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ABSTRACT

Recent work in the emerging field of compressive sensing indicates
that, when feasible, judicious selection of the type of distortion in-
duced by measurement systems may dramatically improve our abil-
ity to perform reconstruction. The basic idea of this theory is that
when the signal of interest is very sparse (i.e., zero-valued at most lo-
cations) or compressible, relatively few incoherent observations are
necessary to reconstruct the most significant non-zero signal compo-
nents. However, applying this theory to practical imaging systems is
challenging in the face of several measurement system constraints.
This paper describes the design of coded aperture masks for super-
resolution image reconstruction from a single, low-resolution, noisy
observation image. Based upon recent theoretical work on Toeplitz-
structured matrices for compressive sensing, the proposed masks are
fast and memory-efficient to compute. Simulations demonstrate the
effectiveness of these masks in several different settings.

Index Terms— Image reconstruction, Image resolution, Com-
pressive sensing, Coded aperture

1. SUPERRESOLUTION IMAGE RECONSTRUCTION

Superresolution image reconstruction conventionally is the process
by which several low resolution, noisy, slightly shifted observations
are used to reconstruct an image of the underlying high resolution
scene [1]. Mathematically, we can model the jth k-dimensional ob-
servation of a high resolution, n2-dimensional scene f as

yj = Rjf + wj ,

where Rj is a k×n2 matrix representing shifting an image, followed
by a blur (such as one induced by imaging optics), and downsam-
pling, and where wj is zero-mean white Gaussian noise associated
with the jth observation. Much of the existing superresolution liter-
ature (cf. [1]) assumes we have observed yj for j = 1, 2, . . . J , for
some J > n/k, so that the total number of observations is roughly
the same as or greater than the number of pixels in f to be recon-
structed [1, 2]. The multiple observations can be collected sequen-
tially over time or via a multiplexed imaging system (cf. [2]). In a
variety of practical settings, however, collecting several low resolu-
tion observations is not feasible because of time limitations, a need to
keep the focal plane array small, or data storage restrictions. In light
of these constraints, one might ask whether it is possible to collect a
single low resolution observation and use it alone to reconstruct f ;
i.e., we wish to reconstruct f from a single measurement of the form

y = Rf + w. (1)
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Since the dimensionality of y is now significantly less than the di-
mensionality of f , the resulting inverse problem is highly underde-
termined and ill-posed. In fact, even with the benefit of state-of-the-
art reconstruction techniques, estimating high resolution features in
f such as sharp boundaries and edges is difficult when R is mod-
eled as described above (i.e., blurring and downsampling). These
challenges are also present in image upsampling and interpolation
settings [3].

This paper addresses the accurate reconstruction of a high reso-
lution image f from a single low resolution observation y via com-
pressive coded aperture imaging. In particular, we describe the de-
sign of coded aperture patterns for incoherent imaging systems which
significantly improve the accuracy with which we can reconstruct f ,
and theoretically characterize the performance of the system within
the framework of compressive sensing [4]. Section 2 describes coded
aperture imaging and the mask design principles which have been
used in previous, non-compressive contexts where the dimension-
ality of the observation (k) is approximately equal to the number
pixels to be reconstructed (n2). In Section 3 we describe recent
work in the emerging field of Compressive Sensing (CS), which is
based on the idea that we can use a relatively small number of in-
direct observations of an image and reconstruct it very accurately
when that image is sparse in some basis. However, the translation of
these ideas to realizable physical systems is nontrivial. Section 4 de-
scribes the physical constraints placed upon the CS projection matrix
in incoherent optical systems and the subsequent proposed design of
coded aperture masks for compressive superresolution image recon-
struction. Finally, in Section 5 we present simulation results which
demonstrate the efficacy of the proposed mask design compared with
conventional imaging systems without coded apertures.

2. CODED APERTURE IMAGING

Coded aperture imaging first arose out of a desire to increase the
light hitting a detector in an optical system without sacrificing reso-
lution (by, say, increasing the diameter of a pinhole). The basic idea
is to create a mask pattern which introduces a more complicated
point spread function than that associated with a pinhole, and ex-
ploit this pattern to reconstruct high-quality image estimates. These
techniques are particularly popular in astronomical and medical ap-
plications because of their efficacy at wavelengths where lenses can-
not be used, but recent work has also demonstrated their utility for
collecting both high resolution images and object depth information
simultaneously [5].

Seminal work in coded aperture imaging includes the devel-
opment of Modified Uniformly Redundant Arrays (MURAs) [6].
These mask patterns, denoted by p, are binary, square patterns with
prime integer sidelengths which are designed so that if one observed

y = f ∗ p + w,
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where ∗ denotes convolution, then f could be reconstructed as

bf = y ∗ ep
for some complementary pattern ep. In other words, the MURA pat-
terns (and their complements) are specifically designed so that p ∗ ep
approximately equals the Kronecker δ function and hence to opti-
mize reconstruction accuracy subject to the constraint that linear,
convolution-based reconstruction methods would be used.

