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The Recovery of D istorted Band-Lim ited 
Stochastic Processes 

ELIAS MASRY 

Abstract-This paper deals with the problem of recovering a band- 
limited process after it has been distorted by an instantaneous non- 

f(t) uniquely. More precisely, if fi(t) and fi(t) are two 

linearity and subsequently band-limited. Several uniqueness theorems for 
functions band-limited to (- W,W), and if A[f,(t)] and 

the input-output relationships are derived. In contrast with the deter- A[fi(t)] have spectra which are equal in the band (- W, W), 
ministic case, no requirement that the nonlinearity be monotonic is made then,f,(t) = fi(t) for almost all t. Beurling’s theorem is not 
here. An iterative procedure for the recovery of the input is presented. constructive, however. An explicit procedure for the recov- 
Applications to two-level quantizers are considered, and a new result on 
the determination of a band-limited Gaussian process from its zero 

ery of f(t) was derived by Landau [l], [2] for a class of 

crossings is obtained. 
companding functions A(x). 

It has long been conjectured that a result similar to 

I. INTRODUCTION 

A PRACTICAL problem in communication systems is 
that of the recovery of a band-limited signalf(t) after 

it has been transformed by an instantaneous nonlinearity, 
or compander, and subsequently band-limited to the 
original bandwidth [I], [2]. As was noted in [I], com- 
panding is used to improve the performance of transmission 
systems which do not generally respond well to very high 
or very low signal amplitudes. Thus a typical cornpander 
has a slope which is very high near the origin but tapers off 
rapidly at infinity. 

If the original signal f(t) is band-limited to (- W, W), 
say, the output of the compander, A[f(t)], is not band- 
lim ited in general. Therefore, subsequent band-limiting of 
A[f(t)]-transmission through a band-limited channel- 
results in an apparent loss of information. A beautiful 
theorem by Beurling [l] shows that if the companding 
function A is monotonic, then knowledge of the spectrum 
of A[f(t)] in the band (- W, W) is sufficient to determine 

Beurling’s theorem should hold for band-limited stochastic 
processes. Beurling’s theorem, valid for band-limited func- 
tions of finite energy, does not apply of course to band: 
lim ited stochastic processes, since stationary processes do 
not have sample paths of finite energy. 

In this paper we show that a result similar to Beurling’s 
theorem does indeed hold for a class of stationary band- 
lim ited stochastic processes. Moreover, while in Beurling’s 
theorem the monotonicity of the companding function A 
is essential, we do not require here that A be monotonic. 
This result is somewhat surprising and has some far- 
reaching implications. For example, we show that, within 
the class of jointly stationary and jointly Gaussian band- 
lim ited processes, a Gaussian process is uniquely determined 
by its zero crossings. This is a new result which has no 
counterpart for deterministic band-limited functions. 

In Section II, the problem is formulated and the basic 
assumptions are stated. In Section III, uniqueness theorems 
are derived for some broad classes of band-limited pro- 
cesses where the companding function is arbitrary. The 
implications of these theorems are discussed. In Section IV, 
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we derive a uniqueness theorem for arbitrary band-limited 
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II. PRELIMINARIES 

Let us first introduce some notation. Let R be the real line, 
x(t) CCMPANDER 

A(.) Y(t) _ IDEAL LOW-PASS Zttl 
L 

Jz’ the o-algebra of Lebesgue measurable sets in R, and m 
the Lebesgue measure. Let (n,.9,9) be a probability space. Fig. 1. The transformation Z(t) = [T(X)](t). 

Consider the configuration depicted in Fig. 1. We shall 
assume that the input process {X(&o), t E R} is a real and x E 9J is Gaussian, then 
second-order mean-square continuous stationary band- 
limited stochastic process over the probability space 
(R,g,P). Let s(A) be the spectral distribution of the process 

R,,(z) = 3 sin-l C,,(z) 
0 

X(t) and C(r) its covariance function so that Y(t) = sgn [X(t)] is a stationary second-order 

s 

W mean-square continuous process. This fact will be used in 
C(T) = ei”l dS(1) (1) the next section. 

