
Abstract — Cortical neural networks are responsible for
identification, recognition and classification of natural signals
mediated by various sensory channels. These tasks are still too
complex to be accomplished by state-of-the-art engineering
systems. There is, therefore, a great deal of interest in the
development of suitable biologically-motivated architectures
which are based on a realistic model of generic neural
ensembles. We present a computational architecture for
classification of natural signals, such as physiological signals,
based on the emergence of instant neural cliques and phase-
locked attractors in liquid architectures. The emergence of
instant neural cliques enables mapping of complex classes of
signals onto specific spatio-temporal firing patterns. The
convergence of neural cliques onto attractors, along phase-
locked pathways, reveals a new type dynamic behavior of
neural ensembles, which lends itself to simple discrete-output
computational systems.

I. INTRODUCTION

ortical networks are, perhaps, the most computationally-
powerful class of dynamical systems. Cortical networks
process in real-time complex temporal inputs and

capture complex structures and relationships in massive
quantities of low precision, ambiguous, noisy data in rapidly
varying environments. Such cortical networks differ in most
of the fundamental aspects from computational systems and
models used by conventional technologies. In particular,
components of cortical networks, neurons and synapses, are
very slow (ms. scale), multi-parallel, heterogeneous, highly
recurrent and sparsely connected. It is obvious that the
conventional computational paradigms, such as Turing-
machine or Hopfield-type attractor-neural-networks, are not
applicable to such cortical-type systems.

Early, well-known, theoretical investigation of
computational properties of recurrent neural networks with
limited dynamics [1], revealed fixed-point attractors and
enabled computation of complex problems, such as the
traveling salesman problem [2]. Theoretical studies [3]
discovered that the number of Hopfield attractors (fixed-
point states) may be as large as the number of neurons (i.e.
given a Hopfield network of N neurons, with an arbitrary
matrix of connectivity W, the number of state vectors that
can be made stable is upper-bounded by N). However,
experimental results indicated that the number of attractors
attainable with such networks may be too small for practical

applications. Hopfield networks are composed of symmetric
weights, and thus the dynamics of the system is limited.
Since the activity of the elements always evolves to one of a
set of stable states which is then kept forever, only fixed-
point attractors can emerge in the dynamics of the system.

Recently, T. Natschläger, W. Maass, and H. Markram
have developed the framework of Liquid State Machine
(LSM), which is based on a more biologically realistic and
dynamically rich model of spiking neural network [4]. LSM

consists of a filter ML , implemented by a complex recurrent
network of spiking neurons. It maps input streams

0( )u t t onto static liquid-states 0( )x t , in a nonlinear

manner. Then, memoryless function Mf maps at any time

0t the liquid-states onto some target output. To generate

this readout function, a layer of linear perceptrons is trained
to find the required classes of equivalences in the liquid-
state space, dictated by the given task. Obviously, cortical
modules are not composed of these two functionally
different components – liquid-states generators and
readouts. However, by this simplification and by
emphasizing that cortical networks, rather than individual
neurons, should be viewed as basic computational units, the
LSM computational framework suggests a radically
different paradigm for neural computation. Moreover, the
LSM framework enables the application of real cortical
networks in real-world tasks by embodiment of cortical
neural culture in artificial environments [5].

Following the concept of LSM, liquid-state was extended
to spatio-temporal firing structure in a limited time-window,
called neural clique [6], [7]. In the sequel, we implement
neural cliques for mapping classes of signals to specific
firing patterns. We then present a recently revealed dynamic
behavior of neural ensembles in form of limit-cycle phase-
locked attractors. This dynamics is sensitive to initial
conditions injected into the network, and is computationally
effective in mapping complex cliques onto discrete outputs.
Finally, both concepts are implemented in a computational
system and tested in voice recognition benchmark.

II. NEURAL CLIQUES

A computational model of generic neural microcircuits is
inherently endowed with powerful and versatile information
processing capabilities. We use a model similar to [8],
composed of a 3-dimentional recurrent network of 300
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Leaky-Integrate-and-Fire (LIF) neurons [9] with random
connectivity of statistics similar to generic cortical
microcircuit -- 20% of the neurons chosen to be inhibitory
and 80% excitatory. The probability of interconnection
depends on the distance between two neurons,

2exp( ( , ) / ) ,C D i j (1)

where and C are parameters that determine the average
number of connections for a certain Euclidean distance D
between neurons i and j. This connectivity characterization
by primary local connections and a few longer connections
is biologically realistic. Random, heterogeneous parameters
of neural-microcircuit (NM) model fit cortical data [4].
Synaptic short-term plasticity of the NM is implemented by
dynamic synapses in which the amplitude of each post-
synaptic current depends on the spike train that is impinging
on the synapse [10], [11], and causes facilitation and
depression processes. The model is implemented using
CSIM simulator [8].

