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Abstract—We address the problem of reconstructing a ran-
dom signal from samples of its filtered version using a given
interpolation kernel. In order to reduce the mean squared-error
(MSE) when using a non-optimal kernel, we propose a high rate
interpolation scheme in which the interpolation grid is finer than
the sampling grid. A digital correction system that processes
the samples prior to their multiplication with the shifts of the
interpolation kernel is developed. This system is constructed
such that the reconstructed signal is the linear minimum MSE
(LMMSE) estimate of the original signal given its samples. An
analytic expression for the MSE as a function of the interpolation
rate is provided, which leads to an explicit condition such that
the optimal MSE is achieved with the given non-optimal kernel.
Simulations confirm the reduction in MSE with respect to a
system with equal sampling and reconstruction rates.

Index Terms—Generalized sampling, Interpolation, Estima-
tion, Wiener filtering, Random processes.

EDICS Category: DSP-SAMP

I. INTRODUCTION

WE treat the problem of reconstructing a random signal
from a sequence of its nonideal samples. The study

of sampling random signals was initiated in the late 1950’s
by Balakrishnan [1]. His well known sampling theorem states
that a bandlimited wide sense stationary (WSS) random signal
x(t) can be perfectly reconstructed in a mean squared-error
(MSE) sense from its ideal samples whenever the sampling
rate exceeds twice the signal’s bandwidth. Reconstruction is
achieved by using the sinc function as an interpolation kernel.
In practice, though, the signal is never perfectly bandlimited
and the sampling device is not ideal, i.e. it does not produce the
exact values of the signal at the sampling points. A common
situation is that the sampling device integrates the signal,
usually over small neighborhoods around the sampling loca-
tions. Furthermore, use of the sinc kernel for reconstruction is
usually not feasible due to its slow decay.

Balakrishnan’s result was later extended by several authors
to account for some of its practical limitations. In [2] a
sampling theorem for bandpass and multiple-pass WSS signals
was developed. It was shown that under certain conditions on
the support of the signal’s spectrum Λxx(ω), perfect recon-
struction in an MSE sense is possible using an interpolation
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filter with the same support. This was a first departure from
the bandlimited case to broader classes of random signals.

A more general setup is considered in [3], where no limi-
tation on the signal’s spectrum is imposed and the sampling
device produces nonideal samples, i.e. samples of a filtered
version of the signal. Clearly this setting does not always
allow for perfect reconstruction. The strategy proposed in [3]
is to minimize the MSE between the original and reconstructed
signals. A similar setup is also treated in [4] in which a
random signal x(t) is estimated from the samples of another
random signal y(t). We refer to this system as the hybrid
Wiener filter as it operates on a discrete-time signal whereas
its output is a continuous-time signal. Reconstruction in the
hybrid Wiener setup is obtained by modulating the shifts of
a properly designed interpolation kernel with the samples of
the signal.

A related problem was treated in [5] where the authors
address the problem of designing the interpolation kernel, but
from a purely deterministic viewpoint. In this deterministic
setting, prior knowledge on the characteristic behavior of the
signal is incorporated in the form of a regularization term,
which is analogous to the signal’s spectrum in the stochastic
framework. Interestingly, the reconstruction filter derived in
[5] is functionally related to the hybrid Wiener filter, where
the inverse of the regularization operator in [5] plays the role
of the signal’s spectrum in the stochastic formulation.

The expression for the optimal interpolation kernel in the
different settings is typically given in the frequency domain,
and usually does not have a closed form in the time domain.
This limits the applicability of this approach to situations
where the kernel needs to be calculated only on a discrete set
of points. In this case, the discrete Fourier transform (DFT)
can be used to approximate the desired values. Consequently,
the hybrid Wiener filter seems to have been used in the
image processing community only as a means of enlarging an
image by an integer factor [6], [7]. More general geometrical
transformations, such as rotation, lens distortion correction
and scaling by an arbitrary factor, were not tackled using this
method.

To overcome the difficulties in implementing the hybrid
Wiener filter, one may resort to a system that uses a predefined
interpolation kernel. In order to obtain a “good” reconstruction
in this setup, the signal’s samples are processed with a digital
correction system prior to reconstruction, as depicted in Fig.
1. Note that the sampling filter s(−t) in the figure is not
necessarily bandlimited so that the correction system has to
compensate both for the aliasing that occurs in the sampling
process and for the nonideal interpolation filter. This scheme
was first introduced in [8] where the authors considered a
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Fig. 1. Sampling and reconstruction setup.

stochastic setting. A rigorous treatment of this scheme from
a deterministic viewpoint was given in [9],[10],[11],[12]. In
[13] several approaches to design the digital correction filter
were developed and compared, including both deterministic
and stochastic formulations.

The constraint to a predefined interpolation kernel may lead
to severe degradation in the MSE of the reconstruction. This
emphasizes the fundamental trade-off between performance
and implementation considerations. An intriguing question that
arises, then, is whether one can improve the MSE of such a
sampling-reconstruction system by modifying the reconstruc-
tion mechanism. In this paper we suggest compensating for
the non-ideal behavior of the given interpolation kernel by
using a higher reconstruction rate. Specifically, we consider a
reconstruction rate that is an integer multiple of the sampling
rate ωr = Kωs. This new setting no longer allows the use
of a linear time-invariant (LTI) digital correction system but
rather forces the use of a multirate digital scheme.

Our proposed framework can be viewed as a generalization
of the widely practiced methods for sampling rate conversion,
known as first and second order approximation [14]. These
methods correspond to a rectangular and a triangular interpo-
lation filter respectively and a correction system in the form
of a polyphase filter structure. However, besides extending
the discussion to general interpolation filters, in this work
we also relax the standard assumption that the input signal is
bandlimited. Furthermore, as stated above, we take a stochastic
viewpoint so that we design a correction system that is best
adapted to the input signal’s spectrum.

Our approach somewhat resembles a scheme proposed in
[8], where a multirate digital correction system in the form
of an up-sampler followed by a predefined digital filter was
designed. However, our work differs from [8] in several
aspects. First, we do not pose any restrictions on the digital
correction system. Second, in [8] the minimization criterion
involves the Fourier transforms of the input and output signals,
which is not defined for stationary processes (as a typical
realization of a stationary signal is not in L2(R)). This is only
possible in [8] since they consider an optical system with a
finite-size sensor. Finally, in this work we thoroughly study the
statistical properties of the reconstructed signal and the effect
of the reconstruction rate on the MSE, and show when this
scheme produces the optimal hybrid Wiener filter solution.

The paper is organized as follows. In Section II we briefly
present the hybrid Wiener filtering problem and its solution.
The exposition is different from the classical viewpoint as
it is developed in a way that enables the comparison to our
approach. We also present the high-rate interpolation strategy
and compare it to the hybrid Wiener filter. In Section III

we discuss the problematic nature of the MSE as a measure
to be minimized in our framework. This motivates the use
of an alternative error measure called the average MSE. We
further address the well known phenomena of artifacts in the
reconstructed signal, caused as a side effect of minimizing the
MSE. This is done by studying the statistical properties of
the reconstructed signal. In Section IV an explicit expression
for the digital correction system as a function of the sampling
and reconstruction filters and the signal’s spectrum is derived.
An error analysis of our scheme is presented in Section V.
As a special case we obtain expressions for the MSE in the
standard sampling scheme both with a predefined and with
the optimal reconstruction kernels. This enables us to address
several important issues. First, we derive the optimal sampling
filter to be used with a given interpolation kernel. Second, we
obtain necessary and sufficient conditions for perfect recovery
of a signal from its nonideal samples. Third, we show in what
cases our system completely compensates for the nonideal
interpolation kernel and produces the minimum MSE solution.
We conclude the paper in Section VI, with simulations on
synthetic as well as real-world data.

II. THE HYBRID WIENER FILTER AND THE HIGH-RATE
INTERPOLATION SCHEME

A. The Hybrid Wiener Filter

We begin by reviewing the hybrid Wiener solution and
discuss its application to the recovery of a random signal from
its nonideal samples.

The hybrid Wiener filtering problem, in its most general
form, is the following. We wish to linearly estimate the WSS
random signal x(t) given the equidistant samples of another
random signal y(t). The estimate x̂(t) is chosen such that
the MSE E[|x(t) − x̂(t)|2] is minimized for every t. The
spectrum of y(t) and the cross spectrum of x(t) and y(t) are
assumed to be known and are denoted by Λyy(ω) and Λxy(ω)
respectively1. The term “hybrid” refers to the fact that the
input to the estimator is the discrete-time signal y(nT ), n ∈ Z,
whereas the output is a continuous-time signal x̂(t), t ∈ R. For
notational convenience, we use a normalized sampling period
of T = 1 throughout the paper.

