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Abstract

A large class of communication channels can be represented by linear time-variant

filters. Different constraints can be imposed on these filters in order to simulate the

actual operating conditions of such channels. The constraints permit the original filter

to be replaced by another (simpler) filter that imitates the original filter under the oper-

ating constraints. These new filters need not resemble the physical channel at all, and

need not be equivalent to the actual channel, except under the given constraints.

In this report, the constraints considered are those of finite input and output channel

signals and finite channel memory. Other cases can be studied by similar methods.

Methods of characterizing linear time-variant filters are investigated in order to deter-

mine the most convenient descriptions for the different constraints. These descriptions

are used to obtain sampling theorems and models for the filter under the various con-

straints. The theorems are used to find the conditions under which a linear time-variant

filter can be determined by input-output measurements only.



a:c



I. INTRODUCTION

Background of the Problem

The classical problem of electrical communications is that of securing reliable trans-

mission of signals through a communication channel. A frequently used channel is the

ionosphere. The chief obstacles to obtaining reliable signal transmission via the iono-

sphere are atmospheric noise and time-variant multipath propagation. The characteris-

tics of atmospheric noise, which is largely caused by lightning discharges, have been

extensively studied (1,2,3). The main defense against it is sufficiently large signal power.

Atmospheric noise is an additive disturbance and therefore, in a sense, is extrinsic to

the actual physical communication medium. On the other hand, multipath disturbances -

manifested most commonly as selective fading, frequency distortion, and intersymbol

interference - directly involve the channel itself. Multipath problems are the result of

dispersive propagation by paths of different electrical (and/or physical) lengths.

Several schemes for fighting multipath propagation have been devised. The most

successful at present are diversity reception (4) and the Rake system (5). The

commonest forms of diversity reception are space and frequency diversity. These take

advantage of the fact that signals received at different locations, or signals of slightly

different frequency, do not fade synchronously. Therefore, by using two (or more)

receivers and weighting the received signals appropriately, reliablity is improved. The

philosophy of the Rake system is to perform a continuous measurement of the multipath

characteristic, which is then employed to combat the multipath propagation effectively.

The foundations of Rake were laid chiefly by the excellent communication theoretical

studies of scatter-multipath channels made by R. Price (6, 7). Related work has also

been done by W. Root and T. Pitcher (8) and by G. L. Turin (9). These theoretical

studies, however, all suffer from the restricted nature of the channel models on which

they are based. [A critique of these models and a general review of statistical multipath

communication theory was recently given by G. L. Turin (10).]

The operational success of the Rake system encourages a more general study of the

communication channel. We can regard the channel as a time-variant filter with additive

noise superimposed on the output. In these general terms, of course, little of a specific

nature can be said about the problem. But in communications systems there are certain

additional constraints present: Signals are of finite time-bandwidth product, the channel

is nearly linear, and so forth. Introducing these constraints into the problem should

enable us to obtain restricted, but simpler, models for the filter - models that are more

useful for our purposes. These models will imitate the operation of the filter under the

imposed constraints but may not bear any physical resemblance to the original filter and

may not imitate the filter under other operating conditions. This report is devoted to

methods of obtaining such models under the constraints of linearity and limited bandwidth

or limited duration of channel memory. Some properties and methods of description and

analysis of such models are also studied.
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II. CHARACTERIZATION OF LINEAR TIME-VARIANT NETWORKS

A time-variant (or time-varying, or time-variable) network is one whose input-

output relationship is not invariant under translations in time. If, in addition, the super-

position principle holds for the network, we have a linear time-variant network. In

communications engineering linear time-variant networks have long been in use, espe-

cially as modulators and oscillators. Such systems, which usually contain only a single

variable element, have been widely investigated, chiefly by mathematicians, and several

theories and methods of solution (11, 12) - Floquet theory, Mathieu functions, the

B. W. K. method, for example - have been developed, although these are not yet in the

most suitable form for engineering application. In present-day communication theory,

however, interest has shifted to time-variant systems of a more general nature, the

behavior of which is governed by linear, and not necessarily differential, operators.

L. A. Zadeh of Columbia University, who pioneered the investigation of such systems,

introduced the concept of a frequency function for linear time-variant networks - a

concept that has been extremely useful.

In this section we shall discuss rather briefly some methods of characterizing linear

time-variant networks and describe some forms of specification that we have found

useful in our analysis. The meanings and possible interpretations of the time and fre-

quency variables that are introduced are considered. These are of service in Section III.

(In this report, the terms network and filter often are used interchangeably.)

2.1 Characterization of Linear Time-Variant Networks

The most commonly used methods of characterizing a linear time-variant network,

that is, of specifying its input-output relationship, are those that give (a) the differential

x(t) I I y(t)
N

Fig. 1. Linear time-variant network, N.

equation of the network, (b) the impulse response of the network, (c) the frequency

response of the network, and (d) special techniques that are valid only for particular

classes of networks. In discussing these methods, we shall consider a two-terminal-

pair network, N, with input x(t) and output y(t). (See Fig. 1.)

2. 11 The Differential Equation Method

This has been the classical way of describing linear time-variant networks. We

have a linear differential equation with variable coefficients relating y(t) and x(t):

[an(t) pn+... +al(t) p+ao] y(t) = [bm(t) pm+ .. +bl(t) p+bo] (t) (1)
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or, more simply,

L(p, t) y(t) = K(p, t) x(t) (2)

where p is the differential operator d/dt, and L(p, t) and K(p, t) represent respectively

the left-hand and right-hand operations in Eq. 1.

Such equations have been investigated extensively by mathematicians and have been

used in the study of oscillator and modulator circuits. A review of some of the techniques

used for their solution, which often can only be numerical or approximate, is given by

Pipes (11) and Bennett (12). This method of characterization is useful for studies of

network response to a fixed input such as a sine wave or a constant. However, in modern

communication theory and in modern signal theory, the emphasis is not on fixed inputs

but on inputs that belong to a class of functions. Thus, for example, the input may be a

member of a class of bandlimited functions or of an ensemble of random functions. In

such cases, characterization by impulse response or frequency response is more suit-

able, although some special cases can still be handled by differential equations (13).

Another reason for preferring an impulse and frequency response description is that

these response functions can often be directly determined by experiment, whereas it is

usually difficult, if not impossible, to so determine the differential equation of the net-

work. However, it is clear that, theoretically, all three specifications are interrelated;

a discussion of the relationships is given in reference 14.

2. 12 The Impulse Response and the Frequency Response

The impulse response of a linear time-variant network is defined as h(t, ), the

response to an impulse input at time T measured at time t. For a physically realizable

network, h(t, ) is zero for t < T.

Since the input x(t) can be regarded as being composed of weighted impulses,

at
x(t) x(T)(t-) d (3)

o0

we can write, by virtue of linearity,

At
y(t) = f X(T) h1 (t, T) d (4)

which, for a realizable network, can also be written

y(t) = f X(T) h(t, ) d (5)
because then h

because then h(t, T) = 0, with t < T.
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The frequency response function is defined (15) by the relation

H l (jv, t) = / h1(t, r) e j v(t-T) dT (6)

Using Eq. 5 we can write this as

response of the network N to exp(j2wvt)
Hl(jv,t) = (7)

exp(j2zrvt)

which explains why it is called the frequency response function. By virtue of linearity,
it is then easily deduced that

y(t) = H(jv, t) X(jv) ejZt dv (8)

In reference 15 Zadeh further defines a bifrequency function

r(jv, j) = (t, ) e w Tv e j2wt dT dt (9)

For later comparisons, it is convenient to introduce

H l (jv, ji) = f Hl( v, t) e- j t dt (10)

so that (as is easily verified)

r(jv, j) = Hi jv, j(-v)] (11)

In a time-invariant network, hl(t, T) would be a function of (t-r) only, and not of t
and separately, and H(jv, t) would be independent of t. Thus it would appear reason-
able, in the time-variant case, to regard the frequency variable as corresponding to
the rate of change of the system characteristics. (These points will be discussed in more
detail in section 2.2.) Similarly, from Eq. 8, it would appear that the frequency variable
v is associated with input frequencies to the network.

2. 13 Other Methods of Characterization

For special classes of linear time-variant networks, simpler methods of description

have been suggested. For example, Aseltine (16) derived integral transforms for sys-
tems characterized by a special second-order differential equation in such a way that the
frequency response function defined in terms of this transform is independent of time.
For periodically varying systems, Pipes (11) developed a matrix method of solution.

v is in cycles per second. All frequency variables in this report will be expressed
in cyclic measure. When limits of integration or summation are not explicitly indicated
they are to be taken as (-o, 0).
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A. P. Bolle (17) used the usual complex symbolism of ac circuits to solve a network

with periodically varying elements. The use of complex symbolism reduces the differ-

ential equation with variable coefficients to a complex equation with constant coefficients.