The concept of “Cliques” within neural ensemble was
presented in [12] and implemented in computational system
of interaction between two neural ensembles and learning-
by-dispersion. Neural clique is a spatio-temporal structure
determined by a firing-pattern of cluster of neurons. These
spatio-temporal patterns are sensitive to input signals and
are indicative of network states. The concept of “Synfire-
chains”, originally introduced by M. Abeles [13] and
recently confirmed in neural culture activity by R. Yuste and
associates [14], [15], emphasizes the importance of
correlated spatio-temporal firing patterns generated by
neural ensembles and their relevance to connectivity
characteristics. Synfire-chains highlight the importance of
interrelated spatio-temporal firing patterns across a
relatively wide range activity and of its relevance to
neurobiological functions. However, there is a missing link
towards understanding the code of spatio-temporal firing
patterns in the context of task-dependent activity and
perceptual elements. For this reason, we address the concept
of functionally higher spatio-temporal patterns, produced by
neural ensembles, "Cliques". A clique may be composed of
coherent interrelated activity of several synfire-chains active
in the same or even different brain loci and structures. As
such as it does not directly depend on the connectivity
characteristics of the firing/non-firing neurons. The meaning
of the clique as a spatio-temporal cube of activity of finite
temporal length [12] is determined by short-term dynamics
of the neural ensemble. Synfire-chains serve as the carriers
of cliques, whereas the latter are composed of subsets of
neurons participating in the activities of several synfire-
chains.

Mapping onto cliques has different properties than the
mapping onto liquid-states, applied in LSM framework. A
clique has an important temporal structure within a limited
time-window, characterized by short-term dynamics of the
ensemble (~50ms in our model). Moreover, LSM framework
is based on separation property, suggesting that injections of

any two sufficiently different inputs ( )u and ( )v will

drive the liquid into sufficiently different liquid-states,

represented by spatial constant vectors at a given time 0t --

uX and vX [4]. In contrast to LSM, cliques perform a

selectivity property, mapping an entire certain class of inputs
onto the same clique. This property leads to computational
capability of identification and classification of certain
classes of natural signals. Moreover, natural signals
processed by different sensory systems, may be mapped
onto cliques by different neural ensembles. Then,
convergence of different sensory sources towards a single
clique is possible by mapping multiple cliques onto a higher-
level clique in subsequent layers. Specifically, we examine
the emergence of cliques through interaction of two neural
ensembles. As indicated in the framework of Fig. 1, the
activities within the two ensembles are coupled by means of
the cliques.

Fig.1. Block diagram of the computational framework. Inputs from 2 classes
are injected into first microcircuit, which maps them onto cliques. The
output of first microcircuit (including the cliques) is injected as initial
condition to the second microcircuit. Second microcircuit is driven by a
driving stimulus to phased-locked-attractors according to the initial
conditions it is received. The phased-locked-attractors are characterized by
frequency ( ), and phase ( ).

In this study we focus our exposition on the functional
aspects of cliques. Mechanisms that enable generation and
transformation of cliques through pipeline of neural
ensembles are macro “liquid-currents” within neural
ensembles [12]. We suggest that on the macro-level of
neural ensemble, the discussed mapping is implemented by
existing specific liquid-currents from the group of input-
neurons to the group of output-neurons, which in turn read
out by the next layer of neural ensembles. To generate the
appropriate subsets of cliques, a neural ensemble is required
to be sensitive, in the process of cliques’ generation, to
specific class of inputs, and insensitive to other inputs.
Capturing of the intrinsic dimensions of the data in the
context of a given computational task is characterized by
redundancy [12].