Interestingly, the solution to this problem highly resembles
the standard Wiener filter [15] and is given by [4]

x̂(t) =
∑

n∈Z
y(n)w (t− n) , (1)

where w (t) is an analog filter whose frequency response is

W (ω) =
Λxy (ω)∑

l∈Z
Λyy (ωl)

, (2)

assuming the denominator is nonzero, and

ωl = ω + 2πl. (3)

As can be seen in (1), the hybrid Wiener solution amounts to
a shift-invariant interpolation in between the samples of y(t)

1The cross-spectrum Λxy (ω) of two jointly WSS signals is the Fourier
transform of the cross-correlation function Rxy (τ) , E [x (t) y (t− τ)].
Setting x (t) ≡ y (t), leads to the definition of the spectrum Λyy (ω).
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using the kernel (2). The denominator of (2) is the DTFT of
the auto-correlation sequence Ryy[n] of the samples y(n), i.e.
the spectrum2 Λyy(eiω) of the discrete-time process y(n). This
term replaces the spectrum of the continuous-time signal y(t),
which appears in the standard Wiener problem of estimating
x(t) from {y(t)}t∈R [15]. We use the notation Λyy(eiω) to
emphasize that the DTFT of a sequence is 2π–periodic.

In our setup, a signal x(t) is sampled after pre-filtering
by a filter s(−t), which corresponds to the impulse response
of the nonideal sampling device. This is described by setting
y(t) = x(t) ∗ s(−t). Substituting the appropriate expressions
for Λxy(ω) and Λyy(ω) in (2), the optimal reconstruction
kernel is

W (ω) =
S (ω) Λxx (ω)∑

l∈Z
|S (ωl)|2 Λxx (ωl)

. (4)

It is easy to verify that W (ω) can be chosen arbitrarily for
frequencies where the denominator vanishes.

The hybrid Wiener interpolation scheme can be represented
in the form of Fig. 1 by choosing the analog filter [5]

Wopt (ω) = S (ω) Λxx (ω) , (5)

and the digital filter

Hopt

(
eiω

)
=

1∑
l∈Z

|S (ωl)|2 Λxx (ωl)
, (6)

where, again, Hopt

(
eiω

)
can be chosen arbitrarily for frequen-

cies at which the denominator is zero.
This representation is not unique because multiplication of

W (ω) by any non vanishing 2π–periodic function can be
compensated for by dividing H(eiω) by the same function.
It is thus apparent that by inserting the digital correction filter
block to the sampling scheme, we effectively create a set of
optimal interpolation kernels, instead of just one. Formally
stated, an interpolation filter W (ω) is optimal if there exists a
non vanishing 2π–periodic function α(eiω) such that

W (ω) = α
(
eiω

)
S (ω) Λxx (ω) , ∀ω ∈ Ωc, (7)

where Ωc is defined by

Ωc ,
{

ω :
∑

l∈Z
|S (ωl)|2 Λxx (ωl) 6= 0

}
. (8)

It can be shown that even if the restriction that the correction
system be LTI is removed then (7) is still a necessary condi-
tion. A concise statement of this property along with a proof
is given in Appendix A.

Equation (7) relates the support of W (ω) to that of
S(ω)Λxx(ω), or equivalently, to the support of the spectrum of
y(t) = x(t)∗s(−t), as Λyy(ω) = |S(ω)|2Λxx(ω). Specifically,
to attain the minimal MSE, supp{Λyy(ω)} ⊆ supp{W (ω)} ⊆
supp{Λyy(ω)}∪Ωc. This implies that the reconstructed signal
x̂(t) can only contain frequency components that are present
in y(t). Thus, the hybrid Wiener filter does not reproduce any

2The spectrum Λcc
(
eiω

)
of a WSS discrete-time signal c[n] is the discrete-

time Fourier tansform (DTFT) transform of the auto-correlation sequence
Rcc [n] , E [c [m] c [m− n]].

content of the input x(t), that is zeroed out by the sampling
filter S(ω).

In Section V we show that when using a high interpolation
rate, condition (7) is relaxed, meaning that the set of optimal
interpolation kernels is enlarged.

B. High-Rate Interpolation Scheme

The optimal interpolation filter (5) usually does not admit
a closed form in the time domain. We now discuss when this
poses a practical problem, and describe an efficient strategy
to tackle it.

Consider first resampling applications, such as image en-
largement. Here, x̂(t) needs to be evaluated on a regular grid
of points {k/∆}k∈Z, where ∆ is the magnification factor. In
this case (1) becomes

x̂(k/∆) =
∑

n∈Z
y(n)wopt (k/∆− n) . (9)

If ∆ is an integer, then only a discrete set of samples of
wopt(t) plays a role in (9). Thus, x̂(k/∆) is the result of
up-sampling y(n) by a factor of ∆ and then applying the
digital filter p[n] = wopt(n/∆). To calculate p[n], we can
apply any standard digital filter design method to its Fourier
transform P (eiω) = ∆

∑
l∈ZWopt(∆ωl). The simplest ap-

proach would be to sample P (eiω) on a regular grid of
frequencies ω = 2πm/L, m = 0, . . . , L − 1 and apply the
inverse DFT. For L large enough, the resulting sequence is a
good approximation of wopt(n/∆). This method can also be
extended to the case where ∆ is a rational number but with
an increase of complexity.

If ∆ is not a rational number then the above method cannot
be used directly. However, it can easily be modified to get
an approximation of x̂(t). This is done by first evaluating
x̂(t) on a dense grid, namely computing {x̂(k/K)}k∈Z with a
large integer K, and then interpolating in between the grid
points using some simple kernel w(t). Commonly, nearest
neighbor or linear interpolation are used. These strategies are
called first and second order approximation respectively [14].
The resulting scheme is shown in Fig. 2, where the multirate
correction system is a K–rate up-sampler followed by the
digital filter p[n] = wopt(n/K), as depicted in Fig. 3 (right).
This multirate system can equivalently be implemented in a
polyphase filter structure as shown in Fig. 3 (left). The filter
P (eiω) is related to the polyphase filters {Hn(eiωK)}K−1

n=0 via
[14]

P
(
eiω

)
=

K−1∑
n=0

Hn

(
eiωK

)
e−iωn. (10)

Clearly, as K tends to infinity this solution approaches
the optimal one for any reasonable choice of kernel w(t).
However, this system is not optimal in the non-asymptotic
regime, as the correction filter p[n] does not compensate for
the interpolation to follow. Our goal in this paper is to derive
an optimal multi-rate correction system. This scheme should
take into account, not only the signal’s spectrum Λxx(ω) and
sampling filter S(ω) (as in the unconstrained hybrid Wiener
filter (5)), but also the predefined reconstruction filter W (ω).
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Fig. 2. High rate reconstruction setup.
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Fig. 3. Two alternative representations of the multirate digital correction
system. For every input sample, the commutator in the polyphase structure
(left) goes through all K positions, generating K output samples.

We remark that the optimal discrete-time compensation filter
P (eiω) will usually not have a closed form in the time domain.
Thus to compute p[n], one must use some digital filter design
method, as is the case when resampling by an integer factor.
The benefit is in being able to handle arbitrary resampling
factors by using a simple analog reconstruction filter w(t).

III. DEFINITION OF AN ERROR MEASURE

As a first step towards deriving a solution to the high-rate
reconstruction problem, we first study the statistical properties
of the reconstructed signal in the standard case of K = 1. This
step is crucial in order to pose a proper definition of the error
to be minimized.

In [13] the authors show that for a general interpolation
kernel, there is no digital correction filter that can minimize
the MSE for every t. In fact, it can be shown that if a filter
is designed to minimize the MSE at a certain time instance
t0 then it also minimizes the MSE at times {t0 + k}k∈Z but
not over the whole continuum. Furthermore, we show in this
section that generally there does not exist any linear digital
correction system (not necessarily a filter) that minimizes the
MSE for every t.

A. Average MSE Criterion

The signal x (t) in our setup is assumed to be WSS and,
as a consequence, the sequence c [n] in Fig. 1 is a discrete
WSS random process. Therefore, if the correction system is a
digital filter, as used in [8], [13], then d [n] is also WSS.