While MURA coded apertures are successful in the context of
linear reconstruction, there exist a wide variety of nonlinear recon-
struction methods which can dramatically outperform linear recon-
structions when f has a sparse representation in some basis, such as
a wavelet basis. However, there currently exist few guiding princi-
ples for designing coded aperture masks for nonlinear reconstruction
methods.

3. COMPRESSIVE SENSING

Nonlinear image reconstruction based upon sparse representations
of images has received widespread attention recently with the ad-
vent of “compressive sensing”. This emerging theory indicates that,
subject to a Restricted Isometry Property (RIP) [7] condition on the
observation matrix R, very high dimensional vectors (f ) can be re-
covered with astounding accuracy from a much smaller dimensional
observation (y) when f has a “sparse” representation in some ba-
sis, meaning that only a few non-zero basis coefficients contain the
vast majority of the energy in f . Let W denote a basis such that
f = Wθ where θ has few non-zero coefficients. Then the �2 − �1

minimization

θ̂ = arg min
θ

1

2
‖y − RWθ‖2

2 + τ‖θ‖1 (2)

bf = Wθ̂

will yield a highly accurate estimate of f with very high probability
[8, 9]. The regularization parameter τ > 0 helps to overcome the
ill-conditioning of the matrix R for obtaining θ from observations
y = RWθ + w. The �1 penalty term drives small components of θ
to zero and helps create sparse solutions.

The observation matrix R is said to satisfy the RIP of order 3m
if, for T ⊂ {1, 2, · · · , n} and RT , a submatrix obtained by retaining
the columns of R corresponding to the indices in T , there exists a
constant δ3m ∈ (0, 1/3) such that for all z ∈ �|T |,

(1 − δ3m)‖z‖2
2 ≤ ‖RT z‖2

2 ≤ (1 + δ3m)‖z‖2
2 (3)

holds for all subsets T with |T | ≤ 3m [7]. While the RIP can-
not be verified for a given observation matrix R, it has been shown
that matrices with entries drawn independently from some proba-
bility distributions satisfy the condition with high probability when
k ≥ Cm log(n/m) for some constant C, where m ≡ ‖θ‖�0 is the
number of non-zero elements in the vector θ [7].

In a number of practical settings, however, it is not possible to
have arbitrary control over the observation matrix R and draw its
elements from a given probability distribution. Instead, R is often
constrained to have a particular structure associated with the physics
of the data collection system. Below, we examine the generation of
coded aperture masks which allow the associated observation matrix
to satisfy the RIP of order 3m.

4. MASK DESIGN

4.1. Observation Matrix Structure

In the following, we assume that the observation y is given by y =
D(f ∗h)+w, where D is a downsampling operator and h is a point-
spread function (PSF). The downsampling operator D corresponds
to selecting every other pixel in both the horizontal and vertical di-
rections of an image.

Denote the Fourier transform of h by H . Let F be an n × n

matrix whose entries are Fk,l = ω
(k−1)(l−1)
n , where ωn is the n-th

root of unity, given by e2πi/n. Let F = F ⊗ F , where ⊗ is the
matrix Kronecker product. Then Fh = H . Let CH be an n2 × n2

diagonal matrix whose diagonal components are the entries in H .
Then the observation y is given by y = Rf , where R is the linear
operator

R = DF−1CHF .

In a conventional coded aperture imaging setup, we assume the
PSF h is given by a mask p, i.e., h = p. In a pinhole camera,
h corresponds to a δ function and the observation y is merely the
blurred and downsampled image. In a Fourier optics setting, the
PSF h can be written as

h = |F(p)|2, (4)

where F(p) is the Fourier transform of p and | · |2 is understood to be
component-wise. If the image is taken with the aperture fully open,
i.e., p is a matrix of ones, then h again corresponds to a δ function.

Our goal then is to design a mask p in either setting such that the
resulting image reconstruction is better than using no mask at all, i.e.,
the pinhole camera or the fully open aperture in Fourier imaging.
This involves defining a p such that the corresponding observation
matrix R satisfies an RIP.

4.2. Pseudo-Circulant CS Matrices

Recently, Bajwa et al. [10] showed that random circulant matri-
ces (and Toeplitz matrices, in general) are sufficient to recover f
from y exactly with high probability. In particular, they showed
that circulant matrices whose elements are drawn independently
from an appropriate distribution satisfy an RIP of order 3m when
k ≥ Cm3 log(n/m) for some constant C. In this paper, we extend
these results to pseudo-circulant matrices and use them to motivate
our mask design.