The intensity of liquid-current (LCI) generated by a
certain class of inputs k to a spike j, in imaginary spatio-
temporal layer l, over the subset of neurons identified by
index i, is defined by the following recursive algorithm:

(( ) )0

, , 1

, , 0 0
max max

, , 1,

t ti i
a

input

i k i l
i

k j l i i w

k j l l

e wLCI
LCI t t t t

K w

LCI

(2)

6694



wherein, 0t is the time of the spike j, and it is the time of

the spike i, in preceding imaginary spatio-temporal layer, l-

1. iw is the strength of the synapse connecting neuron

producing spike j and neuron producing spike i, and i is

the delay of this synapse. The algorithm scans neuronal
spikes at layer l-1, which have led to the spike of the neuron
at the next layer, l. The concerned time window is equal to
the time lapsed between the activation of the synapse and

the firing of the spike j, wt precedes the time of spike j by

10ms. The probability of spike i to lead to spike j is
infinitely small. In other words, the LCI is defined by the
tree of neurons along which the signal "back-propagates"
from the target spike, j, to the input k. The LCI is normalized

by the product of the maximal synaptic strength, maxw and

the maximal number of synaptic connections per neuron,

maxK . The LCI at the input layer, inputl , is set to 1. This

determines in turn is the stopping condition of the recursive
algorithm. Note that, the terminology of layers, depicted in
Fig. 2, refers to neuronal spikes at different time steps for a
certain input. The fact that the same neuron may receive
input either from the external environment or from
interneurons highlights the recurrent connectivity
characteristics of the neural ensemble. Note that the
definition of LCI is valid also for non-firing spikes, i.e. the
absence of spike for a certain neuron at certain required
time-window. Since cliques are spatio-temporal sequences
of neuronal spikes, we define the strength of clique q for
input k by,

'
, , , ' 1' ,firing

non firing

LCI LCI

k q k n m LCI LCI
mn

C LCI (3)

where, n refers to the number of constraints on spikes
expected by the environment or the subsequent neuronal
ensemble, and m identifies accordingly the number of
degrees of freedom within each constraint. Here we assume
that there is no statistical dependency between the spikes,
since spikes defining a clique are not connectivity-
dependent and may exist in different and far brain loci and
structures. The strength of cliques, based on definition of
LCI (2), refers to the immunity of the cliques, generated by
neural ensemble, as a function of variations in the presented
signals. Thus, for example, longer liquid-currents are less
reliable, while parallel liquid-currents increase the immunity
of the neural ensemble to variations in signal, and result in
more stable cliques.

III. PHASE-LOCKED ATTRACTORS

So far, we discussed the mapping of complex classes of
inputs onto spatio-temporal signatures by neural ensembles
in form of cliques. These cliques are the code which
propagates along the neural pathways, and leads to fusion of
the information from multiple sources. In this section, we
are concerned with the following issue – what kind of
mechanism is responsible for translating complex spatio-

temporal cliques to simple discrete outputs, which can be
read-out by static, non-adaptive and non-learning actuating
system, such as some motor neural circuits.

Fig. 2. Example of liquid-currents from a given input to a spike at the output
layer. Spikes from input neurons, indicated by black arrows, may appear at
several spatio-temporal layers since the injected input has temporal
structure. Spikes from one layer can excite several next layers.

Here we implemented another, functionally different,
computational framework of cortical network's model, based
on concepts adopted from dynamical-systems theory.
Cortical networks are dissipative systems. Their fading
memory property requires perpetual inputs for the network
to maintain activity. Otherwise, the network relaxes to a
single resting state. In this setup, cliques are injected to the
second neural ensemble (Fig. 1) as initial conditions. Then, a
periodic external input (driving stimulus) drives the network
dynamics. Three types of behavior are possible: (Type-I) -
network dynamics does not converge to a periodic steady-
state. (Type-II) - all initial conditions relax to a single
steady state, no matter how far they are from each other.
(Type III) – the network reaches several different periodic
steady-states which are highly dependent on, and sensitive
to, the initial conditions (cliques).

Fig. 3. Possible network dynamics vs. different parameters and its
scattering for two different networks. Driving stimulus frequency is
shown in x-axis and network connectivity-radius in y-axis. Black
areas depict dynamics with a single steady state for all initial
conditions; white areas depict dynamics in which no convergence
to a periodic steady-state has occurred; gray areas are intermediate
states in which the network converged to discrete number steady-
states dependent on the initial-conditions.
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The systems characterized by Type-II dynamics do not
posses the selectivity property, since all initial conditions
converge to the same steady state. Thus, systems with this
type of dynamics can not be used for computational
purposes. Systems with Type-I dynamics, which do not
converge to a steady-state, have the selectivity property and
therefore may be used for computational tasks. However,
since no limit-cycle is obtained, information-extraction
regarding the current network's state is very complicated,
and requires a complex readout. Systems with Type-III
dynamics are driven to limit-cycles, characterized by a
certain frequency and phase (shown abstractly in Fig. 5).
Since these limit-cycles are selective to classes of inputs
injected as the initial conditions and easily detectable, they
are the best candidate for definition of system’s output in
classification computational tasks. Dynamics of such a
computational system as a function of specific system's
parameters (driving stimulus frequency and the radius of
network's connectivity) is shown in Fig. 3. As the figure
implies, the values of system's parameters determine the
type of network's dynamics. The computationally interesting
areas which are represented by the limit-cycle dynamics tend
to vary for different network realizations. Nevertheless,
some consistency of dynamics in the space of system’s
parameters can be indicated. It is clear that low connectivity
and/or low frequency of the driving stimulus, yields Type-II
dynamics, whereas, higher connectivity and high frequency
of the driving stimulus lend itself to Type-I dynamics. In the
transition between the two types of dynamics, there is a
region characterized by Type-III dynamics, implying a
certain tendency of the system to exhibit dynamical behavior
which is on the verge of chaos in the space of its parameters.