The reconstructed signal in our system is given by

x̂ (t) =
∑

n∈Z
d [n]w (t− n) . (11)

Signals of this type have been studied extensively in the
communication literature in the context of pulse amplitude
modulation (PAM). It is a known fact that if the sequence d [n]
in (11) is a WSS process then x̂ (t) is generally not WSS but
rather wide sense cyclostationary with period 1 [16]. The non
stationary behavior of x̂ (t) is the reason why the pointwise

Fig. 4. A stationary 2D random process (left) was downsampled by a factor
of 3 and then reconstructed using a rectangular kernel (middle) and the sinc
kernel (right).

MSE can generally not be minimized for every t. To overcome
this obstacle we can average the pointwise MSE over one
sampling period, as done in [17]. Our error measure is thus
the sampling-period-average-MSE, which is defined as

MSE = E




t0+1∫

t0

|x (t)− x̂ (t)|2 dt


 . (12)

An important property of the above definition is that in situ-
ations where the pointwise MSE can be minimized for every
t, the minimization of (12) leads to the same solution. This
follows from the fact that the pointwise MSE is nonnegative
for every t. In Section IV we show that the correction system
resulting from the minimization of (12) is independent of t0.

We note that when the signals of interest are natural images
or audio signals, there is not a one-to-one correspondence
between the MSE of the reconstruction and its quality, as
subjectively perceived by the human visual or auditory sys-
tem. One type of effect which may drastically degrade the
subjective quality of the reconstructed signal is due to the
non-stationarity of x̂ (t). In fact, if an interpolation scheme
outputs a cyclostationary signal when fed with a stationary
input, then it will commonly produce reconstructions with
degraded subjective quality also when applied to real world
signals. We illustrate this in Fig. 4, where a stationary 2D
function is downsampled by a factor of 3 and then recon-
structed using a rectangular kernel and the sinc kernel. Both
interpolation methods lead to the exact same MSE, however
the rectangular interpolation filter introduces block structure
in the reconstructed image, an artifact which is unpleasant
to the human observer. We stress that it is not the scope of
this paper to battle these undesired effects. We are merely
concerned with the minimization of the MSE. However, it is
of interest to study when such artifacts occur. Specifically,
we wish to obtain necessary and sufficient conditions on the
interpolation kernel and the correction system such that x̂ (t)
in (11) is WSS.

B. Stationarity of the Reconstruction
One example of a WSS PAM signal (11) is when d[n] is

WSS and w(t) is the bandlimited filter w(t) = sinc(t) [16].
An important question is whether this is the only case. We now
show that indeed every WSS PAM process is π–bandlimited.
Specifically, for x̂(t) to be WSS

1) the sequence d[n] can contain a nonstationary compo-
nent only if its frequency content is entirely zeroed out
by W (ω),
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2) the filter W (ω) can extend beyond π only at frequencies
that are not excited by the sequence d[n].

To obtain necessary and sufficient conditions on the se-
quence d[n] and the filter w(t) such that x̂(t) is WSS, we
compare the two-dimensional spectrum of x̂(t) with that of a
WSS process. We use R̃xx(s, t) = E[x(s)x(t)] and Λ̃xx(u, v)
to denote the two-dimensional auto-correlation function of a
random signal x(t) and its Fourier transform. If the signal
is WSS, then the one-dimensional auto-correlation is denoted
Rxx(s) = R̃xx(s, 0) and its Fourier transform is Λxx(u). It is
easily verified that for a WSS process, Λ̃xx(u, v) takes on the
form

Λ̃xx (u, v) = Λxx (u) δ (u + v) . (13)

Similarly, for a discrete-time WSS signal z[n], the two dimen-
sional spectrum Λ̃zz(eiu, eiv) is of the form

Λ̃zz

(
eiu, eiv

)
= Λzz

(
eiu

) 1
2π

∑

n∈Z
δ (u + v − 2πn) . (14)

Now, to determine the conditions for x̂(t) in (11) to be WSS,
we need to identify those cases in which its two-dimensional
spectrum is of the form (13). Using (11),

R̃x̂x̂ (s, t) =
∑

m,n∈Z
w (s−m)w (t− n) R̃dd [m, n] . (15)

Hence, the spectrum of x̂(t) can be computed as

Λ̃x̂x̂ (u, v) =
∑

m,n∈Z
R̃dd [m,n]W (u)W (v) e−imue−inv

= W (u)W (v) Λ̃dd

(
eiu, eiv

)
. (16)

In order for Λ̃x̂x̂(u, v) in (16) to be of the form (13),
Λ̃dd(eiu, eiv) must be equal to F (u)δ(u + v) wherever
W (u)W (v) 6= 0, for some function F (u). However, the func-
tion Λ̃dd(eiu, eiv) is 2π–periodic in each axis as it is a DTFT.
Therefore we can only impose Λ̃dd(eiu, eiv) = F (u)δ(u + v)
in the domain [−π, π]×[−π, π]. The definition of Λ̃dd(eiu, eiv)
on the rest of R2 is then obtained by periodic expansion. This
means that Λ̃dd(eiu, eiv) must be of the form

Λ̃dd

(
eiu, eiv

)
={

F
(
eiu

) ∑
n∈Z

δ (u + v − 2πn) W (u)W (v) 6= 0

A
(
eiu, eiv

)
W (u)W (v) = 0,

(17)

where A(eiu, eiv) and F (eiu) are arbitrary 2π–periodic func-
tions. The top row of (17) is exactly the form of the spectrum
of a discrete-time WSS process (14). We conclude that a
necessary condition for x̂(t) to be a WSS continuous-time
signal is that d[n] be of the form

d [n] = dS [n] + dN [n] , (18)

where dS [n] is a WSS sequence whose passband is {ω :
W (ω) 6= 0} and dN [n] is an arbitrary (not necessarily station-
ary) random sequence whose passband is {ω : W (ω) = 0}. In
words, d[n] may exhibit non stationarity only at frequencies
for which W (ω) vanishes. These frequency components do
not affect the reconstructed signal x̂(t). Therefore, to study

2π

2π 2π

2π

π
π

π

π

2π

2π2π

2π

u u u

vvv

Fig. 5. Left: The spectrum of a WSS process. Middle: The spectrum of x̂(t)
formed by a WSS sequence d[n] with non-vanishing spectrum. Right: The
spectrum of x̂(t) formed by a 1

2
π-bandlimited WSS sequence d[n].

the behavior of Λ̃x̂x̂(u, v), we assume in the sequel without
loss of generality that dN [n] = 0.

Since d[n] is assumed to be a WSS sequence, its spectrum
obeys (14) and thus (16) can be written as

Λ̃x̂x̂ (u, v) = W (u)W (v) Λdd

(
eiu

) 1
2π

∑

n∈Z
δ (u + v − 2πn) .

(19)
Figure 5 (left) depicts the spectrum of a continuous-time WSS
signal (13) and that of the reconstructed signal (19) (middle). It
is clear that in order for Λ̃x̂x̂(u, v) to possess the form in (13),
the impulses outside the line u+v = 0 have to be suppressed.
This happens only if W (ω) vanishes outside [−π, π], in which
case the the content outside the dashed rectangle is supressed.
In Fig. 5 (right) we show the spectrum of x̂(t) formed by a
0.5π–bandlimited WSS sequence d[n]. It can be seen that in
this case x̂(t) is WSS if and only if the support of W (ω) is
contained in [−1.5π, 1.5π] ∪ {[2πl + 0.5π, 2πl + 1.5π]}l∈Z.
More generally, if d[n] is B–bandlimited (where B ≤ π) then
the suppression of the undesired impulses can happen only if
W (ω) vanishes outside the set

ΩW = [−2π + B, 2π −B] ∪ Ωc
d, (20)

where Ωd , supp{Λdd(eiω)} and the superscript c denotes
the complementary of the set. In this case the reconstructed
signal’s spectrum is Λx̂x̂(ω) = (2π)−1|W (ω)|2Λdd(eiω).

Figure 6 demonstrates a concrete example of a pair W (ω),
Λdd(eiω) that forms a WSS signal. In this example the support
of Λdd(eiω) (top) in the interval [−π, π] is [−0.75π,−0.5π]∪
[−0.25π, 0.25π] ∪ [0.5π, 0.75π] and hence B = 0.75π. The
support of W (ω) (bottom) then must be contained in the union
of [−1.25π, 1.25π] and 2π translates of [−0.5π,−0.25π] ∪
[0.25π, 0.5π] ∪ [0.75π, 1.25π].

