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In this paper we devise a method for recovering band limited 
signals which have been subjected to a distorting procedure called 
companding. 

A band limited signal is a function in L2 whose Fourier transform 
vanishes outside of a bounded interval. In practice most real signals 
are in this class since they have no indefinitely high frequency compo- 
nents. The operation of companding a signal f(t) consists of replacing 
it by p[f(t)], where F(X) is a given function, This operation does not 
in general preserve the band-limitedness of f(t). 

We reproduce an unpublished uniqueness theorem of A. Beurling 
which shows that the knowledge of the transform of the companded 
signal on the interval where the transform of the original signal does 
not vanish determines uniqueIy the original signal, provided the 
companding function is monotonic increasing. 

We then prove the following existence theorem. To each function 
in L2 defined only on a bounded interval there is one and only one 
band limited function with band contained in this interval, the Fourier 
transform of whose companded version coincides with the given 
function. 

Our method is constructive and proceeds via a stable iteration 
scheme (Picard iterations). The convergence of our method requires 
that the companding function have a derivative which is bounded 
away from zero and infinity. 

I. INTRODUCTION 

In this paper we will present an existence and 
the solution of a nonlinear functional equati0n.l 

uniqueness proof for 
This equation arises 

l The work discussed in this paper was done during the summer of 1958 while 
the authors were employed at the Bell Telephone Laboratories. This paper is a 
revision of a report by the authors issued by the Bell Telephone Laboratories [l]. 
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as a model of a signal recovery problem in which so-called band limited 
functions are distorted by a procedure termed companding and sub- 
sequently band-limiting. The companding operation is nonlinear and 
does not preserve the band-Iimitedness of the signal. Thus the distortion 
apparently involves a loss of information. 

A signal is a function f(t) which is square integrable. In communica- 
tions we often deal with signals which are presumed to have no very 
high frequency components. This assumption has been shown to be 
reasonable by observation. In addition, since many signal creating 
mechanisms, like the human voice, are composed of mechanical devices, 
it is pausible to view them as responding only with a bounded set of 
harmonics. Even electronic signal handling mechanisms are felt to filter 
out sufficiently large frequency components. 

We make this class of signals precise by use of Fourier transforms 
and say that a signal f(t) is band limited with band (- 0, Q) if its Fourier 
transform F(U) (denoted operationally by r#) vanishes for j~uJ > 9. 

To compand f(t) is to transform it into v[f(t)j where Y(X) is a 
monotonic function. Companding may be viewed as nonlinear amplifica- 
tion. However, it has a more specific use in improving the performance 
of transmission systems. Since transmission systems do not respond 
very well to very high or very low signal levels, the typical companding 
function in this application has a very high slope near zero and tapers 
off rapidly ar & w. Thus the weaker parts of the signal are amplified 
and the stronger parts deemphasized preliminary to transmission. 

We assume henceforth that the companding operation takes a square 
integrable function into a square integrable function. This can be assured 
by such requirements as q(O) 1: 0, and v’< M. However, it is generally 
true that q~[f(r!)] will not be band Iimited even when f(t) is. 

Now we suppose that the companded signal q[f(f)] is handled by a 
band-limiting device with band (- 9, Q). For example, the companded 
signal may be sent down a channel which does not pass frequency. 
components larger in magnitude than 9. The effect of such an operation 
is to produce a signal whose Fourier transform S(w) agrees with Ty[f] 
on the band (- 52, L?) but vanishes outside of this band. Thus if 

I 1, Im] < 9 
x(4 = 

1 
o , otherwise, 

we have 

(1.2) 
The problem presented in this paper is to determine f(t) from (1.2) 

when S(U) is given. 
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We first reproduce a uniqueness theorem of A. Beurling which states 
that at most one band limited solution with band (- Q, L?) of (1.2) exists. 
That is, the knowledge of the Fourier transform of a companded bznd- 
limited signal only on the domain where the Fourier transform of the 
original signal does not vanish (the band of our signals) is sufficient to 
determine the signal uniquely. This theorem is a consequence of the 
Plancherel theorem, and requires only that v(x) be monotone increasing. 

Under the additional hypothesis that y’(z) exist and be bounded above 
and below by positive constants, we produce an existence theorem: 
To each square integrable fmction S(w) there exists one (and only one) 
band-limited signal f(t) with band (- 52, Q), which satisfies (1.2). Our 
existence theorem proceeds by the method of successive approximations 
(Picard iterations), and thus is constructive. 

We conclude the paper with some remarks concerning the stability 
of the iteration scheme and convergence in the L” norm. In the following 
section we state and prove our results. 

II. STATEMENT AND PROOFS 

DEFINITION: A signal is a fwzction f(t) ELM (- 00, oo), i.e., 

,,f,j2 = j,!(i)12dt < O” (2.1) 
-CO 

DEFINITION: A signaL is balzd limited with band (- S, 52) if its Fourier 
transform 

co 

Tf (t) = + 
v I 

f(t) e- icot dt (2.2) 
-ccl 

vanishes for Itr)J > 9. 

LEMMA 1: The set of signals with band (- Q, J2) is a dosed subspace 
af L2. 

PROOF: Suppose a sequence of signals with band (- ~‘2, Q), fn, 
converges in the mean square to f. Clearly f E L2. Then by Plancherel’s 
theorem the corresponding Fourier transform converge likewise, viz., * 

I ]fn(t) - f(t)j2dt = - F(w)12dw. P-3) 
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Thus F(w) must vanish for ‘CO > 0 and f(t) has band (- SI, Q). 

REMARK: \V’e fix Q once and for all, and denote by B the subspace 
described in the previous lemma. In addition we denote by z(m), the 
characteristic function of the band, i.?. 