Note that R = DF−1CHF is k × n2, where k = n2/d2 and d
is the downsampling factor in each dimension. Furthermore, R has
a specific structure. Let A be such that R = DA, and note that A is
n2 × n2 block-circulant of the form

A =

0
BBB@

An An−1 · · · A2 A1

A1 An · · · A3 A2

...
...

. . .
. . .

...
An−1 An−2 · · · · · · An

1
CCCA , (5)

where each Aj ∈ �n×n is circulant; i.e., , Aj is of the form

Aj =

0
BBB@

an an−1 · · · a2 a1

a1 an · · · a3 a2

...
...

. . .
. . .

...
an−1 an−2 · · · · · · an

1
CCCA .

The n2/d2 rows of R form a subset of the n2 rows of A correspond-
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ing to the downsampling operation. This “pseudo-circulant” struc-
ture is a direct result of the fact that F diagonalizes any circulant
matrix (such as Aj) and so F ≡ F ⊗F diagonalizes block-circulant
matrices (such as A).

In order to show that R satisfies the RIP, it is necessary that each
submatrix RT of R, where T ⊂ {1, 2, · · · , n2} satisfy (3), where
RT is the k × |T | matrix whose columns are the columns of R with
indices in T . In [10], it is shown that a k × n2 matrix A satisfies
the RIP with very high probability if A is circulant and if the ele-
ments of the first row of A are drawn from an appropriate probabil-
ity distribution (such as a zero-mean Gaussian or scaled Radamacher
distribution). Central to the proof of this result is the fact that the
number of rows of AT (a k × |T | submatrix of A) which are statis-
tically dependent upon the ith row of AT , for any i ∈ 1, 2, . . . , k,
is bounded above by 2|T |(|T | − 1). Our observation matrix R is
pseudo-circulant rather than circulant (as described above), but it is
nevertheless straightforward to demonstrate that the number of rows
of RT which are statistically dependent upon the ith row of RT is
also bounded by 2|T |(|T | − 1). Thus the pseudo-circulant RT has
the same degree of dependency structure as a circulant matrix AT

of the same size. It follows directly that because A satisfies the RIP
with high probability, R must also satisfy the RIP with high proba-
bility.

Finally, since we assume that θ is sparse or compressible in a
basis W , it is the product matrix RW that we ultimately require
to satisfy the RIP. (Here, W can be, for example, the Haar wavelet
transform matrix.) Following the methods outlined in [10], a matrix
AW can be defined such that AW W is block-circulant. Thus, the
product RW = DAW W = DA will satisfy the RIP with high
probability.

4.3. Masks for Pseudo-Circulant CS

The previous subsection showed that we can draw n2 iid observa-
tions from an appropriate distribution (such as a zero-mean Gaus-
sian with variance 1/k) and use them to form a pseudo-circulant
observation matrix R. In this section, we describe how to derive a
coded aperture mask from such a matrix in a computationally- and
memory-efficient manner.

First, note that R is uniquely defined by its first row entries,

e.g., {aj}n2

j=1, and that A (where R = DA) is similarly uniquely

defined by the aj’s. The matrix A can be written as A = F−1CHF ,
and recall that CH is a diagonal matrix. This means that given A,
we can compute CH = FAF−1. As discussed in Sec. 4.1, it is
straightforward to compute h from CH . By enforcing symmetry on
A (so that the (i, j)th element of A is the same as the (j, i)th element
of A), we can guarantee that the transfer function H defined by CH

is circularly symmetric and hence h is real-valued. Computing h
using this logic is impractical because of limited computational time
and system memory. However, it is possible to compute h from
the aj’s directly. Thus, even though A is n2 × n2, the elements of
C can be obtained without having to form A or compute FAF−1

explicitly.

With some algebraic manipulation, we can show that the ele-
ments of CH can be computed using linear combinations of the di-
agonal matrices Gj ≡ FAjF

−1. Let Cj be the n × n submatrix of
CH whose first element is the (n(j − 1) + 1, n(j − 1) + 1) element
of CH for j = 1, . . . , n. In general, these matrices are real, diagonal

and given by

Cj = G1 + (−1)j−1Gn/2+1 +

n/2X
t=2

2Re
“
ω−(t−1)(j−1)Gt

”
.

Since each Gj and Cj is diagonal, only n elements need to be stored
in each, and so relatively little memory and computational time are
needed for this calculation.

In a Fourier optics setting, the point-spread function h is given
by h = |F(p)|2, where | · |2 is component-wise. We shift h such
that each of its elements is non-negative, and then the mask p can be
explicitly calculated. Note that this means that the elements of R are
no longer zero mean, but we can easily compensate for this during
the reconstruction process defined by (2).