It is also of interest to point out that the impulse and frequency response character-

izations, based on the responses of the network to unit impulses and exponential functions,

are special cases of a general technique in which a network is characterized by its

responses to a set of "elementary" time functions. We shall not discuss this here; a full

description can be found in reference 18. This development has also encouraged

application of the theory of linear vector spaces to the theory of linear time-variant net-

works (19).

2. 14 Other Forms for the Impulse Response and Frequency Functions

In the function hl(t, r) the realizability condition is that the response be identically

zero for t < T. This constraint involves both the variables t and T, and therefore is

often inconvenient to use. In the alternate forms of impulse response now to be

described, the realizability condition involves only one variable. Furthermore, in

Section III, we shall have to impose frequency and time restrictions on the impulse and

frequency responses, and this is not conveniently done with hi(t, ) in all cases. Thus,

for example, if we have a restriction on the output frequency range of the linear time-

variant network or on the duration of the impulse response of the network, it is not

immediately clear how these are reflected in hi(t, T). The forms that we shall introduce

will turn out to be more convenient for such restrictions. Another feature is that these

forms will exhibit direct Fourier transform relationships between the frequency and

impulse response functions.

We define

h2 (Z, T) = response to a unit impulse input at time t,
measured at time t = T + z.

h3 (y, t) = response measured at time t to a unit impulse
input at time t - y.

Thus z measures elapsed time, and y measures the age of the input. The realizability

conditions are zero response for z < 0 and y < 0, respectively.

Of course, h(t, T), h2 (z, T), and h 3 (y, t) must all be related. The rules governing

transformation from one form to another are given in section 2. 15. They are derived

from the relations z = t - T = y between the time-domain variables z, t, T, and y.

2. 141 The Form h2 (z, -r)

In terms of h 2 (z, T), the operation of the linear time-variant network can be con-
veniently pictured as in Fig. 2, which displays on a z - T plane several network responses

to impulse inputs at different times, T. Notice, again, that the variable z in h 2 (z, T)
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Fig. 2,. The impulse response h2 (z, T).

refers to duration of the input time function. If we had a fixed network, the response

to a unit impulse at time T 1 would be the same as the response to a unit impulse at time

T2 . In terms of Fig. 2, then, it would appear that the variation of h2 (z, r) with r, for

fixed z, would be a measure of the rate of variation of the system. We could find the

Fourier transform of h 2 (z, T) with respect to T for fixed z,

Hz(z, j) = J h 2 (z, r) e - j R dr (12)

and the variable would be a frequency domain measure of the variation of the system.

If .z were confined to low values, the system would be varying slowly; it would be

varying rapidly if there were high frequencies in the domain. We shall see later (in

section 2. 21) that this interpretation of is consistent with the one previously given in

the case of H1 (jv, j) and also with other interpretations of system variation that we shall

obtain. Therefore the variable pu here has the same significance that it had in Hl(jv, j).

We may also define Fourier transforms with respect to z, keeping T fixed:

H2 (jw, T) = f h2 (z, r) e - j2 w z dz (13)

and

H (jw, j) = f H2 (jW, T) e - jZw dT (14)

= f H2 (z, j) e - j 2 w wz dz (15)

J/ h2 (z, ) ej 2 wz ei- j 2 r Ti dz d? (16)

6
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We shall show later that the variable can be regarded as corresponding to the fre-

quency of the output waveform.

2. 142 The Form h 3 (y, t)

Similarly for h 3 (y, t) [this form has been used by other writers, including Zadeh and

Bendat (20)] we obtain by direct Fourier transformation the set of functions

H3(jw, t) = f

H3 (y, j) = /
H3(Jv'J) = f

h 3 (y, t) e j2rwy dy

h 3 (y, t) e - jZ t dt

H3 (jv,t) e jz " t dt

= J H 3 (y, j) e- j 2 r vy dy

= ff h 3 (Y,t) e-jzwvy ejzt dy dt

(17)

(18)

(19)

(2zo0)

(21)

The last two functions are exactly equivalent to H 1 (jv, t) and H1 (jv, ju). This is because,

using Eq. 5, we can write

H 3 (jv,t) =
response of N to exp(j2wvt)

exp(jZ'Tvt)

= H 1(j, t)

and therefore, by virtue of Eqs. 10 and 19,

H 3 (jv, j) = H 1 (j V, j)

Thus the frequency variables for h 3 (y, t) have the same significance as those for hi(t, T),

and, therefore, we have used the same symbols, v and &, in both cases. However,

note that H3 (jv, t) and h 3 (y, t) are related directly by a Fourier transform, which is not

true of H 1 ( jv, t) and h(t, ). (Cf. Eq. 6.)

Finally, the form of the input-output relation

y(t) = ]O h 3 (y, t) x(t-y) dy

(which is derived in Appendix I) suggests that h 3 (y, t) can be interpreted as a weighting

function by which the signal inputs in the past must be multiplied to determine their

7
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contributions to the present output. The realizability condition, h3 (y, t) = 0 for y < 0,

thus reflects the fact that the filter cannot weight portions of the input that have yet to

occur.

2. 15 Summary of Relations Involving the Different Forms of Impulse and Frequency

Response

For convenience, we now list the relationships between the various forms of impulse

and frequency response that we have introduced and also give the convolution integral

formulas connecting the input and output functions. Proofs of all but the most immedi-

ately evident relations listed here are given in Appendix I.

a. Transformations between h 1(t, T), h2 (z, T), h3 (Y,t)

h1 (t, T) = h2 (t-T, )

(22)
h 2 (Z, T) = h1 (Z+T, T)

h2 (Z, ) = h3 (z, Z+T)

h 3 (y, t) = h2 (Y, t-y)

h 3 (Y, t) = hl(t;t-y)

(23)

(24)
h 1 (t, ) = h 3 (t-r, t)

b. Input-output relations -time domain

h l (t, T) x(T) dT 4:

= ft h 2 (t-z, z) x(z) dz = 00~~~~o
h 3 (t-y t) x(y) dy = 

hl(t, t-T) x(t-T) dT

h 2 (z, t-z) x(t-z) dz

h3 (y, t) x(t-y) dy

c. Transformation between H l (jv j), H2 (ji, j),. H3 (jv j)

Hl(jv, jL) = H2j(V+~), j] = H 3 (jv, j)

H2 (jw, j) = H3 (w-p). j] = H I (>g), j}t]

H3(jv jA) = Hl(jv j) = H2 b[j(v+,), ji ]

d. Input-output relations - frequency domain

8
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Y(J ) = 
0

rob

I
J- 0

r0

J _00

H1 [jv, j(-v)] X(jv) dv

H2[jl, j(iL-v)] X(jw) di

H3[jv, j(-v)] X(jv) dv

(31)

(32)

(33)

e. Interpretations of the variables: definitions of variables and their physical sig-

nificance

Time Domain

t: variable corresponding to instant
of observation

r: variable corresponding to instant
of impulse input

z: variable corresponding to elapsed
time

y: variable corresponding to age of
input

Frequency Domain

,u: variable corresponding to system
variation

v: variable corresponding to input
frequencies

a: variable corresponding to output
frequencies

2. 2 Bandwidth Relations in Linear Time-Variant Networks

When we study the frequency behavior of linear time-variant networks the time-

variant character of the network is usually evidenced by a frequency expansion, or a

frequency shift, or both. Thus if we put in a sine wave of frequency vo , the output is

usually a band of frequencies centered about v, or a single sine wave of a different

value, or a band of frequencies centered about a frequency v that is different from v0O

In the first case we can use the frequency expansion as a measure of the rate of

variation of the system; a small expansion indicates a slow variation, and a large expan-

sion a rapid variation. The amount of expansion produced may often depend on the par-

ticular frequency of the input to the networks. Therefore we shall pick the largest

expansion, over all possible input frequencies, as a measure of the system variation.

We shall denote this by W s and call it the filter (system, network) bandwidth. This first

case is often encountered in scatter-multipath situations.

The second case usually arises in amplitude modulation or in Doppler radar.

Thus, for example, in Doppler radar, a sine wave of frequency v has a new fre-

quency, after reflection from a body moving away from it at v meters per second,

9



of (c) v cps. In such cases the amount of frequency shift, X, can be regarded as a

measure of the time-variation of the system. When both frequency shift and expansion

are present, neither Ws nor by themselves will be, in general, an adequate measure

of the system variation. It would be more appropriate to consider some combination of

W s and X as a proper measure, but the nature of the combination would depend on the

particular situation considered. In this report we shall be concerned only with situations

of the first type - simple frequency expansion.

2. 21 The Filter Variation and the Variable u

We pointed out earlier that it seemed reasonable to associate the variable with

the variation of the system. We shall now show that this interpretation is consistent

with the notion of filter bandwidth.