-W The linear system L is an ideal low-pass filter with transfer 
where (- W, W) is the bandwidth of the process and where function 
we have assumed that the process X(t) has been nor- 
malized to have zero mean and unit variance. G iven two H(il) = 

1 
; 11) 5 w 

111 > w. (7) 
such processes, X,(t) and X,(t), we shall assume that they 3 

are jointly stationary so that X = (X,X,) constitutes a It then follows that its output Z(t) is a second-order mean- 
“2-dimensional stationary process” [3]. Let 99 denote the square continuous stationary band-limiting process. We 
class of processes with the aforementioned properties. shall write 
Note that if S = {Sxix,}, i,j = 1,2, is the spectral distribu- z(t) = [UA(X))l(t) (8) 
tion matrix of X = (X1,X,), Xi E W, i = 1,2, then [3] as well as 

I&,x,(B>I” 5 S&,,(B)&,,(B)~ i,j = 1,2 (2) zw = Pwl(t). (9) 
for any Bore1 set B in the real line. It then follows by (2) that III. THE CORRESPONDENCE BETWEEN INPUT AND OUTPUT 
the processes X,(t) and X2(t) are jointly band-limited to FOR A CLASS OF BAND-LIMITED PROCESSES 
(- W,W). 

Let A be a real Borel-measurable function on the real line. In this section, we prove the uniqueness of the input- 
Then the process { Y(t,o), t E R} defined by output relationship Z(t) = [T(X)](t) for a broad class of 

band-limited stochastic nrocesses. We shall first consider A 
Y(t,o> = A[X(w)], teR (3) Gaussian processes, and later extend the results to non- 

is stationary. Since we are dealing with second-order stoch- 
astic processes, we shall assume that E[A2(X(t))] < co for 
all t, where E is the expectation operation. Furthermore, 
since the spectral representation of stationary processes 
plays an important role in our derivations, we shall require 
that the process Y(t) be mean-square continuous. We shall 
further assume that E[X(O)A(X(O))] # 0. Since in practice 
A(x) is monotonic or odd, this last assumption is not 
restrictive from the point of view of applications, as it is 
satisfied for a broad class of input processes, e.g., Gaussian 
processes. Thus let & denote the class of admissible com- 
panding functions A(x) satisfying 

Gaussian processes. 

A. Input-Output Relationships for Gaussian Processes 
Theorem 1: Let X1(t) and X2(t) be two jointly Gaussian 

processes in P8. Let 

Zi(t) = [L(A(XJ)I(t), i = 1,2 (10) 
where A E d. Then 

Z,.(t) = Z,(t) as. for some t = t, 

implies X,(t) = X2(t) a.s. for all t. (11) 
Proof: Consider the functional J 

i> ECA2(X(tNl < 00, for all t (44 J = E{[X,(t,) - ~,(to>][~,(to> - z,(b)]) = 0 (12) 
ii) {A[X(t)], t E R} which vanishes by hypothesis. Now J can be evaluated as 

is a mean-square continuous process (4b) J = R,,,,(O) - R,,,,(O) - R,,,,(O) + Rx,&9 
iii) E[X(O)A[X(O)]] # 0. (4c) and by the spectral representation 

Let us note that a simple sufficient condition for (4b) to be 
valid is that A satisfy the Lipschitz condition 

MY) - A( < MY - 4 x,y E R. (5) 
Note however that (5) is not necessary for (4b) to be valid. 
In particular, if the companding function A represents a 
“hard-limiter” 

A(x) = sgn x (6) (13) 
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where Sxi,,@) is the cross spectral distribution between the 
processes Xi(t) and Y,(t),Y,(r) = A[Xj(t)]. Next we note 
that 

RXiYj(4 = CXJj(~)~ i,j = I,2 (14) 
since the input processes have zero means. Moreover, since 
the Gaussian processes have the “cross-covariance” 
property [4], we have 

c,YiYj(z> = ui,jcXiXj(T), i,j = I,2 (15) 
where the constant ai,j is given by 

ai,j = E[Xj(t)A(Xj(t))], -i,j = 132 (16) 

and is independent of r. Since the processes X1(t) and X2(t) 
have the same univariate distribution, we have from (16) 
that (15) can be written as 

GiY,(4 = GiXj(~)~ i,j = ,I,2 (17) 
where a is given by 

CI = E[X(t)A[X(t)]]. (18) 

It then follows from (14) and (17) that (13) may be written 
as 

Finally, (23) implies that for almost all sample functions we 
have 

X,(t) = X,(t) a.e. [ml. 