The following theorem summarizes the results.
Theorem 1: Consider the signal x̂(t) in (11). Then x̂(t) is

a continuous-time WSS process if and only if

1) the sequence d[n] can be written as dS [n] + dN [n],
where dS [n] is a WSS sequence whose passband is
supp{W (ω)} and dN [n] is an arbitrary random se-
quence with zero power in supp{W (ω)}

2) the support of the reconstruction filter W (ω) is con-
tained in the set [−2π +B, 2π−B]∪Ωc

d, where B ≤ π
is the bandwidth of d[n] and Ωc

d is the complementary
set of the support of ΛdSdS (eiω).
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Λdd(ω)

ω2ππ−π−2π

ω2ππ−π−2π

W (ω)

3π−3π

3π−3π

Fig. 6. Example of a pair W (ω), Λdd(eiω) that forms a WSS signal.

When increasing the reconstruction rate by a factor of K,
the support of W (ω) need only be contained in [−2πK, 2πK]
(assuming B = π), thus a greater class of kernels leads to
stationary reconstruction.

Note that the optimal reconstruction kernel Wopt(ω) of the
hybrid Wiener solution (5) generally does not satisfy condition
2. Therefore x̂(t) is not guaranteed to be stationary when using
it. As demonstrated in Fig 4, this can cause undesired effects
in the recovered signal.

IV. DIGITAL CORRECTION SYSTEM

In this section we derive an explicit expression for the digital
correction system using the error measure (12).

The reconstructed signal in Fig 2 can be written as

x̂ (t) =
K−1∑
m=0

∑

n∈Z
w

(
t− n− m

K

)
dm [n] , (21)

where
dm [n] =

∑

l∈Z
hm [l] c [n− l] (22)

is the the output of the m’th filter in Fig. 3. Substituting (22)
into (21) leads to

x̂ (t) =
K−1∑
m=0

∑

l∈Z
hm [l] yl,m (t) , (23)

where we have defined

yl,m (t) ,
∑

n∈Z
w

(
t− n− m

K

)
c [n− l] . (24)

The average MSE criterion measures the deviation of the
process x̂(t) from x(t) only in the interval [t0, t0 + 1]. Let us
define an inner product between random processes a, b as

〈a, b〉 = E




t0+1∫

t0

a (t) b (t) dt


 . (25)

The induced norm is then ‖a‖2 = 〈a, a〉. We see that the
average MSE (12) can be interpreted as the norm of the error
process x(t) − x̂(t). The signal x̂(t) is a linear combination
of yl,m(t). Therefore the error is minimized if and only if
the orthogonality principle is satisfied, which implies that

〈x− x̂, yl,m〉 = 0 for every l ∈ Z, m = 0, . . . ,K−1. Defining
the signals vm[l] and fm[l] by

vm [l] = E




t0+1∫

t0

x (t) yl,m (t) dt


 , (26)

fm [l] = E




t0+1∫

t0

x̂ (t) yl,m (t) dt


 , (27)

we can write the orthogonality condition explicitly as

vm [l] = fm [l] , l ∈ Z,m = 0, . . . , K − 1. (28)

In the following theorem we show that by converting (28)
into the frequency domain, the frequency responses of the K
correction filters hm[l] can be obtained as the solution of a
linear system of equations, which is independent of t0.

Theorem 2: Let h(eiω) be the vector consisting of the
frequency responses of the K correction filters hm[l]

h
(
eiω

)
=

(
H0

(
eiω

) · · · HK−1

(
eiω

) )T
. (29)

Then the vector h(eiω) minimizing the average MSE (12) is
independent of t0 and is given by

G
(
eiω

)
h

(
eiω

)
= v

(
eiω

)
. (30)

Here G(eiω) is a K ×K matrix whose (m,n)th element is

Gm,n(eiω) =
∑

l∈Z
|S(ωl)|2 Λxx(ωl)

∑

l∈Z
|W (ωl)|2 eiωl(m−n

K ),

(31)
v(eiω) is the K × 1 vector whose elements are

Vm(eiω) =
∑

l∈Z
S(ωl)Λxx(ωl)W ∗(ωl)eiωl

m
K , (32)

m = 0, . . . , K − 1,

and ωl = ω + 2πl.
Proof: Substituting x̂(t) of (23) into (27), we have

fm [l] =
K−1∑
n=0

∑

r∈Z
hn [r] gm,n [l, r] , (33)

where we defined

gm,n [l, r] = E




t0+1∫

t0

yr,n (t) yl,m (t) dt


 . (34)

Now, substituting (24) into this expression, it is shown in Ap-
pendix B that gm,n[l, r] is a Toeplitz sequence, i.e. gm,n[l, r] =
gm,n[l − r]. Therefore the inner sum in (33) reduces to a
convolution between hn[l] and gm,n[l]

fm [l] =
K−1∑
n=0

(hn ∗ gm,n) [l] . (35)

This enables us to write (28) in the frequency domain as

Vm(eiω) =
K−1∑
n=0

Hn(eiω)Gm,n(eiω), m = 0, . . . ,K − 1.

(36)
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Explicit expressions for Vm(eiω) and Gm,n(eiω) are derived in
Appendix B, where it is shown that they are both independent
of t0 and are given by (31) and (32) respectively. Writing (36)
in matrix form leads to (30).

A. Explicit Formula for the Polyphase Filters

Next we show that it is possible to obtain a closed form
solution to (30) by using an orthogonal decomposition of the
equations. We also investigate existence and uniqueness of the
solution. The explicit expressions for the frequency responses
of the K correction filters allows us to obtain a closed form
for the MSE of the reconstruction in Section V.

From (31) we see that the matrix G(eiω) can be written as

G(eiω) =
∑

l∈Z
|S(ωl)|2 Λxx(ωl)

∑

l∈Z
|W (ωl)|2 e(ωl)eH(ωl),

(37)
where the frequency dependent vector e(ω) is defined by

e (ω) =
(

1 eiω 1
K · · · eiω K−1

K

)T

. (38)

Therefore G(eiω) is an infinite weighted sum of rank-one
matrices. Similarly, using (32) the vector v(eiω) can be cast
as an infinite weighted sum of vectors

v
(
eiω

)
=

∑

l∈Z
S (ωl) Λxx (ωl) W ∗ (ωl) e (ωl) . (39)

The vector e(ω) has two interesting properties. First, it
is 2πK–periodic in ω. In particular, for every two integers
l and m we have e(ωl+mK) = e(ωl). Second, for every
ω the vectors e(ωl), l = 0, . . . , K − 1 form an orthogonal
set: eH(ωp)e(ωq) = Kδp,q . These two facts enable us to
decompose G(eiω) into a multiplication of three matrices

G
(
eiω

)
= CS

(
eiω

)
U

(
eiω

)
D

(
eiω

)
UH

(
eiω

)
, (40)

where U(eiω) is the orthogonal matrix defined by

U
(
eiω

)
=

(
e (ω0) · · · e (ωK−1)

)
, (41)

D(eiω) is a diagonal matrix containing the values

Dm,m(eiω) =
∑

l∈Z
|W (ωm+lK)|2 , m = 0, . . . , K−1 (42)

and CS(eiω) is the scalar

CS

(
eiω

)
=

∑

l∈Z
|S (ωl)|2 Λxx (ωl) . (43)

Similarly, the vector v(eiω) can be written as

v
(
eiω

)
= U

(
eiω

)
s

(
eiω

)
, (44)

where the elements of the vector s(eiω) are given by

sm(eiω) =
∑

l∈Z
S(ωm+lK)Λxx(ωm+lK)W ∗(ωm+lK). (45)

Using (40) and (44), we see that h(eiω) is the solution to

CS(eiω)U(eiω)D(eiω)UH(eiω)h(eiω) = U(eiω)s(eiω).
(46)

Proposition 1: There exists a solution to (46) for every ω
regardless of the specific choices of sampling filter S(ω),
reconstruction filter W (ω) and spectrum Λxx(ω).

Proof: A solution to (46) exists if and only if v(eiω) lies
in the range space of G(eiω). Let us begin by considering
the scalar CS(eiω) in (43). If this value vanishes for some
ω then G(eiω) is the zero matrix. In this case, though,
|S(ωl)|2Λxx(ωl) = 0 for every l ∈ Z and thus sm(eiω) = 0
for every m, meaning that v(eiω) is the zero vector. Therefore,
in these situations any h(eiω) is a solution to (46). Since
CS(eiω) is the spectrum of the discrete-time process c[n]
entering the correction filters, obviously at frequencies where
CS(eiω) = 0 the frequency responses of the correction
filters have no effect on the output signal and can be chosen
arbitrarily.