Using Eqs. 26, 27, and 28, we see that if x(t) is a sinusoid of frequency vo -that is, if

x(t) = exp(j2rvot) and X(jv) = 6(v-vo), then the output is given by

W = Y(jI) = H[jv, j(L-v)] (34)

= H2 [j, j(-v)] (35)

= H3 Uv, j(i-v)] (36)

Therefore WI is nonzero for the range of cL-values over which Hl(jv, j). H(jw, j&),

H3 (jv, j) are nonzero, and therefore the maximum >-bandwidth of Hl(jv, jj), H2(ja, j1),

H3(jv, j.) is defined by Ws = max WS for all v. Therefore if filter bandwidths W -that

is, measures of the rate of variation of the system - are specified, the appropriate fre-

quency variable to be considered is . Note, also, from relations 34 and 36 and the

convolution formulas 31 and 33, that an input of bandwidth W i to a linear time-variant

network of filter variation bandwidth W s results in an output of bandwidth greater than

or equal to Wi but not greater than Wi + W s .

2.22 Input Bandwidth and the Variable v

We have found that

Hl(jv,t) = H3 (jv,t)

response of linear time-variant network to exp(j2irvt)

exp(jZnvt)

Therefore, if we are interested in determining the response of the linear time-variant

network to an input that is nonzero only over particular frequency ranges, we need only

consider H 1 (jv, j) and H 3 (jv, jp) for values of v in these ranges. Thus, if input band-

width restrictions are specified, the appropriate frequency variable to consider is v.

10



2.23 Output Bandwidth and the Variable 

We know that if we have an input, bandlimited to (-W i , Wi), for a linear time-variant

network with filter variation bandwidth 2Ws, the bandwidth of the output signal is

restricted to (-W s -W i, Ws+Wi). With this in mind, and noting the relations

H (jv, j) = H, [j(v+), j]

H2( j, j) = H 1 (W-4), j]

it seems reasonable to associate the bandwidth of the variable X in H2 (jw, j*i) with the

bandwidth of the output of the linear time-variant network. Furthermore, in Section III

we shall find that physical networks derived on the basis of such an interpretation do

actually have output bandwidths restricted by the range of w in H2 (jw, j).

2.3 Separable Time-Variant Systems

Two forms of linear time-variant networks are worth attention, particularly because

they are simple to analyze. Moreover, more complicated linear time-variant networks

can frequently be built up by suitably combining these simple networks. (An illustration

is given in Section III.) It has also been found that the solution to a large class of optimi-

zation problems in automatic control and communication involves such networks (20,21).

(a) Fig. 3. Separable networks.

(b)

These networks are shown in Fig. 3. In the first network (Type I) the input x(t) is

passed through the linear time-invariant filter g(t), and then multiplied by the function

f(t) to give the output y(t). In the second network (Type II) the sequence is reversed.

The impulse response of the first network is given by

h l (t, ) = g(t-T) f(t)

or
h2 (Z, ) = g(z) f(t-z) (37)

or
h 3 (y, t) = g(y) f(t) 

11

� ·�L



Similarly the impulse response of the second network is

hi (t, ) = f(T) g(t-T)

or

h 2 (Z, .) = f() g(z) (38)

or

h3 (Y, t) = f(t-y) g(y)

Because of the form of Eqs. 37 and 38 for h3 (y, t) and h2 (z, ), these will be called sep-

arable networks.

The frequency functions for these networks also assume a simple form.

For network I:

H l (j j) = G(jv) F(j~) = H3 (jv, j*)

(39)
H2(j0, j) = G(jo-jj#) F(j~)

For network II:

H l(V, j) = G(jv-jL) F(j) = H3 (jv, j~)

(40)
H2 (jw, jL) = G(jw) F(jL)

From Eq. 36 we see that network II has its output frequency range governed by G(jw).

If G(jw) is restricted to (-Wo, Wo) the output frequencies for network II, no matter what

the input, will never fall outside this range.

For network I the output range is a little harder to define; but if is restricted to

(-Ws, Ws) and v is restricted to (-Wi, Wi), then, from Eq. 35, - is restricted to

(-Wi, Wi) for all , and therefore is restricted to (-Ws-W i, Ws+Wi). These results

will be useful in the next section.

12
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III. SAMPLING THEOREMS FOR LINEAR TIME-VARIANT FILTERS

We have said that in general a communication channel can be regarded as a time-

variant filter with constraints imposed on it. If we assume the filter to be linear it can

be described conveniently by impulse and frequency response functions. Additional con-

straints on the filter can now be represented as constraints on these functions. The

constraints presented in this section will be in the form of bandwidth or time restrictions

on filter inputs and outputs. The use of sampling analysis is at once suggested, and we

shall, in fact, derive appropriate sampling theorems for various sets of restrictions.

Such restrictions may arise in two forms. For example, with a bandwidth constraint,

it may be that the filter itself transmits only a certain range of frequencies; or we may

be interested solely in the filter behavior over a particular range of frequencies. In the

latter case, we may consider the actual filter to be replaced by another having the same

frequency response over the specified range of interest but having zero response outside

it. This situation is thus reduced to the first case. We shall, therefore, in all cases,

tacitly consider only the first type of situation. That is, input or output restrictions will

be suitably reflected in the impulse and/or frequency response of the linear time-variant

network and we shall derive sampling results for such modified networks. These results

will then hold either for arbitrary filters under the specified constraints on the input

and output signals or for constrained filters under arbitrary operating conditions. Dif-

ferent types and sets of restrictions can be studied, but we shall consider only the

following, which we think most significant. (Other cases may be studied by methods

sifnilar to those used for these cases.)

Case I: Restriction on input frequencies of signal (or filter)

Case II: Restriction on output frequencies of signal (or filter)

Case III: Restriction on filter memory, with potential limitation on range of

(a) input frequencies and (b) output frequencies.

From the discussion of the last section we find that in each case there is a most

convenient form of the impulse response to use in deriving the sampling theorems.

Having used this form for the derivation, we can obtain the theorems for the other forms

by use of the transformations given in section 2. 15. In Case I and Case II we shall con-

sider two different situations: in one, the frequency range of interest is a lowpass

region; in the other, it is a bandpass region. In none of the cases is any restriction on

the filter variation necessary. However, it is often useful to consider situations in which

the filter variation bandwidth is limited, to Ws, say. Therefore we shall develop theo-

rems for both ji (the filter variation frequency variable) restricted and )j unrestricted.

3.1 Sampling Theorems for Linear Time-Variant Filters

The method of deriving sampling theorems differs according to whether the region of

interest is a lowpass region or a bandpass region. In both cases, however, it is conven-

ient to use Woodward's compact notation and method of sampling analysis (22). This

method can be regarded as a translation into compact analytical form of the point of view

13
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that regards sampling as being obtained by impulse modulation (23). With this fact in mind

a physical interpretation of the steps in the following derivations is more readily seen.

We shall need a pair of definitions for studying Fourier transforms of periodic

functions (22):

rePT h(t) = E h(t-nT) (41)
n

combT h(t)= ~ h(nT) (t-nT) (42)
n

By using a Fourier-series expansion of rePT h(t), we can derive the relation

{~rePT h(t)} = combl/T H(jf) (43)

and this is done in Appendix II. That is to say, if a nonperiodic function h(t), which has

a transform H(jf), is shifted in time by all integral multiples of T, and the results are

added together, the spectrum of the resulting periodic function will be obtained by

picking out the values of H(jf) at intervals 1/T. Conversely,

S{combT h(t)} = T repl/T H(jf) (44)

Another useful pair of transforms consists of the rectangular function and its spectrum.

Woodward uses the convenient notation, which we shall adopt,

rectt= < 1/2rect t I It < I=z (45)
It > 1/2

for the pulse, and

sinc f = sin f (46)rrf

for its spectrum.

We now proceed to the derivation of the sampling theorems for the cases listed in

section 3. 1.