Before turning to the implications of Theorem I, let us 
consider the following question. Assume that X E g is 
Gaussian and the companding function A E &’ as in 
Theorem I. Does uniqueness of the input-output relation 
continue to hold if the low-pass filter is not ideal? The 
answer to this question is affirmative, as stated below. 

Theorem 2: Let X1(t) and X2(t) be two jointly Gaussian 
processes in a. Let 

-w> = [w(XiNlw9 i = I,2 

where A E J&’ and the low-pass filter L satisfies 

H(d) is continuous over (- W, W) 

such that Re H(U) > 0 (or ~0) over (- W, W). (24) 

Then 

Z,(t) = Z2(t) a.s. for some t = t, 

implies X,(t) = X2(t) a.s. for all t. 

s 

W Proof: Proceeding as in the proof of Theorem 1 we 
J=cr d[sxlx,(A) - S,,,,(n) - S,,,,(J) + S,,,,(J)] find that the functional J defined by (12) can be written as 

-w 

s 

W 

which is equivalent to J=cl NW G&) (25) 
-W 

J = ctEIXI(t) - X2(t)12, for all t. (19) where s,,(n) is the spectral distribution of the process e(t) 

Since by (12) J = 0, and c1 # 0 by (18) and (4c), we have 
from (19) that 4) = X1(t) - X2(t), tER 

X,(t) = X2(t) a.s. for all t 
(20) and the constant a is given by (18). Since J = 0 by hypoth- 

esis, we have in particular 
SO that the two processes X,(t) and X2(t) are equivalent. 

Q.E.D. 
s 

W 

Re H(2) dS,,(A) = 0. (26) 
Remark I: Theorem 1 implies that for each fixed t the -W 

random variables X,(t) and X2(t) are equal almost surely. Now assumption (24) on H(iil) and (26) imply that S,,(n) 
If we assume that input processes Xi(t) and X2(t) are has no points of increase in (- W, W). Since the process 
measurable as well (because of mean-square continuity, e(t) is band-limited, we have R,,(O) = 0, which implies 
measurable versions always exist), then Theorem 1 implies 
equality almost everywhere of the sample paths of the two 

X,(t) = X2(t) a.s. for all t. Q.E.D. 

processes because by (20) Remark: Let us note that if the input processes have 

EW,(t) - X2@)12 = 0, tER spectral density functions, then condition (24) on H(d) can 
be replaced by the weaker condition 

so that 

s 
m EIX,(t) - X2(t)12m (dt) = 0 
--co 

and by Tonelli’s theorem (21) implies 

E 
[S 

m IX,(t) - X2 (t)12m (dt)- = 0 
-m 1 

which in turn implies 

s 
m IX,(t) - X2(t)12m (dt) = 0 a.s. 
-CC 

H(iA) is measurable over (- W, W) such that 

(21) Re H(i,I) > 0 (or ~0) a.e. [m] over (- W, W). (24’) 

B. Applications 
Let us note that the most remarkable feature of theorems 

(22) 1 and 2 is the fact that they do not require monotonicity of 
the companding function A. This is a surprising result, since 
no counterpart for deterministic band-limited functions is 
known. In fact, the assumption in Beurling’s theorem that 

(23) A is monotonic is crucial and essential for the validity of that 
theorem. 



MASRY : DISTORTED BAND-LIMITED STOCHASTIC PROCESSES 401 

An important application of Theorems 1 and 2 is obtained where F(iA) is the Fourier transform of f(t). Define the 
in the case of a two-level quantizer, entire function f(z) by 

A(x) = sgn x. (27) 

It was shown in Section II that the cornpander (27) is an 
admissible transformation for Gaussian processes, i.e., 
A E &‘. Clearly, the output Y(t) = sgn [X(t)] is a station- 
ary binary process associated with the zero crossings of the 
Gaussian process X(t). Let us note that the zero crossings 
of a Gaussian process X(t) E a are well defined, since X(t) 
has analytical sample paths, so that all level crossings are 
“genuine” in the sense that they consist of upcrossings and 
downcrossings with no tangencies [5]. The binary process 
Y(t) is clearly not band-limited. Let us call the process 
Z(t) obtained by band-limiting Y(t) the “band-limited 
version” of Y(t). The band-limiting low-pass filter L may be 
ideal (7) or nonideal (24). We then have the following 
important result which follows from Theorems 1 and 2. 

