me =
⋃

i ∈ N
∂Ni has the triangulation induced by

that of N and, since the orders of the elliptic elements are bounded from above, the
induced triangulation will be fat. By slightly modifying the proof of Theorem 1.1. ,
one can show that this triangulation can be extended to a fat triangulation T of
Hn/G . Then π−1(T ) ∪

⋃
i ∈ N
Ti will represent the desired fat G-invariant triangulation.

¤

Remark B.5.2 The existence of quasimeromorphic automeromorphic mappings in
the case n = 2 represents a classical result closely connected to the existence of
meromorphic mappings on Riemann surfaces.
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Birkhäuser, Boston, Mass., 1999.

[H] Hamilton, E. : Geometrical finiteness for hyperbolic orbifolds, Topology, 37(3),
1998, 635-657.

[He] Heinonen, J. : Analysis on metric spaces, Lecture Notes, Helsinki, May 1979.

[Ho] Holopainen, I. : Quasiregular mappings and the p-Laplace operator, Contem-
porary Mathematics 338, 2003, 219-239.

[Hu] Hudson, J.F. : Piecewise Linear Topology, Math. Lect. Notes Series, Benjamin,
N.Y., 1969.

[J] Jørgensen, T. : On discrete groups of Möbius transformations, Amer. Journ. of
Math. 98(3), 1976, 739-749.

[JM] Jørgensen, T. and Marden, A. : Algebraic and Geometric Convergence in
Kleinian Groups, Math. Scand. 66, 1990, 42-72

[K] Kra, I. : Automorphic Forms and Kleinian Groups. - W.A. Benjamin, Reading,
Mass., 1972.

[Ku] Kuiper, N. H. : A Short History of Triangulation and Related Matters, in
History of topology (I. M. James ed.), Elsevier, Amsterdam , 1999.

[M] Martin, G.J. : On discrete Möbius groups in all dimensions: A generalization
of Jørgensen’s inequality, Acta Math., 163, 1989, 253-289.

[Med] Mednikh, A.D. : Automorphism groups of the three-dimensional hyperbolic
manifolds, Soviet Math. Dokl., 32(3), 1985, 633-636.

[Moi] Moise, E. E. : Geometric Topology in Dimensions 2 and 3, Springer-Verlag,
New-York, 1977.

[Mor] Morgan, J.W. : On Thurston’s Uniformization Theorem for Three-
Dimensional Manifolds, in ”The Smith Conjecture”, (Morgan, J.W. and Bass,
H. ed.), Academic Press, N.Y., 1984, 37-126.

[MS1] Martio, O. and Srebro, U. : Automorphic quasimeromorphic mappings in Rn,
Acta Math. 195, 1975, 221-247.

[MS2] Martio, O. and Srebro, U. : On the existence of automorphic quasimeromor-
phic mappings in Rn, Ann. Acad. Sci. Fenn., Series I Math., 3, 1977, 123-130.

47



[Ms] Maskit, B. : Kleinian Groups, Springer Verlag, GDM 287, N.Y., 1987.

[My] Mayer, V. : Uniformly Quasiregular Mappings of Lattès Type, Conformal Ge-
ometry and Dynamics 1, 1997, 104-11.

[Mun1] Munkres J. R. : Obstructions to the smoothening of piecewise-differentiable
homeomorphisms, Annals of Math., 72(2), 1960, 521-554.

[Mun] Munkres, J. R. : Elementary Differential Topology, (rev. ed.) Princeton Uni-
versity Press, Princeton, N.J., 1966.

[Pe] Peltonen, K. : On the existence of quasiregular mappings, Ann. Acad. Sci. Fenn.,
Series I Math., Dissertationes, 1992.

[Po] Potyagailo, L. : Finitely generated Kleinian groups in 3-space and 3-manifolds
of infinite homotopy type, Trans. of Amer. Math. Soc., 344(1), 1994, 57-77.

[PA] Pach, J. and Agarwal. P.K. : Combinatorial Geometry, Wiley-Interscience,
1995.

[Rat] Ratcliffe, J.G. : Foundations of Hyperbolic Manifolds, GTM 194, Springer
Verlag, New York, 1994.

[Ric1] Rickman, S. : Quasiregular Mappings, in Proc. Romanian-Finnish Seminar
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