5. SIMULATION RESULTS

5.1. Minimization Algorithm

The compressive imaging problem can be formulated as an optimiza-
tion problem where the objective function is expressed as a combi-
nation �1 and �2 minimization program, as described in (2). In our
numerical experiments, we use the GPSR (gradient projection for
sparse reconstruction) code of Figueiredo et al. [11], which has been
shown to outperform several existing optimization algorithms and
codes for solving (2), or equivalent formulations of it. The version
used in our simulations - GPSR-BB - uses a quasi-Newton search di-
rection, where the Hessian is approximated by a multiple of the iden-
tity matrix. Generally, calculating search directions is the computa-
tional bottleneck of optimization algorithms. Because the GPSR-
BB search direction amounts to the negative gradient, it is generally
not expensive to compute. An important feature of GPSR is a post-
processing step called debiasing. Having obtained a solution (and
consequently a sparsity pattern for the solution) to (2), the debiasing
phase minimizes the �2 term while keeping the sparsity pattern of the
iterates θ fixed. This step often produces significant improvement
over the original sparse solutions. In our numerical experiments, we
used the Haar wavelet transform for the basis W .

5.2. Numerical Experiments

To demonstrate the effectiveness of the above compressive coded
apertures, we simulate reconstruction of the “Cameraman” image
(a magnified section is displayed in Figure 1(a)), from observations
collected via several different masks. As a baseline for comparison,
we reconstruct the image from observations simulating downsam-
pling without using a coded aperture, i.e., the PSF h is a δ function.
This reconstruction in showed in Figure 1(b) and has an MSE of

‖f − bf‖2
2/‖f‖2

2 = 0.1011. Figure 1(c) shows the noisy, coded
observation associated with a random mask generated as described
above, and Figure 1(d) shows the image reconstruction via GPSR

from this observation; its MSE is ‖f − bf‖2
2/‖f‖2

2 = 0.0867.
In some settings, additional simplicity may be desired in the

coding mask. For instance, conventional coded aperture masks con-
sist solely of zeros and ones. If we round the mask elements used
to generate the observation in Figure 1(c) to satisfy this constraint,
generate a new observation, and compute a new reconstruction, we

achieve the result shown in Figure 1(e); its MSE is ‖f− bf‖2
2/‖f‖2

2 =
0.0897. Likewise, in Fourier optics one can generate mask elements
with values of plus or minus one (for example, by carefully con-
trolling the thickness of an optical element at different locations to
induce a phase shift); setting the sign of each element of the mask
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derived above to achieve this effect (scaling appropriately) and com-
puting the resulting GPSR reconstruction yields the image displayed

in Figure 1(f), which has an MSE of ‖f − bf‖2
2/‖f‖2

2 = 0.0924.

Qualitatively, we see that the codes developed based on the prin-
ciples of compressive sensing yield higher resolution reconstruction
and less spatial aliasing in several key image features, such as the
columns in one of the background buildings, the features of the
man’s face, and the crispness of strong edges such as around the
legs of the tripod. Furthermore, we find that modifying the masks
slightly to aid in ease of manufacturing does not significantly detract
from the quality of the reconstructions.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Compressive coded aperture superresolution results. (a)

Original cameraman image (f ). (b) Reconstruction without coding

(i.e., h is the δ function); MSE = 0.1011. (c) Observed coded aper-

ture image (y), with one quarter as many pixels as f , using a code

derived with the proposed method. (d) Reconstruction from obser-

vations in (c); MSE = 0.0867. (e) Reconstruction after rounding el-

ements of h to be either 0 or 1 before collecting observations; MSE

= 0.0897. (f) Reconstruction in Fourier imaging setting after setting

elements of p to be either −1 or 1 before collecting observations;

MSE = 0.0924. Note the improved resolution in the background

building columns, the man’s face, and the edges of the tripod legs.

6. CONCLUSIONS

This paper has demonstrated that coded apertures designed to meet
the Restricted Isometry Property [7] can improve our ability to per-
form superresolution image reconstruction from noisy, low resolu-
tion observations. In particular, building from the theory of RIPs
for Toeplitz-structured matrices for compressive sensing [10], we
establish a method for generating coded aperture masks in both the
conventional coded aperture setting and a Fourier imaging setting;
these random masks can be shown to result in an observation matrix
which, with high probability, satisfies the RIP. Furthermore, simu-
lations demonstrate that these masks combined with �2 − �1 min-
imization reconstruction methods yield superresolution reconstruc-
tions with crisper edges and improved feature resolution over recon-
structions achieve without the benefit of coded apertures.
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