f(z) = $ 1: F(il)e’“” dl, z = t + iu 
W 

and let {z,};’ r be the zeros off(z). A classical theorem by 
Titchmarsh [6] states thatf(z) is uniquely determined by its 
zeros; specifically, 

so that 

f(z) = f(0)eiwz JjI 1 - E 

f(t) = f(0)eiw’ JJ 1 - y. 
” 

(2% 

Theorem 3: Let B be the class of real zero-mean jointly 
stationary and jointly Gaussian band-limited processes. 
Every process X(t) E 3 is uniquely determined within 9 
by the “band-limited version” of the binary process Y(t) 
associated with its zero crossings. The uniqueness is up to a 
multiplicative constant. 

Let us note, however, that the zeros {z,} are complex in 
general. Clearly, the complex zeros off(t) are not observ- 
able, so thatf(t) is not determined by its (real) zero crossings. 
Real-zero interpolation can produce spectacular amplitude 
fluctuations in the reconstructed signal [7]. Manipulation of 
complex zeros and real-zero interpolation are discussed in a 
recent work by Voelcker [S]. The basic fact remains, how- 
ever, that an arbitrary real band-limited function is not 
uniquely determined by its (real) zero crossings. 

Theorem 3 clearly implies that if 

XI(t),X2W E 9 then en [xl(t)1 
= sgn [X2(t)] a.s. for all t * XI(t) = bX,(t) a.s. for all t, 

b is a real constant (28) 

Now since sgn [X(t)] is uniquely determined by the zero 
crossings of X(t) E 3 (up to a multiplicative f sign), it then 
follows from this and (28) that no two processes in Y can 
have the same zero crossings unless they are a constant 
multiple of each other. We thus have the following corollary. 

Thus we see that the uniqueness relationship, within the 
class Q , between a real band-limited Gaussian process and 
its zero crossings that is given by Theorem 3 and its corol- 
lary is quite surprising. Let us note that the configuration of 
Fig. 1 with a “hard-limited” cornpander can represent a 
model for many common systems, i.e., sequential binary 
data, black-and-white facsimile or television, clipped speech 
and so on, We remark finally that we have found no pro- 
cedure for the perfect recovery of the process X(t) from its 
zero crossings. 

C. Extension to Non-Gaussian Processes 
Corollary: Every process X(t) E B is uniquely determined, 

within Q , by its zero crossings. The uniqueness is up to a 
multiplicative constant. 

It should be noted that the uniqueness in Theorem 3 
and its corollary is within the class of jointly stationary 
and Gaussian processes. It would be of some significance 
to be able to drop the assumption on joint stationarity 
and Gaussianness and retain individual stationarity and 
Gaussianness. So far, we have not succeeded in accomplish- 
ing this. However, the Gaussian assumption in Theorem 3 
can be dropped if one can extend Theorem I, and thus 
Theorem 3 and its corollary, to non-Gaussian processes. 
This is done in Theorem 4. 

In the meantime, we note that even within the class Q  
the results of theorem 3 and its corollary are surprising since 
they have no counterpart in the deterministic case. Let us 
discuss briefly what is known in that case. Letf(t) be a real 
square-integrable function which is band-limited to 
(- W, W), such that for all t 

In Sections III-A and III-B, the assumption of a Gaussian 
input is made. The question arises whether the results of 
Theorems 1 and 2 are valid for other classes of input pro- 
cesses. The answer is affirmative. To this end let us note that 
the proof of Theorems 1 and 2 is based on the “cross- 
covariance” property of Gaussian processes (15). Now there 
is a broad class of stochastic processes for which the cross- 
covariance property is valid. (See [9] for the most compre- 
hensive discussion on this topic.) For example, the envelope 
of the output of a bandpass filter with a Gaussian input is a 
process having the “cross-covariance” property. The exten- 
sion of Theorem 1 and 2 to these processes is straight- 
forward. We state only one result. 

