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1. Introduction

The purpose of this note is to discuss and partially extend the following
results on the existence of quasimeromorphic mappings:

Theorem 1.1 ([Sa06a]). Let G be a Kleinian group with torsion acting upon
Hn, n ≥ 3. If the elliptic elements of G have uniformly bounded orders,
then there exists a non constant G-automorphic quasimeromorphic mapping
f : Hn → R̂n.

Recall that a Kleinian group is a discontinuous (hence discrete) group of
orientation-preserving isometries of hyperbolic n-space Hn, and that elliptic
transformations are defined as follows:

Definition 1.2. An orientation-preserving isometry f :Hn → Hn, f 6= Id is
called elliptic iff f has a fixed point in Hn.

If G is a discrete Möbius group and if f ∈ G, f 6= Id is an elliptic
transformation, then there exists m ≥ 2 such that fm = Id. The smallest
m satisfying this condition is called the order of f , and it is denoted by
ord(f). The fixed point set (or axis of f ) of an elliptic transformation,
i.e. Fix(f) = {x ∈ Hn|f(x) = x} is a k-dimensional hyperbolic plane,
0 ≤ k ≤ n− 2 . An axis A is called degenerate iff dimA = 0.

The existence result above, together with an earlier non-existence result
of Srebro ([Sr98]) gives a complete characterization of those Kleinian groups
which admit G-automorphic quasimeromorphic mappings. Namely:

Theorem 1.3 ([Sa06a]). Let G be a Kleinian group acting on Hn. Then G
admits non-constant automorphic qm-mappings iff:

(1) n = 2;
or

(2) n ≥ 3, and the orders of the elliptic elements of G having non-
degenerate fixed sets are uniformly bounded.
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Definition 1.4. Let Mn, Nn be oriented, Riemannian n-manifolds.
(1) f : Mn → Nn is called quasiregular (qr) iff

(a) f is locally Lipschitz (and thus differentiable a.e.);
and
(b) 0 < |f ′(x)|n ≤ KJf (x), for any x ∈ Mn;
where f ′(x) denotes the formal derivative of f at x, |f ′(x)| = sup

|h| = 1
|f ′(x)h|,

and where Jf (x) = detf ′(x);
(2) quasimeromorphic (qm) iff f : D → R̂n, R̂n = Rn

⋃ {∞} is quasi-
regular, where the condition of quasiregularity at f−1(∞) is checked
by conjugation with auxiliary Möbius transformations.

The smallest number K that satisfies condition (b) above is called the outer
dilatation of f .

Theorem 1.5 ([Sa05]). Let Mn be a connected, oriented n-dimensional
manifold (n ≥ 2), without boundary or having a finite number of compact
boundary components. Then, in the following cases, there exists a non-
constant quasimeromorphic mapping f : Mn → R̂n:

(1) Mn is of class Cr, 1 ≤ r ≤ ∞ , n ≥ 2;
(2) Mn is a PL manifold and n ≤ 4;
(3) Mn is a topological manifold and n ≤ 3.

By Selberg’s Lemma ([Se60]), any finitely generated Möbius group con-
tains a torsion-free subgroup of finite index. In particular, the orders of
the elliptic elements of a finitely generated Kleinian group are uniformly
bounded. Therefore, we obtain the following corollary:

Corollary 1.6. Let G be a finitely generated Kleinian group acting upon Hn.
Then there exists a non-constant G-automorphic qm-mapping f : Hn → R̂n.

The basic method of proof, both for Theorem 1.1 and of Theorem 1.5,
is to produce a chess-board fat triangulation of Hn/G, respectively of Mn,
and to apply the well-known Alexander method (see [Al20], [Sa06a], [Sa05]).
In both cases, we employ an existence result of fat triangulations on open,
C∞ Riemannian manifolds, due to Peltonen ([Pe92]) (for details, see [Sa06a],
[Sa05]). Here, fat triangulations are defined as follows:

Definition 1.7. A k-simplex τ ⊂ Rn (or Hn); 2 ≤ k ≤ n is f-fat if there
exists f ≥ 0 such that the ratio r/R ≥ f ; where r, R denote the radius of
the inscribed sphere, respectively the radius of the circumscribed sphere of
τ . A triangulation of a submanifold of Rn (or Hn) T = {σi}i∈I is f-fat if
all its simplices are f -fat. A triangulation T = {σi}i∈I is fat if there exists
f ≥ 0 such that all its simplices σi are f-fat.