Revealing the computational principle of this model
requires thorough understanding of all three types of
dynamics. As a consequence of their non-linear nature with
numerous degrees of freedom, cortical neural networks have
a high tendency for chaotic behavior, as indicated by Type-
III behavior. The universality of chaos provides a general
theory and offers a well-defined framework for analysis of
all types of networks dynamics. However, here we focus on
a limit-cycle behavior (Type-III), wherein a periodic
external force entrains and synchronizes the system’s
activity, and makes it computationally effective for
classification tasks.

Similarly to other types of dynamical neural networks
(e.g. Hopfield type), the behavior of the proposed
computational system is also characterized by attractors. The
periodic driving-stimulus pushes the network into an
attractor, determined by the periodicity of the driving
stimulus and the initial condition. This facet of the
dynamical behavior of this computational system is quite
complex and will, therefore, be dealt with elsewhere in
greater detail. However, the role played by the initial
condition is fundamental to the understanding of the
computational power exhibited by our system, and we
would therefore like to discuss briefly some facts related to
the role played by the initial condition. An important finding
is that the same periodic driving-stimulus can map different

initial conditions into different attractors, by entraining the
network into sub-, or super-harmonic of the driving
frequency (Fig. 4). More interesting, and important
computationally, is the structure of the basins of attraction
and the mapping of initial conditions into such basins. A
basin of attraction is divided into several sub-basins, each
being identified by a specific phase of the attractor's limit-
cycle, corresponding to a specific class of inputs. In other
words, an attractor characteristic of our system exhibits
much more complex and richer topology of its dynamics, in
that it may be considered as a cluster of attractors
characterized by the same limit-cycle with different phases
(Fig. 5).

Fig.4. Raster plot of microcircuit response. Shown starting from second 100
of the simulation. The microcircuit is at phase-locked-attractor. Different
colors indicate the response of the microcircuit for three different initial
conditions.

Thus, as far as neural-computation is concerned, the
capacity of the proposed computational system exceeds by
far the one realized by Hopfield-type dynamical neural
networks [3].

Fig.5. Left figure shows a schematic depiction of an attractor (which
represents a frequency), with several possible points of entrance to the
attractor (representing the phase). The right figure shows schematically
several attractors (i.e. several frequencies), black dots indicate possible
entrance points to each of the attractors.

To test the computational power of the proposed system
we selected speaker identification task as a benchmark for
natural signal classification. The database includes 1-minute
phone conversations of ten speakers, 30 conversations for
train and 30 for test. The voice signals are pre-processed
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based on MFCC pre-processing [16] and are injected to the
first neural ensemble. Then, an external frequency is applied
to the second neural ensemble until it reaches its steady-
state. The specific dynamic attractor identified by its phase
and frequency is associated with a certain speaker based on
the training data-set. Based on the matches between the
attractors and input signals in test data-set, the system
performed the task with an error rate of 12%.

IV. DISCUSSION

Convergence processes drive neural ensemble into limit-
cycle attractors characterized by certain frequencies and
phases. A new phenomenon of phased-locked limit-cycle
attractor, with multiple entry phases, characteristic of
dynamic neural network (and most likely other dynamic
systems) was discovered in the course of this study. This
new type of dynamic neural behavior can serve as a
powerful computational paradigm and mechanism. Further,
the generation of large number of attractors, which depend
on the initial conditions imposed by the inputs on to the
system, enables the mapping of inputs with complex
temporal structure onto discrete simple outputs. The
proposed computational system for classification of natural
signals, exclusively composed of biologically-plausible
components, provides also insight into the function of
neurobiological processes and structures. We utilize the
phase-splitted attractors for recognition and classification of
several types of signals (patterns), each one being associated
with a specific phase.
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