Theorem 4: Let X,(t) and X2(t) be two real zero-mean 
jointly stationary band-limited processes. Let 

Zi(t) = CL(A(XJ)I(t)v i = I,2 

where A E d and L is an ideal low-pass filter. Then, under 
the assumptions 

F(il)e’“’ dl i) the processes X,(t) and X,(t) have individually and 
jointly the cross-covariance property 
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ii) the variances cri and o2 are equal 
iii> ECXI(tM (XI(t))l = E [~2(MX2(tNl Z  0 

we have 
Z,(t) = Z,(t) a.s. for some t = t, 

implies X,(t) = X2(t) a.s. for all t. 
As a final remark, let us note that the uniqueness theorems 

of this section are nonconstructive (as is Beurling’s 
theorem). In the next section we shall impose further con- 
straints on the companding function A and derive a unique- 
ness theorem and a constructive procedure for the recovery 
of arbitrary band-limited processes. 

IV. UNIQUENESS AND EXPLICIT RECOVERY OF ARBITRARY 
BAND-LIMITED PROCESSES 

It would be of considerable practical importance to find a 
general procedure for the recovery of the input process 
X(t) from its distorted band-limited version Z(t) = 
[T(X)](t), where T is the nonlinear system depicted in 
Fig. 1. This is a very complex problem, and we have found 
no general solution. However, if the companding function is 
sufficiently smooth, we can derive both uniqueness and an 
explicit procedure for the recovery of the input process 
X(t), where X(t) is now an arbitrary band-limited 
process. 

We begin by stating our assumptions. The input process 
is assumed to be a real zero-mean second-order mean- 
square continuous stationary band-limited process, with 
spectral distribution S(n) over (- W, W). Let 99’ denote the 
class of these processes. The companding function A(x) is 
assumed to be monotonic (say increasing) and continuous 
such that 

4x1 - ~2) I Ah) - &x2) 

5 U(XI - x2), for all x1,x2 E R (30) 
where u and U are positive constants. In particular, if A(x) 
is absolutely continuous with derivative A’(x) satisfying 
u I A’(x) I U, then (30) is satisfied. The low-pass filter L 
is assumed to be ideal as in (7). Under the assumption (30), 
it is easily seen that the process Y(t) = A[X(t)] is mean- 
square continuous. We use the notation llXl\ 2 = EIX12 to 
denote the second moment of a random variable X. 

The uniqueness theorem and the constructive recovery 
procedure are based on a contraction mapping in the space 
9?‘. Specifically, define the operator K: SF + ~$9’ by 

KEXl(j) = X(j) - C’YX)l(~), X(l) E 92’. (31) 
Then K is a contraction mapping for some values of the 
parameter c as stated in the following proposition. Its proof 
is given in the Appendix. 

Proposition: Let X,(t) and X2(t) be two jointly stationary 
processes in 99’. Then 

IlK[x,l(t) - K[x,l(~)ll 

s QlX,(t) - XzWll, 19 < 1 (32) 
for all 0 < c < 2/U. 
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We next show the uniqueness of the input-output rela- 
tionship. The proof is given in the Appendix. 

Theorem 5 (Uniqueness): Let X,(t) and X2(t) be two 
jointly stationary processes in 99’. Let 

Zi(t) = CT(XJl(j) = [L(A(XJ)](t), 

where A(x) is monotonic and satisfies (30) 
low-pass filter. Then 

Z,(t) = Z,(t) a.s. for all t implies 

i = I,2 

and L is an ideal 

X,(t) = X2(t) a.s. for all t. (33) 

Next we turn to the recovery of the input. The iterative 
procedure given below is based on the fixed point theorem 
[lo] and Landau’s scheme [I]. The proof is given in the 
Appendix. 

Theorem 6 (Reconstruction): Let X(t) E 98’ and 

Z(j) = CTW>l(t) = CW(XNl(t) (34) 

where A(x) is monotonic and satisfies (30) and L is an ideal 
low-pass filter. Then the iterative procedure 

x,+10> = X(j) + 4Z(O - [W,)](j)), n = I,&* * - 
X,(j) E 0 (35) 

converges in the mean-square sense to the input process 
X(t) for all 0 < c < 2/U. 