3. 11 Sampling Theorems for Case I

In this case the frequency range of the input signals is restricted. Since we are con-

cerned with input frequencies, the appropriate variable to consider is v, and we might

consider it in Hl(jv, t), or in H3 (jv, t), to be restricted to a lowpass region (-W i , W i) or

W. W.
a bandpass region c - ' c + . It is rather simpler to use H 3 (jv, t) because of

its direct Fourier transform relationship to h 3 (y,t) - a fact that is not true of Hl(jv,t) and

hI (t, ). We shall consider first the lowpass case.

a. In the lowpass case, v is restricted to (-W i , Wi) and 1. is either restricted to

14



(-Ws, Ws), or is unrestricted. Then we can write (ref. 22)

H3 (jv, t) =rePW H 3(jv t) re ct 2W

Transforming both sides gives

h3 (y, t) = combl/W i h 3 (y, t) * sinc 2Wiy

in which the asterisk denotes convolution. Therefore

h3 (y t) = f h 3 (st) 6t5 - )sinc 2Wi(y-s) ds

= h 3 ( 2W, t) sinc Wi (Y - W

Next, for the variable )i we can write

jL

H 3(y, j) = repZW H(y, j) rect- 
\ 2W

and, as before, we obtain

h 3(y,t) = h3 (y. )sinc W(t -
3 3 '· 2W s 2W

Substituting for h 3 (, - from Eq. 7, we then

tion:

obtain the desired sampling representa-

h 3 (y, t) = Z
n

sinc 2Wi( - i )sinc
/)i·

aW t -i

If use is made of the relations between the different forms

can also be written

h l(t, ) = 
n

of the impulse response, this

Z h( ' 2W 2W i sinc 2Wi (t r- sinc 2W 5(t . )
m s s i

(50)

We next consider the bandpass case.

b. In the bandpass case, v is restricted to the region Kwc -' c + and, as

before, p is either unrestricted or it lies in (-W s , Ws).

Here, too, we can use Woodward's (22) method of deriving bandpass sampling theo-

rems. We go through a two-step procedure similar to the preceding one, working,

however, on a complex impulse response

15
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u3 (y, t) = h3 (Y, t) + jh 3 (y, t)

where

h3(Yt) ;_ dr(3 g r (51)

is the Hilbert transform of h3 (y, t).

The final result is

-/ m f nn

Ln m ' sinc 2W t sin W( 2 A n/ n \] (52)

When p. is unrestricted, this reduces to

h 3 (y, t) = h 3 It) sinc WiY - CWios Wc(Y wn m 3( W i,

-[z h3( sinc t) sine W i ( W ) sin c-) (53)

Next we consider the case in which frequency restrictions are imposed on the out-

put waveform.

3. 12 Sampling Theorems for Case II

Here, recalling the discussions in Section II, the appropriate variable to use is o,

with the associated functions h 2 (z, T) and H2 (j, j). As before, we consider a lowpass

and a bandpass case.

a. In the lowpass case, the output frequency variable is restricted to (-W O , Wo),

and p. may either be restricted to (-W s , Ws) or may be unrestricted. Using a procedure

similar to the procedure in Case I, we have

H2 (jw, 7) = rePZw H2 (j, ) rect 

and transforming this, we have

h2 ( h ) i h2 ( t , T) sinc 2W.(z S ZW) (54)

which is the theorem for unrestricted . Similarly,

H 2 (z, jg) = repZW H2 (z, jP) rect2W
5 5

16



and

h2 (z, T) = Z h(Z, 2W- sinc 2 W s-

Substituting in Eq. 55 from Eq. 54 yields finally

h2(Z, ) = 
n

h 1(t, ) = 
n

,z2 w - j -sinc zwc z 2nsincZWS -
mE , 2Wo sine 2Ws 2W 

/ +t \T - S SZ7 hi IW) sinc 2W t Tsine 2W
m s

b. In the bandpass case, is restricted to + Wc ,
pling theorems are

h2 (Z, T) = WZ 2 0' 2W s sine W - sinc ZW
m Wo02S 

The proper sam-

cos Wc z 

(58)

or

1 (t, ) + 2 W 2W sine Wo - sc 2W s - cos C(t - -W
m 2 s o/

2W ' 2W )sinc W t- sinc 2W-7- S C sn)

(59)
A A

Here, h2 and h I are the Hilbert transforms of h 2 and h 1 with respect to z and T, respec-

tively. The theorems for unrestricted can be got from Eqs. 58 and 59 by changing

2W to T, dropping the sinc 2Ws - 2W ) terms, and omitting the summations on m.

The next case involves restrictions on the memory of the filter.

3. 13 Sampling Theorems for Case III

When the channel memory is limited in time, the appropriate variable to con-

sider is y. Recall that h 3(y,t) acts as a weighting function on past values of the

input. Therefore if the weighting is zero after a certain range of y, say 0 to Y,

for any t, channel inputs of age greater than Y seconds are "forgotten"; in other

words the channel has a memory of only Y seconds. We can similarly show that, if

h2 (z, r) = 0 for z > Z, the memory of the filter is Z seconds. However as we explained

17
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in Cases I and II, the variables y and z are most appropriate when considering input
and output frequencies, respectively. Therefore, in Case IIIa where we might wish to

limit the input frequency range, we shall use the variable y and define h 3 (Y, t) = 0 for

y > Y.
Since y is thus limited, we may apply the frequency sampling theorem (given in

Appendix II), obtaining

h3(y,t = H 3 -,t exp( for y in (0, Y)

= 0 elsewhere (60)

If, in addition, ,u is restricted to (-W s , Ws) we have

S S+

H3 (t, j) = repzw H3 (Y, ji) rect

s2W

and transforming, we obtain

h 3 (yt) = h3 ( , 2W sinc 2W(t (61)

and

H 3 (jv,t) Z H 3 (v 2W )sinc 2W(t (62)

Substituting into Eq. 60 we get,

h3 (y,t) = Z E H3 ( 2W ) sinc 2W s(t W exp ) for 0 <y <Y
m s Y

= 0 elsewhere (63)

In terms of h I (t, T) this is

h(t, T) = Z H W H1 (st 2W ) exp ( )) for 0 y Y
I s Y

= 0 elsewhere (64)

Sampling Theorems for Case IIIb. The variable that is appropriate to considerations

of output bandwidth is z. If the response h2 (z, T) is to be zero after Z seconds, say,
then z ranges from (0, Z). We may note that this is effectively a restriction on the dura-

tion of the output waveform, because it requires that the output never last for more than

Z seconds beyond the input.

Using, as in Case III, the frequency sampling theorems of Appendix II, we can v

write

18



If j /2rjAz
h2 (z, T) H. \exp for z HZ

= 0 elsewhere (65)

If, in addition, we assume that . lies within (-Ws, Ws) we have, finally, as in Case III,

z J m / 2jz\ mrjfz
h2z, m ) 2 ' , 2W X p ) sinc 2W - 2 (66)

or

h (t, ) H 1 \ W j(t-expr) sinc 2W m ) (67)
m s s Z Z )(

The methods employed in these three cases should suffice for the analysis of other types

and sets of restrictions.

3.2 Discrete Models for Linear Time-Variant Filters

We can use the sampling theorems derived in the previous sections to construct

discrete models for suitably restricted linear time-variant filters or, equivalently, for

linear time-variant networks to be used under restricted conditions. Before proceeding

to do this, however, we note that the summation over n in the various theorems need

run only from 0 to oa, provided the (modified) networks are made approximately real-

izable by means of appropriate delays, because then the impulse response is zero for

z or y less than zero. We say approximately because theoretically an infinite delay

would be needed; in practice, however, finite delays would often suffice. We shall

therefore use the range (0, 0o) for n because it makes the models easier to comprehend;

however, for theoretical analyses such a restriction is unnecessary. However, m and

I range over all the integers (-oo, oo).

In each case the models are obtained by rearranging the appropriate sampling theo-

rems as sums of simple separable networks of the type considered in section 2. 3.

Linearity is used to rearrange the resulting networks in more convenient form.

It is important to note that the models given are not the only ones that can be derived

from the sampling theorems; it is often possible to recast these theorems in other forms

that lead to different physical models. The only requirement is that all of these models

have the required number of degrees of freedom specified by the appropriate sampling

theorems.

Case I. Limited Input Frequency Range

a. Lowpass case

From Eq. 49 we can write

h 3(y, t) = Z fn(t) g 2) (68)
I1
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(a)

x (x~~~~~~~~~~~ ~y(t)

-wi 0 a, v ; i i

g(t)I

(b)

Fig. 4. A model for Case I. Lowpass restriction on input frequencies.

f,(t)

mirn~~I , I, " I , . L1'111 1 :F

HWiL - i -- '
I~h

1n(t)

y(t)

rA

Fig. 5. A model for Case I. Bandpass restriction on input frequencies. 1

2 - ,

x(t)
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where

n ms
fn(t) 2Wi h 3 (2W' 2Ws sine 2Ws 

and

g(y) = 2W i sinc 2Wiy

If we now refer to section 2. 3 and Fig. 3a, we see that we can synthesize h3(y, t) as

shown in Fig. 4a where the boxes marked D provide pure delays in time of 1/2W i sec-

onds each. Furthermore, g(t) is recognized as a filter with a flat passband from -Wi

to W i. By virtue of linearity, we can transfer the g(t) across the delay boxes, combine

the boxes into a delay line, and obtain the model shown in Fig. 4b. The rectangular

filter is assumed to have zero phase shift.

