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Abstract

We initiate the study of a new clustering framework, called cluster ranking. Rather than
simply partitioning a network into clusters, a cluster ranking algorithm also orders the clusters
by their strength. To this end, we introduce a novel strength measure for clusters—the integrated
cohesion—which is applicable to arbitrary weighted networks.

We then present C-Rank: a new cluster ranking algorithm. Given a network with arbitrary
pairwise similarity weights, C-Rank creates a list of overlapping clusters and ranks them by
their integrated cohesion. We provide extensive theoretical and empirical analysis of C-Rank
and show that it is likely to have high precision and recall.

A main component of C-Rank is a heuristic algorithm for finding sparse vertex separators.
At the core of this algorithm is a new connection between the well known measure of vertex
betweenness and multicommodity flow.

Our experiments focus on mining mailbox networks. A mailbox network is an egocentric
social network, consisting of contacts with whom an individual exchanges email. Ties among
contacts are represented by the frequency of their co–occurrence on message headers. C-Rank
is well suited to mine such networks, since they are abundant with overlapping communities of
highly variable strengths. We demonstrate the effectiveness of C-Rank on the Enron data set,
consisting of 130 mailbox networks.

1 Introduction

Cluster ranking Clustering and community identification in networks is a vast area of study,
spanning over multiple disciplines, such as computer science, sociology, physics, and biology. While
the literature is abundant with diverse clustering methods, most of them fall within the same
framework [20]: given a network G, find a partition of G that optimizes a predetermined objective
function. The various approaches differ in the types of partitions considered (e.g., flat clustering
vs. hierarchical clustering), in the assumptions made on the network (e.g., weighted vs. unweighted
networks), in the choice of the objective function (e.g., k-means, normalized cuts), and in the
techniques used to solve the optimization problem (e.g., agglomerative vs. divisive).
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When clustering large networks, clustering algorithms frequently produce masses of clusters.
This phenomenon is magnified when employing “fuzzy” or “soft” clustering methods, which parti-
tion the network into overlapping clusters. These tend to generate numerous clusters even on small
networks. The abundance of clusters may make the results hard to digest and interpret. Moreover,
typically only a small portion of the clusters are interesting or meaningful, giving rise to a “needle
in a haystack” problem: how to select the important clusters from the masses of results returned?

In order to address the above difficulties, we propose a new clustering framework, called cluster
ranking. Given a cluster strength measure, which assigns a “strength score” to every subset of
nodes, and given a maximality criterion, which determines which sets of nodes are sufficiently
“comprehensive” to be considered self-contained (rather than parts of larger clusters), a cluster
ranking algorithm outputs the maximal clusters in the network, ordered by their strength. The
ranking provides information that is usually not conveyed by traditional clustering: which clusters
are more important than others. This information can be used, for instance, to quickly single
out the most significant clusters. Similarly to search algorithms in information retrieval, cluster
ranking algorithms are measured by precision and recall. Our new clustering framework is described
in Section 3.

Cluster strength measure A crucial ingredient in the new framework is the choice of a suitable
cluster strength measure. A proper definition of such a measure turns out to be a major challenge.
Even for unweighted networks, there is no consensus on how to measure quality of a cluster or of
a clustering [9, 21].

We propose a novel cluster strength measure—the integrated cohesion—which is applicable to
arbitrary weighted networks. To define this measure, we first define the cohesion of unweighted
clusters. Several notions of edge separators [34, 21, 16, 29, 13] have been used in the past to
capture how “cohesive” an unweighted cluster is. We observe that these notions are unsatisfactory,
especially in the presence of overlapping clusters. We then show that vertex separators, rather than
edge separators, are more effective in measuring cohesion.

Extending cohesion to capture strength of weighted clusters is tricky, since edge weights have
to be taken into account as well. A standard approach for handling edge weights is “thresholding”:
one determines a threshold T , and transforms the weighted network into an unweighted network, by
keeping only the edges whose weight exceeds the threshold T . We show that standard thresholding
is insufficient for measuring strength of weighted clusters. We then introduce integrated cohesion
as an effective measure of strength for weighted clusters. The integrated cohesion of a cluster is the
sum of the cohesion scores of all the unweighted clusters obtained by applying all possible thresholds
to the given weighted cluster. Our new cluster strength measures are discussed in Section 4.

Cluster ranking algorithm Having set up the new framework, we present C-Rank: a cluster
ranking algorithm. C-Rank is designed to work for networks with arbitrary pairwise similarity
weights. The network’s nodes are assumed neither to belong to a metric space nor to conform to
any statistical model. C-Rank produces and ranks overlapping clusters and is thus in particular an
overlapping clustering algorithm.

C-Rank works in three phases. First, it identifies a list of candidate clusters. Then, it ranks
these candidates by their integrated cohesion. Finally, it eliminates redundant clusters—ones that
are non-maximal.

At the core of C-Rank is a hierarchical overlapping clustering procedure, which constructs a
hierarchy of overlapping clusters in unweighted networks. This procedure may be of independent
interest. Given a network G, the procedure finds a sparse vertex separator in G, and uses the
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separator to split the network into a collection of overlapping clusters. The procedure then recurses
on each of the clusters, until reaching cliques or singletons. Interestingly, the hierarchy produced
by the procedure may be a DAG (Directed Acyclic Graph), rather than a tree. We provide rigorous
theoretical analysis of this procedure and show that it is guaranteed to find all maximal clusters in
G (note that other soft clustering algorithms may not have this guarantee and are thus less useful
in our framework). The procedure may run in exponential time in the worst-case—an unavoidable
artifact of the quest for overlapping clusters. Yet, we show that its running time is only polynomial
in the output length. In practice, it took C-Rank several minutes to cluster networks consisting of
more than a thousand nodes on a standard laptop PC.