If the companding function A is monotonically decreasing 
such that 

- u(x, - x2) 5 A(x,) - A(x,) I -u(xl - x2), 

x1, x2 E R (30’) 

where u and U are positive constants, then the proposition, 
Theorem 5, and Theorem 6 remain valid. 

V. CONCLUSION 

In this paper we have considered the problem of recover- 
ing a band-limited stochastic process after it has been dis- 
torted by an instantaneous nonlinearity and subsequently 
band-limited. We derived several uniqueness theorems for 
the input-output relationship which were shown to be valid 
even if the nonlinearity is not monotonic. Applications to 
two-level quantizers were considered, and a new result on 
the determination of a band-limited Gaussian process by its 
zero crossings was obtained. In the case where the non- 
linearity is smooth, we also derived an iterative procedure 
for the recovery of the input process. 

The question of the recovery of the input when the com- 
panding function is not smooth is being investigated at the 
present time. Some further results and extensions of this 
work will be reported in the future. 

APPENDIX 

The proofs of the proposition and Theorems 5 and 6 of Section 
IV are given in the following. 
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A. Proof of the Proposition C. Proof of Theorem 6 

Define the process r(t) by Let us first note that all iterations given by (35) are band- 

r(t) = xl(t) - X2(t) - c{AIXl(t)l - AW2(t)lh limited processes since each term on the right-hand side of (35) 
is a band-limited process. Consider, for each fixed t, the distance 

t E R (A-l) j/X(t) - X,+l(t)lj, which by (35) can be written as 

which is clearly not band-limited. Moreover, the process 
[L(r)](t) is given by IIXW - Xn+l(t)ll = IIXW - X,(t) - c{Z(t) - [TW,)](t)lII 

[W)](t) = MXl .- &.)1(t) - c{PWdlW - IT(X2)lWl 
= Xl(t) - X2(t) - c{[TW,)l(t) - P”WJIW~ 

(A-2) 
where the second equality follows from the fact that Xl(t) - 
X2(t) is a band-limited process and L is an ideal low-pass filter. 
If S,,(a) is the spectral distribution of the process r(t), then by 
the spectral representation theory we have 

II [L(r) l(t) II2 
= 

s 
m IH(il)l” d!&(I) 

-a, 

s  

W  
zz d&(8 (A-3) 

-W 

I 
s  

O ” dS,&) = llr(f)l12 

= ,I$ - X2(t) - cA[X,(t)l + cA[~2(t)1112 

= [Xl(t) - X2(t)] 
1) 

1 - c  “(;(rt’; 1 ,;j(‘)) ’ (A-4) 
1 2 III 

and, since A(x) satisfies (30), we have for 0 < c < 2/U that 

e = sup 1 - c  4x1) - 4x2) < 1 
(A-5) 

x19x2 1 Xl - x2 ( 

It then follows from (A-4) and (A-S) that 

II W)l(t)l12 5 Q211XI(f) - -72@>l12, 8<1. (A-6) 

Equation (A-6) is the required result since I 

[L(r)l@ ) = KIXI 10) - NX21W. Q.E.D. 

B. Proof of Theorem 5 

By hypothesis Z,(t) = Z2(t) as., so that [T(X,)](t) = 
[T(X,)](t). By the proposition we then have 

l IXI@> - Jfz(f>lI < QllX,W - Xz@)ll, ~9 < 1. (B-l) 

Equation (B-l) can hold only if 

Ilxlw - Xz(t)ll = 0 

which implies 

X,(t) = X2(t) a.s. for all t. (B-2) 

Q.E.D. 

= II-W> - x,0> - c~[T(X)lW 
- F’VG)lW~ll. (C-1) 

Applying the proposition to the right-hand side of (C-l), we 
immediately have 

IlXW - x,+I(t>ll 5 ww - Kl(t>ll, 

e < 1, n = 1,2,.... (C-2) 

Hence, 

ILW - x*+I(t)ll 5 wim> - XI@>ll, n = 1,2,. . . . (C-3) 

Since 6’ < 1, we have by (C-3) that 

11X(t) - X,+,(t)ll -+ 0 as n + co. (C-4) 

Q.E.D. 
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