Suppose next that CS(eiω) 6= 0. From (40) and (44) it can
be seen that v(eiω) lies in the range space of G(eiω) if and
only if sm(eiω) = 0 for every index m where Dm,m(eiω) = 0.
However, looking at (42), we see that if Dm,m(eiω) = 0 then
W (ωm+lK) = 0 for every l ∈ Z, which in turn leads to
sm(eiω) = 0 (45). Therefore, the system of equations (46) is
guaranteed to have a solution in this case as well.

Note that there may be frequencies in which there are
infinitely many choices of h(eiω) that satisfy the equations.
In the following derivations we choose the vector h(eiω) with
minimal Euclidian norm among all possible solutions.

Using (40) and (44), the minimum norm solution of equa-
tion (30) is

h
(
eiω

)
= G† (

eiω
)
v

(
eiω

)

=
1
K

U
(
eiω

) (
CS

(
eiω

)
D

(
eiω

))†
s

(
eiω

)
, (47)

where we used the fact that (1/
√

K)U(eiω) is a unitary
matrix. The matrix (CS(eiω)D(eiω))† is a diagonal matrix
whose mth diagonal value is given by

{ 1∑
l∈Z
|S(ωl)|2Λxx(ωl)

∑
l∈Z
|W (ωm+lK)|2 ω /∈ Ωm

0 ω ∈ Ωm,
(48)

where Ωm is the set of frequencies for which the denominator
does not vanish

Ωm =

{
ω :

∑

l∈Z
|S(ωl)|2 Λxx(ωl)

∑

l∈Z
|W (ωm+lK)|2 6= 0

}
.

(49)
Combining (48) and (47) and using the expressions for s(eiω)
(45) and U(eiω) (41), we obtain the following theorem.

Theorem 3: Consider the setup of Theorem 2. Then

Hn(eiω) =

1
K

K−1∑
m=0

∑
l∈Z

S(ωm+lK)Λxx(ωm+lK)W ∗(ωm+lK)

∑
l∈Z

|S(ωl)|2 Λxx(ωl)
∑
l∈Z

|W (ωm+lK)|2 e
inωm

K ,

(50)

where the fraction should be replaced by 0 for frequencies at
which the denominator vanishes.

There is an interesting resemblance between (50) and the
correction filter developed in [13] for the setup of equal rates
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of sampling and reconstruction (see (51) below). In (50) the
replicas of S(ω)Λxx(ω)W ∗(ω) and |W (ω)|2 are 2πK apart,
whereas in the standard scheme they are 2π apart. This is due
to the increase in interpolation rate by a factor of K.

As stated in Section II, an equivalent representation for the
multirate correction system is a K-rate up-sampler followed
by a digital filter p[n]. An explicit formula for P (eiω) can be
obtained by substituting (50) in (10).

The special case of reconstruction rate that equals the
sampling rate can be easily obtained from (50) by setting
K = 1. In this case, the (single) correction filter is

H
(
eiω

)
=

∑
l∈Z

S (ωl) Λxx (ωl) W ∗ (ωl)

∑
l∈Z

|S (ωl)|2 Λxx (ωl)
∑
l∈Z

|W (ωl)|2
. (51)

This filter coincides with that developed in [13].

V. ERROR ANALYSIS

We now analyze the error of the high-rate interpolation
scheme. Specifically, we derive a closed form formula for
the average MSE of the reconstruction as a function of the
interpolation rate K, the filters S(ω) and W (ω) and the
signal’s spectrum Λxx(ω). As a special case, our formula can
be used to compute the average MSE in the standard sampling
scheme (K = 1) both for a given interpolation filter W (ω) and
for the optimal one Wopt(ω).

The average MSE of the reconstruction is given by

MSE = E




t0+1∫

t0

(x (t)− x̂ (t))2 dt




= E




t0+1∫

t0

(x (t)− x̂ (t)) x (t) dt




= Rxx (0)− E




t0+1∫

t0

x (t) x̂ (t) dt


 , (52)

where we used the fact that x̂(t) is orthogonal to the error
x(t)− x̂(t). Using (23), the second term in (52) becomes

E




t0+1∫

t0

x (t) x̂ (t) dt


 =

K−1∑
m=0

∑

l∈Z
hm [l] vm [l] , (53)

where vm[l] is defined by (26). Using Parseval’s relation,

E




t0+1∫

t0

x(t)x̂(t)dt


 =

1
2π

π∫

−π

vH(eiω)h(eiω)dω

=
1
2π

π∫

−π

vH(eiω)G†(eiω)v(eiω)dω.

(54)

Substituting (54) into the expression for the MSE (52),

MSE = Rxx(0)− 1
2π

π∫

−π

vH(eiω)G†(eiω)v(eiω)dω. (55)

The second term in (55) can be further simplified using the
relations (40) and (44):

vH(eiω)G†(eiω)v(eiω) = sH(eiω)
(
CS(eiω)D(eiω)

)†
s(eiω)

=
K−1∑
m=0

∣∣∣∣
∑
l∈Z

S(ωm+lK)Λxx(ωm+lK)W ∗(ωm+lK)
∣∣∣∣
2

∑
l∈Z

|S(ωl)|2 Λxx(ωl)
∑
l∈Z

|W (ωm+lK)|2 ,

(56)

where we used the fact that (CS(eiω)D(eiω))† is diagonal
(48). The fraction in (56) should be replaced by 0 wherever
the denominator vanishes. Substituting (56) into (55) we obtain
the final expression for the MSE of our interpolation system.

A. The Standard Sampling Setup with a Predefined Kernel

The standard sampling setup corresponding to K = 1 was
considered in [13] however no explicit formula was given for
the resulting MSE. Setting K = 1 in (56) and using (55), the
MSE is given by

Rxx(0)− 1
2π

π∫

−π

∣∣∣∣
∑
l∈Z

S(ωl)Λxx(ωl)W ∗(ωl)
∣∣∣∣
2

∑
l∈Z

|S(ωl)|2 Λxx(ωl)
∑
l∈Z

|W (ωl)|2
dω. (57)

In [17, theorem 3] the average MSE of a system with equal
rates of sampling and interpolation is analyzed. This scheme
comprises given sampling and interpolation filters but, unlike
our setup, no digital correction system. Formula (57) can be
shown to coincide with [17, theorem 3] if we incorporate
the effect of the correction filter into the interpolation kernel
and define an effective reconstruction filter as Weff (ω) =
H(ejω)W (ω).

We note that an alternative way of deriving the optimal
interpolation filter Wopt(ω) of (5), is to minimize (57) with
respect to W (ω). This can be done by applying the Cauchy–
Schwartz inequality to the numerator of the integrand in (57).
Similarly, (57) can be used to determine the optimal sampling
filter, when using a predefined interpolation kernel.

Corollary 4: Consider estimating a WSS signal x(t) from
samples of its filtered version (x(t) ∗ s(−t))|t=n using the
interpolation filer W (ω). Then the minimal MSE is attained
if S(ω) = α(eiω)W (ω), where α(eiω) is an arbitrary 2π–
periodic non vanishing function.

Proof: To minimize (57) we have to maximize the in-
tegrand with respect to S(ω). Using the Cauchy–Schwartz
inequality,

∣∣∣∣∣
∑

l∈Z
S(ωl)Λxx(ωl)W ∗(ωl)

∣∣∣∣∣

2

≤
∑

l∈Z
|S(ωl)|2 Λxx(ωl)

∑

l∈Z
|W (ωl)|2 Λxx(ωl), (58)

and thus the integrand in (57) is bounded from above by
∑
l∈Z

|W (ωl)|2 Λxx (ωl)

∑
l∈Z

|W (ωl)|2
. (59)
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It is easily verified that this bound is attained if S(ω) =
α(eiω)W (ω), where α(eiω) 6= 0.

B. The Hybrid Wiener Filter

The MSE of the hybrid Wiener filter can be calculated from
(57) by substituting the optimal reconstruction kernel (5) for
W (ω), resulting in

MSEopt = Rxx (0)− 1
2π

π∫

−π

∑
l∈Z

|S (ωl)|2 Λ2
xx (ωl)

∑
l∈Z

|S (ωl)|2 Λxx (ωl)
dω. (60)

The integrand in (60) should be replaced by 0 outside the
set Ωc defined in (8). In [4] an expression for the point-
wise MSE E[|x(t) − x̂(t)|2] of the hybrid Wiener filter is
derived. The formula given in [4] is different than (60) for
two reasons. First, recall that (60) gives the average MSE
and not the pointwise MSE. Second, the expression given
in [4] is incorrect, since in the derivations of the MSE the
author made the implicit assumption that the pointwise MSE
is time independent and substituted t = 0. Practically, the
formula in [4] gives the pointwise MSE at integer times i.e.
E[|x(n)− x̂(n)|2], n ∈ Z, but not for the entire continuum.