Theoretically, the delay line should have infinite length because h3 (y, t) has finite

bandwidth; this is indicated by the broken lines in Fig. 4b. However, since the set of

sine functions used in the sampling theorem (which may also be regarded as a series

expansion) form a complete set, we see that a finite length can be used, at the cost of

an error that can be made arbitrarily small by prolonging the line sufficiently. Finally,

referring to the last paragraph in section 2. 3, we note that if the input to our filter has

bandwidth 2W i and the system bandwidth is 2W s , then the output bandwidth with our

model is not greater than (2Wi+2Ws).

b. In the bandpass case, a similar procedure leads to the model shown in Fig. 5.

Here the top filter has zero phase shift; the lower filter has phase shift r/2 in the neg-

ative frequency band and -r/2 in the positive frequency band. The impulse response of

the top filter is 2W i sinc Wit cos wct, and that of the lower one is -2Wi sinc Wit sin ct.

In the bandpass case we note that the sampling theorem, Eq. 48, can be rewritten

in many different forms (e. g., amplitude-phase sampling theorem), and different models

can be derived. Since the basic procedure is the same as that just described, we shall

not consider all of these different cases.

c. If is unrestricted, we have

fn(t) = 2 h 3Kw St) in Fig. 4

and

fn(t) = h3 ( t)

in Fig. 5

fe(t) = 1 h t

The next case involves restrictions on the output signal.

Case II. Limited Output Frequency Range

The sampling theorems are given in section 2. 21 and these are rearranged to give

delay line models for this case.
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a. Lowpass case

Here it is convenient to rewrite Eq. 56 as

h2 (Z, T) = fn + n )g - W (69)
n n 

where

fn(t) -W h2 ( ZWo m 2Wo sinc 2 W 2 

and

g(z) = 2W o sinc 2Wo z

Referring to section 2.3 and Fig. 3b we note that h2 (z,T) can be synthesized as shown

in Fig. 6a. By steps similar to those used in Case I, this can be reduced to Fig. 6b.

b. The bandpass case

The model for the bandpass case is derived in similar fashion and is shown in Fig. 7.

We can make the same comments on line length, filter phase shifts, frequency relations

(i. e., output has bandwidth no greater than 2W o no matter what the input), and different

bandpass models, that we made in Case I.

c. If I. is unrestricted, we have

fn(t) = h2(i, -t) in Fig. 6fn(t) -2W 2 W

and

fn(t) = 2 h 2 t Tl h /in Fig. 7

fn(t) 2 h2 t

The next two cases do not involve delay lines, but are formed from banks of finite

memory filters.

Case IIIa. Limited Memory of Channel Filter, with Potential Limitation on Input
Frequency Range

In this case we can rearrange Eq. 63 in the form

h 3 (yt) = fl(t) g,(Y) (70)

where

fl(t) = H 3 (-, W) sinc 2W s(t -s

and

gf (y) = expY rect 
\ Y /
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(a)

-
-w o

tt)

J J

(b)

Fig. 6. A model for Case II. Lowpass restriction on output frequencies.

fn(t) 

11 im

x(t)

ft,(t)

y(t)

Fig. 7. A model for Case II. Bandpass restriction on output frequencies.
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Fig. 8. A model for Case IIIa. Limited filter memory with potential restric-
tion on input frequency range. The notation exp(I/Y) denotes a filter with
impulse response exp[(2wrjiy)/Y]. rect [(y/Y)-(1/2)].

Recognizing that the g (y) represent envelope-integrating filters (with a finite integra-

tion time Y) at the frequencies 2/Y and recalling the Type I network of section Z. 3, we

can construct a model for this case, as shown in Fig. 8. Another interpretation for

the operation of the filters g(y) is that they represent filters that continuously extract a

signal that would be the th Fourier component of a periodic waveform, each period of

which duplicates the last Y seconds of the input to the filters. (We might also note that

such filters are used in the Kineplex system of communications (24), where they are

operated as "integrate-and-quench" filters.) Theoretically we should have an infinite

bank of filters, but if we impose a bandwidth restriction on the frequency range of the

input signals, clearly a finite number of filters will be sufficient.

Case IIIb. Limited Memory of Filter, with Potential Limitation on Output Frequency
Range

The sampling theorem, Eq. 65 can be written

h2 (Z, -) Z f () go(Z) (71)

where

m \Z as mf1 (t) = H 2 (' 2W sinc 2W s t 2W)

g2 (z) exp Z rect (Z -

The g(z) represent, as before, integrating filters at the frequencies l/Z, and we now
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Fig. 9. A model for Case Ib. Limited filter memory with potential
restriction on output frequency range.

use networks of Type II (section 2. 3) to get the model for this case, which is shown in

Fig. 9. Again, theoretically we should have an infinite bank of such filters, unless we

impose a bandwidth restriction on the output frequency range of the signals when a

finite number will suffice.

Finally, we may point out that in both Case IIIa and Case IIIb we can combine the

terms f g_A and f+ g+, to get a representation in terms of filter banks together with

amplitude and phase controls.
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IV. THE MEASUREMENT PROBLEM IN THE ABSENCE OF NOISE

In this section we discuss some aspects of the problem of specifying a linear time-

variant filter by means of input-output measurements. That is, the linear time-variant

network is regarded as a black box; the only means of getting information about it is by

putting in appropriate signals and observing the corresponding output signals. In the

communication situation there are various constraints on the types of signals we can

use; for example, average or peak power limitations, finite bandwidth restrictions,

and so forth. Furthermore, our measurements usually will be corrupted by noise. In

this report we shall consider only the case of bandwidth and duration restrictions on our

input and output signal waveforms and shall assume that no noise is present.

The measurement problem in the absence of noise is, of course, much simpler than

that when noise is present, but the problem is still not entirely trivial. Any limitations

on our ability to determine the linear time-variant network in the noiseless case will

usually carry over into the noisy measurement problem. We say "usually" because in

the noisy case the determination can evidently be statistical only, and the presence of

noise might require us to relax some of the restrictions present in the noiseless case.

Another area in which a study of the noiseless case may be useful is that of sampled-

data systems, and we shall say more about this later. For simplicity, all of the anal-

ysis will be carried out for lowpass frequency regions. The extension to bandpass

regions is straightforward. The constraints we shall consider in the measurement

problem will be the frequency and time constraints of Section III for which we have

already derived sampling theorems and models. The case considered in most detail

is one in which the frequency range of the output signal is limited to, say, (-W o , Wo),

which is Case II of Section III. Since other cases that can be treated similarly are

discussed in Appendix III, we shall in this section speak only of Case II. We shall first

deduce a condition on our linear time-variant network for a measurement of it to be

possible. Then, having defined a model for the problem, we derive a matrix specifica-

tion of it. (It happens that such a matrix also occurs in the study of time-variant

sampled-data systems.)

This matrix is subsequently used to prove the sufficiency of the measurement

condition mentioned earlier. We find that the use of the delay line model devel-

oped in Section III gives a simple physical picture of the various mathematical

derivations and the results obtained.

4. 1 A Necessary and Sufficient Condition for the Measurement

The fact that our available output waveform is bandlimited restricts the number of

linearly independent measurements we can make per second. Because of this we would

expect the rate of variation of our system to be a controlling factor in defining which

systems can be determined by input-output measurements. We shall find that this is

so. But first we need to formulate our problem more precisely. (Note that because of
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the output restriction we are actually measuring the linear time-variant network as

seen through our output-limiting filter.)

We wish, given a linear time-variant network N, to construct a model that will

I

-woo W,i nI

NI

Fig. 10. The filters N and N'.

shall need to assume that, for N',

time, say Z. That is, if h2 (z, T)

h 2 (Z, T) = 0

produce, for inputs identical to possible inputs of

N (over a given time, 0 to T seconds, say), the

same outputs as N, over an output frequency range

(-W 0, Wo).
Our first step is to replace the network N with

the network N' as shown in Fig. 10. N' is equi-

valent to N over the specified output frequency

range. Also let the system bandwidth of N be

2Ws; that is, lies in the range (-W s , W s). We

the effect of an excitation dies down after some finite

is the impulse response of N'.

z>Z

Mathematically, of course, since N' is bandlimited, this can never be true. However,

in practice, N' would not be absolutely bandlimited, and the response would die out after

some finite time. Finally, we shall assume sufficient delay to make N' realizable, as

was done in section 3.2.

We can now state that to reproduce the operation of a linear time-variant network

under the above conditions, with an error that can be made arbitrarily small, it is

necessary and sufficient that

(72)1 1
Z2Ws 2Wo

or equivalently

W

s +2ZWo
0

This statement is proved in two parts.

1. Necessity of the Condition

We have to specify h2 (z, T) over a z-span Z, and a -span T. Over these ranges,

h 2 (Z, T) has (2WoZ+l) X (2W T+I) degrees of freedom (or linearly independent values).

