Generalized Sampling Methods Problem Set 1 - Review of Linear Algebra

- 1. Let A be a Hermitian operator on a complex Hilbert space \mathcal{H} . Prove that if $\langle x, Ax \rangle = 0$ for all $x \in \mathcal{H}$, then A = 0.
- 2. Define the inner product $\langle x, y \rangle = x^T W y$ for all $x, y \in \mathbb{R}^m$, where W is a symmetric positive definite matrix. Let A be any $m \times m$ matrix. Determine the adjoint A^* with respect to the given inner product.
- 3. Let T be a linear transformation. Prove that
 - (a) $\mathcal{N}(T^*T) = \mathcal{N}(T).$
 - (b) $\mathcal{R}(T^*T) = \mathcal{R}(T^*).$
- 4. Let $\{f_n(t)\}_{n=-\infty}^{\infty}$ be a set of functions defined over $[-\pi,\pi]$ as follows:

$$f_n(t) = \begin{cases} t & n = 0\\ e^{jnt} & n \neq 0. \end{cases}$$

Let $X: \ell_2 \to L_2[-\pi,\pi]$ be the set transformation corresponding to $\{f_n(t)\}$.

- (a) Find the range space $\mathcal{R}(X)$.
- (b) Find the null space $\mathcal{N}(X)$.
- 5. Let $\hat{x} = \arg\min_{v \in \mathcal{V}} ||x v||^2$ where \mathcal{V} is a closed subspace of a Hilbert space \mathcal{H} and $x \in \mathcal{H}$. Show that $\hat{x} = P_{\mathcal{V}}x$ is the orthogonal projection of x onto \mathcal{V} .
- 6. Let $T : \mathcal{H} \to \mathcal{S}$ be a continuous linear transformation with closed range. Prove that the pseudoinverse T^{\dagger} of T satisfies
 - (a) $TT^{\dagger} = P_{\mathcal{R}(T)}$.
 - (b) $T^{\dagger}T = P_{\mathcal{N}(T)^{\perp}}.$
 - (c) $\mathcal{R}(T^{\dagger}) = \mathcal{N}(T)^{\perp}$.
 - (d) $\mathcal{N}(T^{\dagger}) = \mathcal{R}(T)^{\perp}$.