Equation (60) can be used to study when the high-rate
scheme attains the optimal MSE, as done in the next subsec-
tion. It can also be used to study in which cases MSEopt = 0.
Not surprisingly, this gives rise to a condition on the passband
of x(t), as described in the following corollary.

Corollary 5: A WSS signal x(t) with spectrum Λxx(ω) can
be linearly perfectly reconstructed from samples of its filtered
version (x(t) ∗ s(−t))|t=n if and only if

1) S(ω) 6= 0 for every ω ∈ supp{Λxx(ω)}
2) distinct 2π–shifted replicas of Λxx(ω) do not overlap,

i.e.
∑
l 6=0

Λxx(ωl) = 0, for every ω ∈ supp{Λxx(ω)}.

Proof: Interchanging the order of integration and summa-
tion in the numerator in (60), and making a change of variables
ω ← ω + 2πl, MSEopt can be written as

MSEopt =
1
2π

∞∫

−∞


Λxx(ω)− |S(ω)|2 Λ2

xx(ω)∑
l∈Z

|S(ωl)|2 Λxx(ωl)


 dω.

(61)
It is easily verified that the integrand in (61) is non-negative
for every ω and thus MSEopt = 0 if and only if

Λxx (ω) =
|S (ω)|2 Λ2

xx (ω)∑
l∈Z

|S (ωl)|2 Λxx (ωl)
, a.e. ω ∈ R. (62)

This condition is trivially satisfied for ω /∈ supp{Λxx(ω)}
as both sides equal zero in this case. For frequencies in
supp{Λxx(ω)} we must demand S(ω) 6= 0 otherwise the right
hand side of (62) would vanish but the left hand side will not.
Now, assuming this condition holds we must have

∑

l∈Z
|S (ωl)|2 Λxx (ωl) = |S (ω)|2 Λxx (ω) (63)

for every ω ∈ supp{Λxx(ω)}. Separating out the term l = 0,
(63) is satisfied if and only if

∑
l 6=0

|S(ωl)|2Λxx(ωl) = 0

for every ω ∈ supp{Λxx(ω)}. But since S(ω) 6= 0 in
supp{Λxx(ω)}, this condition becomes

∑

l 6=0

Λxx (ωl) = 0, ∀ω ∈ supp {Λxx (ω)} , (64)

completing the proof.
A necessary and sufficient condition that allows to perfectly

recover a WSS signal from its ideal samples was given in [2].
This condition can be obtained as a special case of Corollary 5
by choosing S(ω) = 1. In this case the only requirement is that
2π–translates of the spectrum Λxx(ω) are disjoint. When the
sampling is not ideal we have the additional condition that the
sampling filter does not zero out any frequency components
contained in x(t).

C. Optimal Reconstruction Using High Interpolation Rate

An interesting question is when our high-rate interpolation
scheme (with a pre-specified interpolation filter W (ω)) attains
the optimal MSE. In such cases, our scheme allows to bypass
the need for designing the analog interpolation filter without
any increase in MSE.

Theorem 6: The high-rate interpolation scheme depicted in
Figs. 2 and 3 with correction filters given in (50) attains the
minimal average MSE attainable by any linear system if and
only if there exists a non vanishing 2πK–periodic function
α(eiω/K) such that

W (ω) = α(eiω/K)S(ω)Λxx(ω) ∀ω ∈ Ωc, (65)

where Ωc is defined by (8).
Proof: From (55), (56) and (60) it can be seen that the

difference MSE−MSEopt equals zero if and only if for every
ω ∈ Ωc the following identity holds

∑

l∈Z
|S(ωl)|2 Λ2

xx(ωl) =

K−1∑
m=0

∣∣∣∣
∑
l∈Z

S(ωm+lK)Λxx(ωm+lK)W ∗(ωm+lK)
∣∣∣∣

∑
l∈Z

|W (ωm+lK)|2

2

. (66)

Splitting the sum in the left hand term into K sums, we have
K−1∑
m=0

(
‖am,ω‖2l2 −

|〈am,ω, bm,ω〉|2
‖bm,ω‖2l2

)
= 0, (67)

where we denoted am,ω[l] = S(ωm+lK)Λxx(ωm+lK) and
bm,ω[l] = W (ωm+lK). From the Cauchy–Schwarz inequality
we know that each of the K terms in this sum are nonnegative.
Therefore the sum equals zero if and only if each of the K
terms equals zero. The Cauchy–Schwarz theorem also states
that equality is attained if and only if the sequences am,ω[l]
and bm,ω[l] are linearly dependent. This means that there exist
K non vanishing functions αm (ω), m = 0, . . . , K − 1 such
that

W (ωm+lK) = αm(ω)S(ωm+lK)Λxx(ωm+lK) ∀ω ∈ Ωc

(68)
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for every l ∈ Z. Condition (68) is identical to (65).
Condition (65) is a generalization of (7), which was devel-

oped for K = 1. This condition implies that an interpolation
filter W (ω) is optimal if and only if it is the product of
S(ω)Λxx(ω) and some non vanishing 2πK periodic function.
This gives the essential justification of using the high-rate
reconstruction scheme. Specifically, the set of optimal kernels
becomes larger as the interpolation rate is increased. In prac-
tice, for a large enough rate one may use almost any reasonable
interpolation kernel and attain an MSE which is very close to
MSEopt.

When W (ω) satisfies (65), the high-rate interpolation
scheme not only minimizes the average MSE but also the
pointwise MSE. This can be shown by repeating the proof
of Theorem 7 in Appendix A, for the high rate case.

To illustrate the strength of our method, consider the case in
which the input signal x(t) is B–bandlimited, i.e. Λxx(ω) = 0,
|ω| > B, where B may be greater than π. In this case the
optimal interpolation kernel Wopt(ω) of the hybrid Wiener
filter is a lowpass filter with cutoff frequency B. Now, suppose
that Wopt(ω) is hard to implement. From (65) we see that
any B–bandlimited reconstruction filter W (ω) can be used to
attain the minimal MSE given that it does not vanish in the
support of S(ω)Λxx(ω) and that the interpolation rate satisfies
K ≥ B /π . This is because in this case 2πK ≥ 2B and
thus any such W (ω) can be written as a multiplication of
S(ω)Λxx(ω) and a non vanishing 2πK periodic function. We
conclude that for bandlimited input signals it is possible to
attain the minimal MSE with any bandlimited reconstruction
kernel that does not vanish in the support of Wopt(ω), simply
by increasing the reconstruction rate.

VI. SIMULATIONS

A. Synthetic Data

In order to confirm the efficiency of our proposed scheme,
we generated a discrete-time Gaussian random process x[n],
filtered it with a pre-filter s[−n] and then down sampled
it with sampling period T = 24 to obtain a sequence of
samples c[n]. The spectrum Λxx(eiω) of the signal x[n] is
shown in Fig. 7(a) on a frequency axis scaled to [−24π, 24π].
This spectrum contains 5% of its energy outside the interval
[−π, π], which means that no significant aliasing occurs in the
sampling process. The sampling filter used was a rectangular
filter of length T , as depicted in Fig. 7(b). This filter is a good
model for an optical system in which the effect of the point
spread function (PSF) of the lens is negligible with respect to
pixel size.

Our purpose was to reconstruct the original signal using
the pre-specified interpolation kernel w[n] shown in Fig. 8(a),
which corresponds to linear terpolation with period T . The
filter w[n] has a fast decay with respect to the optimal
interpolation kernel, which is depicted in Fig. 8(b). Figure
9(a) shows the MMSE reconstruction with an interpolation
period that equals the sampling period T (i.e. K = 1) and
with the correction filter (51), as proposed in [13]. Figures
9(b)–(d), depict the reconstructions obtained by the high-rate
interpolation scheme proposed in this paper for K = 2,

K = 3 and K = 24 respectively. It can be seen that
for low reconstruction rates, the interpolated signal exhibits
artifacts in the form of non-continuity of its derivative. As the
reconstruction rate increases, these undesired effects become
less dominant. The result in Fig. 9 is exactly identical to the
reconstruction that is obtained using the optimal interpolation
kernel (with a reconstruction period of T ).