If is restricted to (0, T), the duration of the output waveform according to our assump-

tions cannot be greater than (T+Z) seconds. Now in a time (T+Z), since our output is

bandlimited, we can obtain only

= 2(T+Z) W o + 1

2W o
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independent measurements or values. Therefore we must have

(ZWoZ+I)(2TW +1) 2(T+Z) W +

that is,

4TW s WoZ + 2TWs + ZZW o -0 2TW + ZZW o

or

1 1
2W 2W

s o

Therefore Eq. 72 is a necessary condition.

2. Sufficiency of the Condition

This will be shown later, in section 4. 4. We shall prove sufficiency by describing

an actual measurement procedure. Before doing this, however, it is necessary to

investigate the relations between input and output functions in our problem.

4. 2 Input-Output Relations in the Problem

The impulse response h2 (z, T) for N' is bandlimited in both frequency variables, 

and ,u. We can apply the sampling theorems of section 3. 12 to get

h2 (Z, ) = Z
n

=z fn ( +

Z h sine ZW 2W) sinc - F(Z 2W

sinc 2W(z -
o 

For convenience we shall normalize 2Wo to 1, so that we have

h2 (Z, T) = Z fn(T+n) sinc (z-n)
n

or

hl(t, T) = fn(T+n) sinc (t-T-n)
n

Z f(T) sinc (t-T-n)
n

where

f (t-n) = f (t)

Now if x(t) is the input to N' and y(t) the output, we have
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y(t) = hl(t, T) x(-) d-

= f n f'(T) sinc (t-T-n) X(T) d (77)

Now define

fn(t) x(t) = un(t)

with the result that

y(t) = f un(T) sinc (t-T-n) dT (78)

This is valid provided the bandwidth of u n(t) is not greater than 2W o . The definition of

un(t) implies that x(t) should have a bandwidth not greater than 2W o -2W s . This restric-

tion is not unreasonable since any higher frequencies in x(t) will fall outside the band

(-W o , Wo) and therefore would not be considered.

Let us consider u(t) and sinc t as discrete time series u(K), sinc (K), given by their

values at K = 0, ±: 1, ±2.... This will give us y(t+n) for all integral arguments. We

have then

y(t) = Z un(r) sinc (t-n-r)
n r

But because

sinc t = 0 for t = 1, 2, ...

sinc t = 1 for t = 0 (79)

this reduces (for integral values of t) to

y(t) = Z Un(t-n) (80)
n

= Z fI(t-n) x(t-n)
n

= Z fn(t) x(t-n) (81)
n

If we pick our time origin so that x(t) = 0, t < O0, we can write Eq. 81 as a matrix

equation
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y=Hx

where the underlined

y(l) y(1 )

y(2) 

y(3 ) i

t'

fo(0)

fl(1)

f2(2)

f 3(3)

letters indicate matrices. In

0 0 0 0

fo(1)

f 1(2)

f2(3)

0 0 0

0 0

fo(3) 0

fo(2)

f 1(3)

the expanded form,

0

0

x(O)

x(l)

x(Z)

x(3)

Eq. 82 becomes

(83)

If the relation fn(t) = h (ni ) sinc 2W(t -n is used, Eq. 83 can be written

y(o)

y(l)

y(2)

y(3 )

y(n)

hZ(O, O)

h 2 (1, )

h2(2, 0)

h2(3, 0)

0

h2 (0, 1)

h2 (1, 1)

h 2 (2, 1)

0

0

h2 (0, 2)

h2 (1, 2)

.10

0

0

h2 (0, 3)

h2 (n, O) h 2 (n-l, 1) h2 (n-2, 2)

x(O)

x(l)

x(2)

x(3)

x(n)

(84)

Since y(t) is bandlimited to 2Wo(=), the sequence y(O), y(1), ... suffices to
determine it. Thus H is a suitable specification for bandlimited linear time-variant

networks of Type II of Section III. (Similar matrices can be derived for linear

time-variant networks of Type I, that is, input frequency limited networks. These

are derived in Appendix III.) Notice that the vanishing of all terms above the

main diagonal is a consequence of our assumption of physical realizability. As

stated before, this form is convenient for gaining a better physical picture of the

arguments and proofs, but is not a theoretical necessity. The length Z determines

the number of possible nonzero values in a column of H, viz., [Z], where the

square brackets denote the largest integer less than Z. Thus if Z = 2 · W = 2,

the matrix is
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y(O)

y(l)

y(2)

y(3)

y(4)

h2 (0, 0) 0

h2 (1, 0) h2 (0, 1) 0

h2 (2, 0) h2 (1, 1) h2 (0, 2) 0

0 h2 (2, 1) h2 (1, 2) h2 (0, 3)

0 h2(2, 2)

* .0

x(0)

x(l)

x(2)

x(3)

x(4)
(85)

4. 3 The Matrix H

We have derived the matrix H as being sufficient to characterize the network N'

under the stated conditions of operation; that is, the bandwidth of x(t) is 2Wo - 2Ws or

less. It happens that an exactly similar matrix can be used to describe a linear time-

variant sampled-data system (25). In reference 25, Friedland discusses the matrix

analysis of such systems, and all his results could be used in studies on our model.

For example, he shows that cascading two sampled-data systems is equivalent to multi-

plying their matrices, paralleling two systems is the same as adding their matrices,

and so forth. Although in this report we are not particularly interested in studying the

properties of interconnected linear time-variant networks, we have found the results

of Friedland's work on time-varying optimization theory (Wiener-Lee theory) of use

in work on the noisy measurement case. However, this is not discussed here.

4. 4 The Sufficiency Proof

1 1
Returning to our problem we now prove that the condition Z 2W is suffi-

2W 2W0

cient for a measurement of h2(z, T). However, the argument is somewhat long and

detailed, and it makes for clearer exposition to dispose of certain details first.

1. To establish the sufficiency proof we shall use the results of our sampling theo-
(2n m\for all n and m suffice to determine

rem. This tells us that the values h2 2W )for all and m suffice to determine

the behavior of h2 (z, r). However, we are interested only in h2 (z, T) over the interval

(0, T) and, therefore, we might expect that we need only the values of h 2W 2W

in this time interval. Unfortunately, this is not true; the behavior of h 2 (z, T) is influ-

enced by sample values outside (0, T) also. Using only the values in (0, T) would intro-

duce error. However, if T were long, the error would be negligible in the middle of

the interval and would be larger at the ends. This end-effect is characteristic in all

applications of the sampling theorem. One way to mitigate it is to make measurements

over a longer time interval (say -r' to r'), including (0, T). The behavior over the

smaller interval (0, T) would then be almost right. By letting r, tend to infinity, the

31

__ _L·-l --I_ -- IIIY



error can be made arbitrarily small for finite T. (A discussion of the end-effect in

sampling is given in reference 26.) We shall now pick our time origin so that (-r', r')
corresponds to (0, r), and talk only about this last interval in all future discussions.

1 12. It is convenient to assume that Z and 2Ware integral multiples of 2Wand,

therefore, with our normalization, Z and ZW are integral. Similarly we shall assume

1s
that r is an integral multiple of 2W . These conditions can be arranged by suitably

S

increasing some or all of Z, r, and 2W .

3. Under these conditions the problem is to determine the values h2 I 2m over

(0, r). These are

h( ) h2 (O )h~jO.) h2OiI~~)I 
........ h 2(0,r)

h2 (1,0) h2 ( l1 s h 2 (1, r)

(86)

h2 (Z.O) h (Z ........ h( r)

If we consider the matrix H, these appear in columns of the

linear time-variant network with Z = 2, = 4, r = 8.2W
5

matrix, as shown, for a

a1

a2

a 3

a4

a 5 a7

a 6 a8

a 9

0

0
d

e a1 0

f all
a 1 2

a

a
a

a

a g
a h a

a a

(87)

The letters a, b, . . . stand for the values h2 (n Z from the array (86). The

places marked with a's indicate sample values that are not linearly independent, but

are combinations of the a, b ... Thus a 1, a4 , a7 , ... are linear combinations of

a, d, and g; a2 , a 5 , a 8, ... of a, e, h; a 3, a 6 , a 9 , . . . of c, f, j. It is easily verified
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that a2 is the same combination of b, e, h that al is of a, d, g; the same holds for a 3.

Thus (al, a2' a 3 )(a 4 , a 5, a6 ) ... are similar in this sense. This property will be used

later on.

4. In terms of matrix 87, it is easy to prove the sufficiency of our argument for
1 1 1 2

Z - . We see that, if we apply an input x(t) which is 1 at t=0, W 2W

and zero for all other integral t, the output would be a, b, c, 0, d, e, f, 0, g, h, j.