Remark 1.8. Fat triangulations are precisely those for which the individual
simplices considered in the Alexander method may each be mapped onto a
standard n-simplex, by a L-bilipschitz map, followed by a homotety, with a
fixed L.
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2. Open Problems

We bring below a list of some questions (and a few partial answers) that
arise naturally in conjunction with the results above and their proofs:

Question 1. What is the largest class of manifolds that admit quasimero-
morphic mappings?

Indeed, one can ask the following slightly more general

Question 2. What is the largest class of geometric objects that admit qm-
mapings?

Of course, in this generic context, one has first to provide a proper, gener-
alized definition of qr-mappings. While diverse generalizations of the notion
of quasiregularity have been considered, perhaps the best (and simplest)
generalization is the one based upon the linear dilatation:

Definition 2.1. Let (X, d), (Y, ρ) be metric spaces, and let f : X → Y be
a continuous function. f is called quasiregular iff there exists K0 such that,
for all x ∈ X

H(f, x) = lim sup
r→0

sup{ρ(f(x), f(y)) | d(x, y) = r}
inf{ρ(f(x), f(y)) | d(x, y) = r} ≤ K0 < ∞ .

H(f, x) is called the linear dilatation of f (at x).

Moreover, one can sharpen Question 2 above, in a natural sense, by ex-
tending the class of groups that admit qm-automorphic mappings:

Question 3. (M. Kapovich) Do quasiconformal groups admit qm-automorphic
mappings?

Recall that quasiconformal groups are defined as follows:

Definition 2.2. A discrete group G of homeomorphisms of Bn (or R̂n)
is called quasiconformal iff there exists 1 ≤ K < ∞ such that g is K-
quasiconformal , for any g ∈ G.

Another question arises from the Alexander method employed:

Question 4. Let fA : Mn → Sn be the qm-mapping constructed using the
Alexander method. What is the minimal branched qm-mapping f0 : Mn →
Sn, such that K(f0) = K(fA)?

A related (yet stronger) problem is formulated in

Question 5. (Martio) Given a manifold Mn, does there exist a qm-mapping
fmin : Mn → Sn attaining the minimal dilatation?

This conducts us immediately to the following problem:

Problem 1. (Martio) Compute K(fmin).

Yet another question stems from Theorem 1.5:



4 EMIL SAUCAN

Problem 2. (Martio) Let Mn be a manifold with boundary, as in Theo-
rem 1.5, and let fint Mn : intMn → Sn be the qm-mapping given by Pelto-
nen’s result.

(i) Can fint Mn be extended to a qm-mapping f̃ = fMn : Mn → Sn?
Moreover, if such an extension f̃ exists,
(ii) What is the relationship between f̃ |∂Mn and the qm-mapping f∂Mn

constructed in Theorem 1.5. (In particular how do K(f̃ |∂Mn) and K(f∂Mn)
relate?)

We have only some partial answers to Question 1 (and the questions
related to it). First let us note that the proof of Theorem 1.5 extends to
include the case of Lipschtz manifolds, thus we have:

Answer 1. Any Lipschitz manifold admits qm-mappings.

Remark 2.3. This fact was already conjectured by Cairns ([Ca61]).

The fat triangulation for a manifold with boundary is obtained by “mash-
ing” the triangulation of ∂Mn and of int Mn into a new fat triangulation
(see [Sa06b]). Since the boundary of any (PL) manifold is collared and since
the fatness of the mashing of two fat triangulations depends solely upon the
initial fatness and upon the dimension (see [CMS84], Lemma 6.3), we have
the following generalization:

Answer 2. Let Mn be a (smooth) manifold with boundary, such that the
boundary components admit fat triangulations of fatness ≥ ϕ0 . Then there
exist a global fat triangulation of Mn (hence Mn admits qm-mappings).

However, since the lower bound ϕ0 for the fatness of the simplices of
intMn assured by Peltonen’s result is achieved via the specific construction
of [Pe92], the following question arises naturally:

Question 6. Does ϕ0 represent the best lower bound?

The answer to the question above seems to be negative, since Peltonen’s
construction depends upon the Nash isometric embedding technique of Mn

into RN , for some N large enough.
More important, the mesh of the triangulation we construct (thence the

branching of the resulting qm-mapping) is a function of the curvature radii,
therefore an extrinsic constraint, hence again strongly dependent upon the
embedding in higher dimensional Euclidean space. This fact immediately
generates the following question:

Question 7. Does the Nash embedding technique impose any restrictions
upon the curvature radii?