I 1. ,wl <ALL 
X(0’) = 

1 0, otherwise 

DEFINITION : A com+zndor is a monotonic function v(x) which has 
the fwoperty that fp I/(t)] E L2 if f(t) ~5 L2. 

We now state and prol’e the 

UNIQUENESS THEOREM :2 Th,e fwtctionaE eqtiation 

%4 = XWGWL (2.4) 

where S(w) E L2 and v(x) is a monotonic increasing comfiandor has at 
most one solution f(t) E B. 

PROOF: Suppose fi(t) and fz(t) are solutions of (2.4) which lie in B. 
Then by Plancherel’s theorem we have 

m 
s [fi(t) - h(t)1 Mf&)) - d&At))1 dt 

--co 
m 

= s M4 - CA41 F'+W)) - Ty((f,(t))l dm. (2.5) 
--a 

The first factor in the integrand of the right-hand member of(2.5) vanishes 
for 10~1 > 9, since fl and fi E B. The second factor vanishes for 10-11 < 0, 
since for these values of w both elements of this factor are equal to S(CO) 
by hypothesis. Thus 

(2.6) 

From this the monotony of q~ implies that fI E fe and thus the theorem. 

2 This theorem, which was reported to us in a private communication, is due 
to A. Beurling. 
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M:e now state and prove the 

EXISTENCE THEOREM: If the compandor F(X) is differentiable and 
m and M are positive constants such that 

then the fumtional equation (2.4) has a solution f(t) E B for each S(o)) E L2. 

PROOF: The theorem will be proved by constructing a sequence of 
successive approximations f,, to f. The necessary iteration formula is 
derived from the equation 

f = CT-l S(c0) + T-l XT(f - ccp [f]), 

where c is a constant. 

(2.7) 

We remark that a solution of (2.7) in B is a solution of (2.4) in B. 
This is seen to be the case as follows: Since T-lxT is the identity map 
in B, (2.7) reduces to 

0 = CT-~ S(w) - T-l xTcg,[f]. (2.8) 

Since T-I is an isomorphism of L2 itself and T--lxT is a linear operator, 
a solution of (2.8) is a solution of 

Sk4 = XWfl* P*9) 

i.e., of (2.4) and conversely. The arbitrary constant c is to be specified 
in a manner depending upon m and M, and controls the rate of conver- 
gence of our iterations. The advantage of considering (2.7) instead of 
(2.4) is that it is a map of the second kind and thus naturally induces a 
procedure of successive approximations. A second advantage is that 
it is a map of L2 into B, a fortiori of B into B. This latter property is a 
prerequisite for applying the method of successive approximations. 

We now claim that the sequence of functions f,,, fl,. . . , where 

f n+l = CT-~ S(w) + T-l @-(fn - cy [fnl) (2.10) 

converges to a solution in B of (2. lo), provided fO E B and c is appropriately 
chosen, 

If the fn form a Cauchy sequence they will converge to a function 
f EL2, since L2 is a complete space. Also, since each ffl E B and B is 
closed (Lemma l), f will be in B. To show that the fn form a Cauchy 
sequence we proceed as follows: 

IIfn+l - frill’= [IT--lxTJIfn - /a-1 - Wfn) - ~(f,-~))1(~2 

= IlXTrffi - ffl-1 - CkAf”) - Pvn-I))ll/2, (2.11) 
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since the Fourier transform is an isometry of L2, 

<my /l - cy’(X)12 j/f* - ffl-1112, 

by the mean value theorem. 
This shows that the f,, form a Cauchy sequence if 

O2 = max 11 - c#(x)ls< 1. 3 (2.12) 

Since 0 < WI < I$ < M, this can be arranged by choosing c to be any 
positive constant less than 2/M. The estimate (2.11) also shows that the 
equation (2.9) is continuous in f and thus we may take the limit as n + 00 
formally in (2.10). Thus the limit f of the fn is the sought for solution 
and the theorem is proved. 

The convergence of the j* to f as demonstrated in the above theorem 
is in the mean square sense, i.e. 

(2.13) 

3 This is the case since 

fife-1 
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It is also true that fn converges to f in the maximum norm, i.e. 

lim max If%(t) - f(t)] = 0. 
n-+co t 

This fact is implied by the following 

(2.14) 

LEMMA 2 :4 I/ f E B then 

max If(t)1 < 
t 

PROOF : 

co 

eiWt Tf(t) dw. 

--to 

(2.15) 

(2.16) 

Since f E B, Tf E 0 for /CU/ > -(2, so that 

B 

eiot Tf(t) dco . 

- R 

(2.17) 

Then by Schwarz’ inequality 

(2.18) 

-n -co 

REMARK 1: The method of successive approximations used in the 
proof of the existence theorem proceeds essentially by demonstrating that 
the sequence f - f,, is bounded by a geometric series. This series for the 
present case is 

0” I!f - foil. (2.19) 

Thus an error AS, in S(w), would produce an error in / bounded by 

l-h IPSII- (2.20) 

This shows the stability of the signal recovery process. 

4 We are indebted to H. Pollak for this observation. 
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KEMAKK 2: The rate of convergence of the iterates as well as the 
degree of stability is governed by the size of 0. The closer 0 is to zero 
the faster the iterates will converge and the less sensitive will the limit 
be to errors in S(U). From (2.12) we see that the constant c can be chosen 
so as to adjust the size of 0 to achieve these desirable effects. 

REMARK 3: A circuit on an analogue computer has been devised by 
one of the authors to perform numerical calculations based on this iteration 
scheme. His studies of this matter, as well as a detailed analysis of the 
stability property appear in [2 1. 
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