Therefore, in general, when Z -- -W 2W - an input of the form
o s

10 00 0...01 11 0000...0 1 00 0...(88) (88)
t:O 1 2

2Ws 2Ws

is sufficient to determine the sample values. By taking r large enough, these values

specify h2 (z, T) as closely as we wish over the desired included interval, T. Thus we

have proved that the condition Z 2 2 is sufficient to enable a measurement.2W 2W

(And, in fact, the proof we have used for this also indicates that when Z >
2W s 2W o

the measurement is not possible; under such conditions there will always be more
1 1

unknowns than equations.) Thus, finally, we have established the condition Z 4 
2W s 2W o

as both necessary and sufficient.

5. The foregoing proofs are completely general and do not depend on any particular

physical model. However, since the conditions of our problem meet the requirements

of Case II, Section III, we can use the delay-line model given in Fig. 6, with length

equal to (Z-1) seconds, to give a physical meaning to the argument. Thus the input,
1

Eq. 88, is equivalent to feeding impulses into the delay line at times 0, 2W ... , and
1 1

the condition Z _< 2W - 2 W is equivalent to requiring that there be only one impulse on
s o

the line at any instant. Notice also that the matrix H can be obtained rather simply

from this delay line model, since if the bandwidth of x(t) is not greater than 2W o - 2W s ,

we can dispense with the output filter.
1 1

6. It is of interest to examine the condition Z 4 2W - 2W- in some limiting cases.
0 s

Notice first that if Ws = 0, that is, if the filter is time-invariant, there is no bound on

the duration, Z, of the impulse response. And conversely if Z is infinite, the filter

can be determined only if Ws = 0, that is, only if it is time-invariant. Secondly, if Z

is zero, that is, if our filter has no memory, or the delay line has only one tap, the

requirement for a measurement is W s Wo . And finally, if Wo is infinite, the condition

is Z < 2W . When W o is infinite, there is no output frequency constraint on the original

filter, and in this case Z will be the actual maximum duration of the impulse response

of the filter. Then the condition implies that in the absence of any prior information

about the filter, an exact determination of it, even with no additional noise present, is

impossible unless Z · 2W s < 1.
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7. We have shown that when Z > W - 2W we cannot determine the linear time-

variant network under the assumptions we have made. This follows from the fact that

we have more unknowns than equations, and thus are confronted with an indeterminate

situation. If, however, there exist additional constraints on the linear time-variant

network, these can be reflected in equations involving the unknown sample points, and

we might now have enough equations to determine all the unknowns. Thus, for example,

we might have the constraint

Z 2f0 h2(z,T) dz = K (89)

for all T.

This additional constraint is sufficient to determine the following linear time-variant

network

a

b a 0
C a d

a e a

f a g

0 a h a

i a a

(90)

-

If x(O) = 1 = x(2) = x(4) and all other x(k) are zero, we can find a, b, e, h, i directly and

also the sums c + d, f + g. Now from Eq. 89 we have the additional relations

2 2 2a +b +c =K P 

d2 e + e f =K (91)

2 2 2
g +h +i =K

Since we know a, b we can solve for c and then get d from the sum c + d. Knowing e

and d we can calculate f from Eq. 91 and then g from the sum f + g. Thus the linear

time-variant network is determined.

Many other types of constraints may be present in any particular problem, and these

often may be sufficient to determine the linear time-variant network as before, even

when the condition Z I 1 is violated. Sometimes, in fact, it might be useful
2W s 2W

to assign values almost arbitrarily to particular sample points and thus to obtain an

estimate (albeit degraded) of the linear time-variant network. In general, however, it

would be better to obtain degraded estimates on the basis of some over-all system cri-

terion. Since such criteria are most meaningfully established for the case when noise

is present, we have not investigated them here.

p·

I

H =

54



4. 5 Measurement Conditions for Other Constraints

The discussion of the measurement problem under other frequency and time con-

straints is very similar to the one we have just considered. In this section we shall

only quote the results that are briefly derived in Appendix III. We give necessary and

sufficient conditions for the measurement under the different restrictions.

Case I. Input Frequencies Limited to (-Wi, Wi)

A model for this situation is shown in Fig. 5. If we define a quantity Y analogous

to Z, so that h 3 (y, t) = 0, y > Y, a necessary and sufficient condition is

1 1
2W 2W.

s 1

or

W.
W < 

s 1 + 2WiY
1

A sufficient signal is one that consists of unit impulses at 0, 2W 2W and so on.

Case II. Limited Output Frequency Range

This case has been discussed.

Case III. Limited Filter Memory

Models for this case have been derived in Section III and are shown in Figs. 8 and 9.

In Appendix III it is shown that the measurement condition for this case is

Y(or Z) 
2W s

If the input or output frequencies are restricted to, say (-W i, Wi) or (-W o , Wo), the

conditions are

1 1
Z2W 2W

s 1

1 1Z .- w -2W
2W s 2W o

The nature of these conditions in different limiting cases can be discussed as was

done for Case II (section 4. 4). Under these limiting conditions we would expect the

results for the various constraints to agree, and in fact this is so, as can be readily

verified.
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V. CONCLUDING REMARKS

The development of mathematical models for communication channels has been the

subject of much research since the advent of statistical communication theory. Although

channels with additive random disturbances - such as the BSC and the Gaussian channel -

have been studied in some detail, less work has been done on channels with nonadditive

disturbances, of which multipath and scatter channels are notable examples. In partic-

ular, major work in this area has been done by R. Price (6, 7) and G. Turin (9). While

their studies have yielded considerable insight into the problem and have aided the devel-

opment of a successful system to combat multipath (5), the models they have used are

not quite general, since several assumptions about the path structure of the channel are

made. Price considers only statistically independent paths with Rayleigh-distributed

strengths and known delays. In Turin's model knowledge of path delays is not required;

moreover, he considers more general path statistics, but he is forced to assume that

the paths are resolvable and time-invariant.

The models proposed in this report are not, as they stand, models for multipath

channels, chiefly because no statistical information has been taken into account in their

formulation. The determination of appropriate statistical distributions for the time-

variant tap gains in our models is an interesting topic for future investigation. However

we feel that a significant feature of our models is the operational, or phenomenological,

point of view adopted in their derivation: Our delay-line and filter-bank models have

been based on assumptions concerning the limitations of our signal-generating and meas-

uring equipment. Thus consider, for example, the delay-line model for the situation in

which the output-signal frequency range is limited: The actual channel structure may

have either a discrete or a continuous structure, or have randomly varying paths, and so

forth, but the model summarizes all this information into the form of a delay line with

taps at fixed intervals. These models may therefore be regarded as canonical forms

for the linear time-variant network under the different constraints imposed on it.

We may note in passing that the operational models we have derived are similar in

form to the delay-line model used in the Rake system of communication and the filter-

bank model used in the Kineplex method. Our analysis may be considered as establishing

the sufficiency of such models.

The form of our sampling models would seem to be reasonable and expected - and

in fact, the form of some of them was suggested in conversation by J. M. Wozencraft -

but our study of the characterization of linear time-variant filters has pinned down

exactly how the parameters of these models depend on the impulse and frequency

response of the filters and the constraints imposed on them. It is worth noting

that the modified definitions of impulse and frequency response that we have used and

the definition of separable networks make the derivations and results particularly simple

and intuitive. Picturing a linear time-variant network impulse response on an elapsed

time-input time plane (Fig. 2) has been a simple and useful conceptual aid in this
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(and some further) studies. The definition of a filter bandwidth, 2W s , under given oper-

ating conditions, is a compact way of characterizing the rate of variation of the network.

The representation of a bivariate function or kernel h(t, r) by a series such as

Z fn(t) gn(r) is a useful mathematical technique, especially in the field of integral equa-
n
tions (27). The sampling theorems of Section III effectively do this for our impulse and

frequency responses under the various constraints. Note, however, that physically

meaningful series of the foregoing type are obtained only in terms of the variables z and

y in the modified impulse responses, h 2 (z, ) and h 3 (Y, t), and not for the variables t and

T in h 1(t, T).

Finally the results and methods of our analysis in Section IV of the conditions under

which our models can be determined by input-output measurements should be of use in

studying communication problems in channels whose parameters cannot be assumed to

be time-invariant for the duration of a signaling pulse. These results establish thresh-

olds beyond which instantaneous measurement of the unknown channels is impossible,

unless we have additional information about them.
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APPENDIX I

RELATIONS BETWEEN DIFFERENT FORMS OF IMPULSE RESPONSE AND

FREQUENCY RESPONSE FUNCTION

These relations have been given in section 2. 15, and here we explain how they are

derived.

a. Transformations between impulse responses

These are almost evident from the relations

z =t - T = y

Thus, let us consider a unit impulse input to the network at time T. The response of

the network after z seconds is identically the same as the response at time z + .