The answer to this question is (at least partially) positive, since, in the
Nash embedding method, the curvature of the embedding is controlled.
Moreover, in the smoothing part of the Nash technique, a star finite partition
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of the embedding, obtained using curvature radii of an intermediate embed-
ding, is considered (see [Na56], [An02]). Therefore, we should reformulate
Question 7 above in the sharper form below:

Question 8. What are the restrictions imposed upon the curvature radii by
the Nash embedding technique?

However, curvature-based considerations are applicable only if the man-
ifold is smooth enough (i.e. at least of class C2,α for non-embedded man-
ifolds). For C1 and, even more so, for PL manifolds, where the classical
notion of curvature is not defined, one has therefore to consider either gen-
eralized principal curvatures ([Za05]) or even more general, metric curva-
tures ([SAZ06]). (For another approach to the problem of partitioning a PL
manifold into Dirichlet (Voronoi) cells see [ILTC01].)

For smooth surfaces embedded in R3, partially intrinsic conditions for
the existence of fat triangulation with mesh bounded from below are readily
obtained, e.g. in the case of surfaces with pinched Gauss and mean curva-
ture (see [SAZ06], Corollary 4.4). Of course, one would like to find such
curvatures conditions (perhaps coupled with fitting topological constraints)
in any dimension. However, in dimension greater or equal to three, even the
problem of deciding which curvature (sectional, Ricci, scalar) is the relevant
one, represents a problem that we defer for further study.

Also, we can give at least a partial answer to Question 2:

Answer 3. Any 3-dimensional orientable geometric orbifold with tame sin-
gular locus and with isotropy groups of bounded orders admits qm-mappings.
This holds, in particular, for Seifert fibred orbifolds, that possess natural,
canonical geometric neighbourhoods (see [BoS82]).

Indeed, any such orbifold Q is given by a 1-complex (in e.g. S3) with
certain labellings (see [Th90]). Thus we can apply for the proof of Theo-
rem 1.1, the technique developed in [Sa05], [Sa06b]: Construct a geometric
fat triangulation T1 of N∗, where N∗ is a certain closed neighbourhood of
the singular set ΣQ of Q, and mesh T1 with the triangulation of S3 \ N∗,
given by Peltonen’s technique, into a new fat triangulation.

We conclude with the following problem related to the method of proof
of Theorem 1.1 in the 3-dimensional case:

Problem 3. Compute collars for elliptic axes in higher-dimensional discrete
groups, by using the extensions of Jørgensen’s inequality.

Hint: Use results of Friedland and Hersonsky ([FH93]); Martin ([Ma89]);
Waterman ([Wa93].

Appendix

We address here the related problem of the existence of quasiconformal
immersions of hyperbolic manifolds in Sn, namely the following negative
result of Martio and Srebro ([MS99], [Sr91]) that:



6 EMIL SAUCAN

Proposition 2.4. ([MS99]) Let Mn, n ≥ 3 be a hyperbolic manifold. Then,
if Mn has arbitrarily short geodesics, it can not be immersed quasiconfor-
mally in Sn.

This theorem does not hold in dimension n = 2 (see [Sr98], p. 115).
Therefore, one is naturally conducted to formulate the following problem:

Problem 4 (Srebro, [Sr91]). Let Mn , n ≥ 3 be a hyperbolic manifold such
that there exists a low bound λ0 for the lengths of closed geodesics in Mn.
Can Mn be immersed quasiconformally in Sn?

We show that the answer to this problem is a positive one: Indeed,
since Mn, as a hyperbolic manifold, is a space form of constant scalar
curvature K ≡ −1, the injectivity radius i(Mn) = infx∈Mn Inj(x), where
i(x) = sup{r | expx|Bn(x,r) is a diffeomorphism}, is given by i(Mn) = 1

2λ0

(see [Be03]). (Here expx denotes the exponential map.) The desired re-
sult follows now easily from the properties of the exponential map (see, e.g.
[CE]).

Since Mn = Hn/G, where G is a discontinuous group ([Th90]), and since
the only elements in G with translation length l(g) = infx∈Hn dhyp (x, g(x)) >
0, are the loxodromics, we can formulate a sharper version of a theorem of
Martio and Srebro ([MS99], [Sr91]):

Theorem 2.5. Let G be a Kleinian group acting on Hn, n ≥ 3 and let
f : Hn → R̂n be a G-automorphic qm-map. Then f is locally injective iff G
is purely loxodromic and l(G) = infg∈G l(g) > 0.

(Here dhyp denotes the hyperbolic metric on Hn.)
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