Figure 10(a) shows the average MSE attained by the high-
rate interpolation scheme as a function of K. The dashed line
is MSEopt of the hybrid Wiener filter. The MSE of the standard
sampling scheme (K = 1) is roughly 30% higher than MSEopt.
However, an increase of the interpolation rate by a factor of
K = 3 is enough to close most of the gap in this case.

Figure 10(b) shows the pointwise MSE of the hybrid Wiener
filter as a function of time. This figure illustrates that even
when using the optimal interpolation kernel, the reconstructed
signal may be highly non-stationary. In this case the pointwise
MSE at times {lT}l∈Z is lower than the pointwise MSE at
times {(l + 1/2)T}l∈Z by a factor of 18. As explained in
Section III, this can cause undesired artifacts in images or
audio signals. One could eliminate this effect by using an
interpolation kernel that is π–bandlimited. Nevertheless, while
suppressing non-stationarity, this would result in a higher
MSE.

The behavior of the sequence MSE(K) can be charac-
terized by 2 properties: its asymptotic value and its rate of
convergence to this value. One factor that has a significant
contribution to the asymptotic value MSEopt is the extent to
which aliasing occurs. To illustrate this we repeated the above
experiment with a signal x[n] whose portion of energy outside
the frequency set [−π, π] is 20% (as opposed to 5% in the first
example). Figure 11(a) depicts MSE(K), where it can be seen
that MSEopt has increased substantially with respect to Fig. 10.

While the asymptotic value MSEopt has changed in this
last example, the rate of convergence was not affected. The
factor that most affects the convergence rate is the resemblance
of the pre-specified interpolation filter W (ω) to the optimal
one Wopt(ω). To show this we repeated the first experiment
with a rectangular interpolation filter, which is identical to
the sampling filter shown in Fig. 7(b). This filter clearly has
less resemblance to the optimal filter shown in Fig. 8(b) than
the linear interpolation used in the last example. Figure 11(b)
depicts MSE(K) in this case. It can be seen that the initial
value MSE(1) has increased and the rate of convergence has
decreased with respect to Fig. 10(a). In this situation, a value
of at least K = 6 is needed to close most of the gap to the
optimal interpolation.

B. Image Interpolation
We now demonstrate our approach in the context of image

interpolation. This requires the specification of the spectrum
of the underlying (continuous-space) image. In [6] and [7] it
has been found that natural images can be quite accurately
modelled as Matern processes. We adopt this assumption here
and use the isotropic 2D Matern spectrum, given by

Λxx (ω) =
σ2

(
α + ‖ω‖2

)ν+1 , (69)
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Fig. 7. (a) Spectrum of x[n] on a frequency axis scaled to [−24π, 24π]. An amount of 5% of the energy is concentrated at frequencies above π. (b) Sampling
filter.
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Fig. 8. (a) Given interpolation kernel. This kernel corresponds to linear interpolation for an interpolation rate that equals the sampling rate T . (b) Optimal
interpolation kernel.

where ω is the 2D frequency, σ2 is proportional to the variance
of the process, α defines the effective auto-covariance range
and ν controls the smoothness of the signal. The parameters
of the model can be estimated from the digital image at hand
(the sampled signal c[n]), as done in [6] and [7]. However,
we have found that using ν = 0.3 and α = (0.01π)2 works
quite well for natural images. Note that the scaling σ2 does not
affect the correction filters (50). These values are very similar
to the ones reported in [6] and [7].

The second ingredient needed for our system is the sampling
filter S(ω). We assume that the value of each pixel is the
integration of the continuous-space image over a rectangular
domain. Thus, we model S(ω) as the 2D version of the filter
in Fig. 7(b).

Using the above assumptions, the hybrid Wiener interpola-
tion kernel Wopt(ω) (5) can be calculated in the frequency
domain, however it does not have a closed form in the space
domain. This poses no limitation if the reconstructed image
is to be evaluated only on a regular grid of points spaced
1/L apart from one another, where L is an integer. Then,
the kernel w(t) need only be calculated at a discrete set of
points, which can be done approximately using DFT. This is
the situation when enlarging an image by an integer factor, as
studied in [6],[7]. However, to apply more general geometrical
transformations, such as rotation and scaling by an arbitrary

factor, a method to calculate w(t) at arbitrary points is needed.
In the absence of such method, we must resort to using a
predefined interpolation kernel, whose formula in the space
domain is available.

One very common alternative to the hybrid Wiener filter
is bicubic interpolation. Figure 12(b) shows the result of
enlarging the Mandrill image in Fig. 12(a) by a factor of
π/e ≈ 1.1557 using bicubic interpolation. It can be seen that
this method tends to blur the fine textures and sharp edges in
the image.

Another approach to tackling the problem is to use first or
second order approximation [14] to the hybrid Wiener filter.
This means we first evaluate the hybrid Wiener solution on
a finer grid (i.e. enlarge the image by an integer factor with
the kernel Wopt(ω)) and then use nearest neighbor or linear
interpolation to obtain the reconstructed signal at the desired
locations. The drawback of this method is that the first stage
does not take into account the interpolation to be preformed
in the second stage. Figure 12(c) shows the result of using
second order approximation to the Wiener solution evaluated
at a grid with 0.5 pixel spacing. As can be seen, the result bears
overwhelming resemblance to that in Fig. 12(b). Therefore, in
practice, this approach fails to enjoy the advantages of the
hybrid Wiener filter.

The high-rate interpolation system proposed in this paper is
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Fig. 9. Reconstructed signal for various interpolation rates. The solid line is the original signal and the circles are the nonideal samples. The dotted and
dashed lines correspond to the hybrid Wiener solution and the high rate scheme with the kernel in Fig. 8(a). (a) K = 1. (b) K = 2. (c) K = 3. (d) K = 24.
In this case the high rate solution coincides with the hybrid Wiener.
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Fig. 11. Average MSE as a function of K for two different setups. (a) A signal with 20% concentration of energy above the frequency π and the interpolation
filter shown in Fig. 8(a). (b) A signal with 5% concentration of energy above the frequency π and the interpolation filter shown in Fig. 7(b).

designed to optimally take into account the interpolation filter.
We used our approach with interpolation period of 0.5 pixels
and with a kernel corresponding to linear interpolation in the
fine resolution. The result is shown in Fig. 12(d). As can be
seen, the edges are sharper and the texture is better preserved.

VII. CONCLUSIONS

In this paper we suggested a scheme for reconstruction of
WSS random signals from their nonideal samples using a pre-
specified interpolation kernel. Our scheme uses an interpola-
tion rate which is higher than the sampling rate in order to
compensate for the nonideal interpolation kernel. A multirate
digital system that processes the samples prior to multiplying
the shifts of the interpolation kernel was developed. We
compared the performance of our proposed scheme to the
hybrid Wiener filter scheme (in which one is allowed to design
the interpolation kernel). This was done by deriving closed
form expressions for the MSE of both methods. Specifically,
we showed that in our scheme the class of interpolation kernels
that allow to attain MSEopt of the hybrid Wiener filter becomes
larger as the reconstruction rate is increased. This means that
practically, almost any reasonable interpolation kernel can be
used provided that the reconstruction rate is high enough. We
also derived necessary and sufficient conditions that allow
for perfect reconstruction (in an MSE sense). This result
generalizes a known theorem for ideal samples.

APPENDIX A
NON-LTI DIGITAL CORRECTION SYSTEMS

Theorem 7: Let x̂(t) =
∑

n∈Z d[n]w(t − n), where the
sequence d[m] =

∑
n∈Z h[m,n]c[n] is the output of a linear

system operating on the samples c[n] = (x(t) ∗ s(−t))|t=n.
Then the pointwise MSE between x̂(t) and x(t) is minimized
for every t if and only if

1) there exists a non vanishing 2π–periodic function α(eiω)
such that W (ω) = α(eiω)S(ω)Λxx(ω) for every ω ∈
Ωc, with Ωc given by (8)

2) the correction system h[m,n] can be written as hTI [m−
n] + hN [m,n], where hTI [n] corresponds to an LTI
system HTI(eiω) = (Λcc(eiω)α(eiω))−1 for every ω ∈
Ωc, and hN [m,n] is an arbitrary (not necessarily LTI)
system that satisfies H(eiv, eiu) = 0 for every v ∈ Ωc

and arbitrary u.

Before providing a proof, note that Theorem 7 implies
that the non-stationary component of d[n] can only contain
frequencies that are suppressed by W (ω) and thus do not affect
x̂(t). The simplest way of enforcing condition 2 is confining
the discussion to LTI systems for which hN [m, n] = 0. In this
case condition 1 coincides with (7).