Therefore,

h2 (z. T) = h l (Z+T, T)

The other relations are similarly obtained.

b. Input-output relations -time domain

We have already derived

rt
y(t) = I hi(t, T) (T) d T

as Eq. 4 of section 2. 12. Now let

T' =t - T, dr' =-dT

and

y(t) = J h 1 (t, t-T') x(t--r) dT'

Change ' to T and we have Eq. 25. Equations 26 and 27 can be similarly derived, but

they are most conveniently obtained from Eq. 25 by using the preceding transformations.

c. Transformations between frequency responses

We have

Hi(V. OjV, ff hi(t, ) e - j2Trv(t-- ) e- j z2rrt dr dt

-fj h 2 (t-T., ) e j 2 r T e-j21r(v+l) t d dt

Let t - = z; then dt = dz, and

38

I



Hl(jv, jL) = jj h2 (z, T) e- j 2 rv z e-j2Wjz e-j2'sT d dz

= H2 [j(v+L)-, ji ]

which is Eq. 28. Equations 29 and 30 are rearrangements of Eq. 28.

d. Input-output relations -frequency domain

We have

y(t) = hl(t, T) x(T) dT

= f h (t, T) ej2zV X(jv) dv dT

= H(jv,t) e j 2 r v t X(jv) dv

therefore

Y(ji) f Hl(jv,t) X(jv) e ji2vt e j2 ft d dt

f Hl[jv, j(v-p)] X(jv) dv

which is Eq. 31. Equations 32 and 33 can be derived from 31 by making use of the

transformations in c.
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APPENDIX II

THE SAMPLING THEOREM IN THE FREQUENCY DOMAIN

Consider a time function h(t) limited to T = T 2 - T 1 . Using Woodward's method (22),

we can write

h(t) = repT h(t) rect (t-To)/T

H(f) = combl/T H(f) * sinc fT exp(-2rrjfT0 )

= H(T) sinc T ( f-) exp [-2jT (T] (II-1)
n

where T o = (T 1 +T 2 )/2. This is one form of sampling representation. Another can be

derived as follows: Transform both sides of Eq. II-l:

h(t) = H (T ) sinc T(f-T) exp[-2rjTo(f-T)] exp(j2ift) df

) 2rjnTo n

n

= ) le2hrjnt\- 1On expansion o va 2 )

0 elsewhere (II-2)

which we recognize as the Fourier series expansion of h(t) over the interval (T 1 ,T2).

This form also gives 2TW I degrees of freedom for a (W, T) function.

Proof of the Fourier Transform Relations: Eqs. 43 and 44

We first establish a preliminary result concerning the Fourier series for a periodic

train of unit impulses.

Consider the periodic function

h(t) = I 6(t-nT)
n

= exp n . cn
n T 

where
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cn Tf h(t) exp -Tdt

n /fT I
Z6(t-nT) exp T- dt

1
for all n

Therefore,

-2 rjnt,
6 (t-nT) = Z T exp --

n n \ T ,

Now, we have

Y[repT h(t)] = n h(t-nT)]

= H(f). Z e-jnT
n

=H(f) 1 t-n)

H(T 6 n\n

I
T ·combl/T H(f)

which is Eq. 43.

Sim ilarly

f[combT h(t)] =S[ h(nT) 6(t-nT)

1 (-2·rjn
- T Z h(t) exp

n \T/

n (f+)

T ZH(r)
n

1
= T rePl/T H(f)

which is Eq. 44.
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APPENDIX III

MEASUREMENT CONDITIONS FOR OTHER CONSTRAINTS

These are derived by methods very similar to those we have used for Case II. A

careful treatment would be as lengthy as the one given for Case II in Section IV, and

therefore we shall content ourselves with a brief indication of the arguments to be used

in these other cases.

Case I. Limited Input Frequency Range

A matrix relation between input and output is derived first. We have, from Eq. 68

of Section III,

h 3 (y,t) = 
n

/n m
m Kw WZ h lw- sinc W rt -

mZ 2 Z ' Siws S\

m ) sinc ZWi n i2W s Z-) 2W, -

(III-1)= fn(t) sinc (y-n)
n

if 2W i is normalized to unity. Then

hil(t, ) = fn(t) sinc (t-T-n)
n

and

y(t) = Z i fn(t) sinc (t-r-n) (r) ) d
n

= E fn(t)/ sinc (t-r-n) x(T) dT

and, therefore, for integral t, we have

y(t) = Z fn(t) x(t-n)
n

(111-2)

if x(t) is of bandwidth not

y(0) [h 3 (0, 0)

y(1) = h 3 (1, 1)

y(2) Lh 3(2, 2)

greater than ZW i .

0

h 3 (0, 1)

h 3 (1, 2)

0

0

h 3(0, 2)

This can be

j 

written

x(0)
x(l)

x(z2)

(III-3)

Notice from the relation

h3 (n, t) = h2 (n, t-n)

that this matrix is very similar to the matrix H derived in Section IV.
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To find necessary and sufficient conditions on measurement with input signals lim-

ited to (-Wi, Wi), we consider first the number of unknowns to be determined. Over a

t-span T, and a y-span Y, we have

(2YWi+ 1 )(2WsT+ 1)

independent degrees of freedom. The time interval over which nonzero output wave-

forms may be expected is T + Y seconds. The bandwidth of the output is not greater

than 2(Wi+Ws). The (apparent) degrees of freedom of the output is 2(T+Y)(Wi+Ws) + 1.

However, the degrees of freedom resulting from the frequency expansion 2Ws cannot be

counted because they are not truly independent of the other degrees of freedom, but are

calculable from the other degrees of freedom if the form of the frequency-expansion

mechanism is known. Therefore the true number of degrees of freedom in this case is

2(T+Y) Wi + 1.

Now we must have

(2WiY+1)(2WsT+1) _< 2(T+Y) Wi + 1

or

Y W W (III-4)
s 1

Sufficiency can be proved by using Eq. III-3 with inputs having x(t) = 1, at t = 0,

2W . .. T, and zero at other integral t.

Case IIIa. Limited Filter Memory - Potential Restriction on Input Frequency Range

From Eq. 70 of Section III, we have

h3 (yt) = Z f(t) g(y)

and therefore, for an impulse input x(t) = 6(t-T)

y(t) =/ Z fi(t) g(t-y) x(y) dy

= f Z f (t) g(t-y) x(y) dy

= f(t) expj)trect ( tTy ) (111-5)

H3( , ) exp--) T y T + Y
o -elsewhere( 6)

elsewhere
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(assuming T/Y to be integral).

We have to find H3 2W) to determine the network. Now in Eq. 6, if we multiply

y(t) by exp - (rjlt)/Y and filter out the dc term we will get H 3 (, T. We can do this

for all the 's at a given T. Then if T = 2W is greater than Y, we can, for different
s /ij

T's, similarly isolate the corresponding y(t) functions and determine H3 Tf T . There-
fore a sufficient condition is 

2W s 7 Y (III-7)

To determine if this is a necessary condition, we postulate a cut-off frequency W i, and,
calculating degrees of freedom for the output and the system, we have

(2WiY+1)(WsT+1) < 2(T+Y) Wi + 1 (III-8)

or

1 1
Y 2Ws 2Wi (III-9)

Now, as 2Wi- o,

2W Y- 1 (III-10)

Case IIIb. Limited Filter Memory - Potential Restriction on Output Frequency Range
We have, from Eq. 71 of Section III

h 2 (z, T) = f(T) g(Z)

and therefore, for an impulse input x(t) = 6(t-T),

y(t) = f g 2 (t-z) f(z) x(z) dz

= Z f(T) g (t-T)

= H 2 (-T) exp -(t-T)] rect

H= exp T t T + Z

DO elsewhere

(if T/Z is integral).
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We have to find the H2 , '2W to determine the network. From Eq. III-10 we see

1that this can be done by putting in impulses at T = 0, 2W .. , provided the duration,

Z, of the impulse response is less than 2W - for we then need only multiply y(t) by

exp - (wjt)/Z and filter out the dc term to get Hz 2 ,T). This can be done for all 

and for the different T. Z

And finally, using a degrees-of-freedom argument as in the other cases, we have

(ZZWo+1)(2TWs+ +1) 2(T+Z) W + 1 (III-11)

or

1 1
2Ws 2W

and as Wo - :o, 2WsZ - 1. Since Z is equal to Y, this is, as we would expect, the

same result as in Case IIIa.

If we do have restrictions on input or output frequency ranges, say (-W i, Wi) or

(-W o , Wo), the conditions become

Y s 2Wi (-12)

and

1 1
2W 2W (II-13)

The necessity of these conditions is shown by Eqs. III-9 and III-11, but there appears

to be a discrepancy (that is, no terms in Wi or Wo) in the sufficiency arguments. This

is because in our sufficiency proofs, for finite W i and Wo , there will be some uncer-

tainty about the values of the impulse response at the instants T where one waveform

ends and another begins. A more careful sampling-point analysis, as in Section IV,

takes account of this and can be used to show that conditions III-12 and III-13 are indeed

necessary and sufficient.
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