Proof: A necessary and sufficient condition for the signal
x̂(t) to minimize the pointwise MSE to x(t) is that the
orthogonality principle is satisfied for every t. Specifically, the
error x(t)− x̂(t) has to be orthogonal to each of the nonideal
samples c[n] = (x(t) ∗ s(−t))|t=n, i.e.

E [(x (t)− x̂ (t)) c [m]] = 0, m ∈ Z, t ∈ R. (70)

Substituting the expression for x̂(t) in terms of d[n], this
condition becomes

E[x(t)c[m]] =
∑

n∈Z
Rcd[m,n]w(t−n), m ∈ Z, t ∈ R, (71)

where Rcd[m,n] = E[c[m]d[n]] is the cross-correlation se-
quence of the processes c[n] and d[n]. In Appendix B, it is
shown that E[x(t)c[m]] = (Rxx(t) ∗ s(t)) (t−m). Substitut-
ing this term into (71) and taking the continuous-time Fourier
transform (with respect to t) we get

Λxx (v)S (v) e−ivm =
∑

n∈Z
Rcd [m, n] W (v) e−ivn

= W (v)F {Rcd [m, ·]} (
eiv

)
, (72)

where F{Rcd[m, ·]}(eiv) denotes the discrete-time Fourier
transform of Rcd[m,n] with respect to n at frequency v. Now,



14 IEEE TRANSACTIONS ON SIGNAL PROCESSING
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Fig. 12. (a) Original Mandrill image of size 256× 256. (b) Enlargement by a factor of π/e with bicubic interpolation. (c) Second order approximation with
a grid of 0.5 pixel spacing. (d) Our approach with a grid of 0.5 pixel spacing and linear interpolation.

taking the discrete Fourier transform of both sides of (72) with
respect to m leads to

Λxx (v)S (v) δ (u + v) = W (v) Λcd

(
eiu, eiv

)
. (73)

Since d [n] is the output of a linear system operating on the
WSS sequence c[n], the cross spectrum Λcd(eiu, eiv) can be
expressed in terms of Λcc

(
eiu

)
and the transfer function of

the system, leading to

Λxx(v)S(v)δ(u + v) = W (v)Λcc(eiu)H(eiv, eiu). (74)

Taking into account that the left hand side of (74) is zero
unless u = −v, we may write it as

Λxx(u)S∗(u)δ(u + v) = W (v)Λcc(eiu)H(eiv, eiu). (75)

We first note that if for some frequency u ∈ [−π, π] the
term Λxx(u + 2πl)S∗(u + 2πl) vanishes for every l ∈ Z
then Λcc(eiu) = 0 and (75) is satisfied. Hence, for fre-
quencies outside Ωc defined in (8), we have the freedom to
choose W (v) and H(eiv, eiu) arbitrarily. Next, due to the
periodicity of H(eiv, eiu), it can be seen from (74) that for
frequencies in Ωc the filter W (ω) must be chosen such that
W (ω) = α(eiω)S(ω)Λxx(ω) for some non vanishing 2π–
periodic function α(eiω). The transfer function H(eiv, eiu),
then, must possess the form

H
(
eiv, eiu

)
=

∑
n∈Z

δ (u + v − 2πn)

Λcc (eiu)α (eiv)
, v ∈ Ωc. (76)
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This expression has the structure of the frequency response of
an LTI system. We conclude that in order for the pointwise
MSE between x(t) and x̂(t) to be minimized, the correction
system can only contain a time-varying component whose
frequency response is nonzero outside Ωc.

APPENDIX B
DERIVATION OF THE MATRIX G

(
eiω

)
AND VECTOR v

(
eiω

)

In this appendix we derive the expressions for G(eiω) and
v(eiω) in (30). Throughout the derivations we make use of
the following identity:

F {x [n]} (ω) =
∑

l∈Z
X (ωl) . (77)

A. The matrix G(eiω)

The (l, r) entry in the infinite matrix gm,n depends on the
signals yr,n(t) and yl,m(t) via (34). The definition of yl,m(t)
is given by (24)

yl,m (t) =
∑

j∈Z
w̃t,m [−j] c [j − l] , (78)

where the sequence w̃t,m[j], which depends on the continuous
parameter t and on the integer index m, is defined as

w̃t,m [j] , w
(
t + j − m

K

)
. (79)

Substituting (78) in (34) leads to

gm,n[l, r]

= E




t0+1∫

t0

∑

k∈Z
w̃t,n[k]c[−k − r]

∑

j∈Z
w̃t,m[j]c[−j − l]dt




=

t0+1∫

t0

∑

j∈Z

∑

k∈Z
Rcc[j − k + l − r]w̃t,n[k]w̃t,m[j]dt

=

t0+1∫

t0

(Rcc[j] ∗ w̃t,m[−j] ∗ w̃t,n[j]) [l − r]dt. (80)

It is evident from (80) that gm,n is an infinite Toeplitz matrix
as its (l, r) entry is only a function of l − r. As such, it
corresponds to convolution with the sequence gm,n[j] defined
by

gm,n [j] =

t0+1∫

t0

(Rcc [j] ∗ w̃t,m [−j] ∗ w̃t,n [j]) dt. (81)

Let us write an explicit expression for the DTFT of gm,n[j]

Gm,n

(
eiω

)
= Λcc

(
eiω

) t0+1∫

t0

W̃ ∗
t,m

(
eiω

)
W̃t,n

(
eiω

)
dt. (82)

Using (77),

Λcc

(
eiω

)
=

∑

l∈Z
|S (ωl)|2 Λxx (ωl) . (83)

The Fourier transform of w̃t,m[n] is given by

W̃t,m

(
eiω

)
=

∑

n∈Z
w

(
t + n− m

K

)
e−iωn

=
∑

k∈Z
W (ωk) eiωk(t−m

K ), (84)

where the last row is, again, obtained from (77). Finally,
t0+1∫

t0

W̃ ∗
t,m(eiω)W̃t,n(eiω)dt

=
∑

l,k∈Z
W ∗(ωk)W (ωl)ei(ω m−n

K +2π km−ln
K )

t0+1∫

t0

ei2πt(l−k)dt

=
∑

l∈Z
|W (ωl)|2 eiωl(m−n

K ), (85)

where we used the identity
t0+1∫

t0

ei2πt(l−k)dt = δk,l. (86)

Substituting (83) and (85) into (82) we have

Gm,n(eiω) =
∑

l∈Z
|S(ωl)|2 Λxx(ωl)

∑

l∈Z
|W (ωl)|2 eiωl(m−n

K ).

(87)

B. The vector v(eiω)
The l’th element in the sequence vm is given by (26).

Substituting the expression (24) of yl,m(t) into (26) leads to

vm [l] = E




t0+1∫

t0

x (t)
∑

j∈Z
w

(
t− j − m

K

)
c [j − l] dt




=

t0+1∫

t0

∑

j∈Z
w̃t,m [−j] E [x (t) c [j − l]] dt. (88)

This expression depends on the cross correlation of x(t) and
c[n], which is given by

E [x (t) c [n]] = E


x (t)

∞∫

−∞
s (τ − n)x (τ) dτ




=

∞∫

−∞
s (τ − n)Rxx (t− τ) dτ

= (Rxx (t) ∗ s (t)) (t− n) , Rst [n] , (89)

where Rst[n] is a sequence which depends on a continuous
parameter t. Using (89) we may write (88) in terms of a
discrete-time convolution

vm [l] =

t0+1∫

t0

∑

j∈Z
w̃t,m [−j]Rst [j − l] dt

=

t0+1∫

t0

(w̃t,m [j] ∗Rst [j]) [−l] dt. (90)
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Now the DTFT of the sequence vm can be written explicitly

Vm(eiω) =

t0+1∫

t0

W̃ ∗
t,m(eiω)

∑

l∈Z
Λxx(ωl)S(ωl)eiωltdt

=
∑

l∈Z
Λxx(ωl)S(ωl)

t0+1∫

t0

W̃ ∗
t,m(eiω)eiωltdt, (91)

where we used (77). Substituting the expression for W̃t,m(ω)
from (84):

Vm

(
eiω

)
=

∑

l,k∈Z
W ∗(ωk)Λxx(ωl)S(ωl)eiωk

m
K

·
t0+1∫

t0

ei2πl(l−k)tdt

=
∑

l∈Z
W ∗(ωl)Λxx(ωl)S(ωl)eiωl

m
K , (92)

where we used (86).
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