Given a weighted network, C-Rank produces candidate clusters by transforming the network into
multiple unweighted networks using a gradually increasing threshold. The hierarchical overlapping
clustering procedure is used to extract clusters from each of these unweighted networks. Full details
of the algorithm are given in Section 5.

Finding sparse vertex separators A fundamental ingredient of the precedure for building a
hierarchy of clusters in unweighted networks is the detection of sparse vertex separators. In the
general case, the problem is NP-hard [7], yet some approximation algorithms exist for finding sparse
vertex separators, while making use of semi-definite programming [25, 10]. As solving a semi-
definite programming problem can be very computationally expensive, these algorithms are not
always practical. We thus propose a different heuristic method for finding sparse vertex separators,
which is based on multicommodity flow.

In order to find a sparse vertex separator, we show a connection between sparse vertex separators
and vertex congestion in multicommodity flow: the congestion on the most congested node under
a multicommodity flow provides an approximation of the sparsest vertex separator. The proof is
based on an extension of an argument that appears in the work of Leighton and Rao [25]. This
result leads to a heuristic algorithm for finding a sparse vertex separator by iteratively removing the
most congested nodes from the network until the network decomposes into two or more components.

Finding the optimal multicommodity flow requires solving a linear programming problem, which
is computationally expensive. We thus find instead the most congested nodes under a specific
multicommodity flow — the shortest paths multicommodity flow. It was empirically shown that
for many networks the value of this flow is close to the value of the optimal multicommodity
flow [29]. The advantage of using a shortest path flow is that the most congested nodes can be
found using a dynamic programming algorithm, which is relatively efficient. We present such an
algorithm, which is based on an algorithm by Girvan and Newman [16] for finding congested edges
under the same flow. As part of building the algorithm, we point out a connection, which, to the
best of our knowledge, has not been known before, between edge and vertex betweenness and the
congestion on edges and nodes in a multicommodity flow. This connection may be of independent
interest. Section 6 describes in detail our method for finding sparse vertex separators.

Mailbox networks We demonstrate the efficacy of the novel framework and of the C-Rank
algorithm in a new domain: clustering mailbox networks. A mailbox network is an “egocentric”
social network [32, 39]—a network centered around a root individual. Unlike global “sociocentric”
networks [15], it provides the subjective viewpoint of an individual on her social environment.
A mailbox network is generated by mining messages in an individual’s mailbox. Actors in this
network are the individual’s group of contacts. The weight of an edge connecting two actors is the
number of messages on whose header both actors appear (either as co-recipients, or as a sender
and a recipient). This weight represents the strength of the ties between the two actors from the
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individual’s perspective. Mailbox networks are typically abundant with overlapping communities
of variable strengths, and thus C-Rank is highly suitable for them.

Automatically discovering communities within mailbox networks could be beneficial in various
applications. In email and personal information management systems, the knowledge of one’s
favorite communities could support the automation of a variety of features such as automatic
completion of groups when entering multiple recipients, detection of missing or redundant recipients,
suggestion of additional contacts given a certain topic, etc. Email communities might also help in
spam filtering by identifying “spam groups” [6] and possibly in enhancing the management of
blocked lists. In the intelligence domain, communities can evidence gangs or potential criminal
groups around known criminals.

Experimental results We evaluated C-Rank on our own mailboxes as well as on about 130
mailbox networks generated from the Enron data set [23]. To evaluate the quality of C-Rank,
we adapted the popular edge betweenness clustering algorithm of Girvan and Newman [16] to the
cluster ranking framework, and compared the two algorithms. We found that C-Rank dominates
the edge betweenness algorithm under almost any metric. We also evaluated the robustness of C-
Rank under random removal of data, and found it to be quite resilient. These results are presented
in Section 7.

2 Related work

The literature on clustering and community detection consists of numerous measures of quality for
communities and clustering. These vary from distance-based metrics (such as minimum diameter,
sum-of-squares, k-means, and k-medians, cf. [19]), to graph-theoretic measures (such as normalized
cuts [34], conductance [21], degree-based methods [13, 14, 18], performance [38], edge betweenness
[16], modularity [29], bipartite cores [24], and k-cliques [30]), to statistical methods (e.g., [3]).
Unfortunately, there is no single, widely acceptable, definition, and many of the above notions are
known to work badly in some situations (cf. [9, 21, 22]). Furthermore, many of the above measures
are suited for restricted scenarios, such as hard partitional clustering, model-based clustering, or
clustering of metric space data points.

Fuzzy cluster analysis (cf. [17]) is a branch of data clustering, in which each data point can
be associated with multiple clusters with different confidence probabilities. Fuzzy clustering can
be used in particular to generate overlapping clusters. Nevertheless, most of the classical work
in the area (e.g., Fuzzy c-means) assumes the data points lie in a metric space, which respects
the triangle inequality. We consider arbitrary weighted networks whose induced distance measure
does not necessarily satisfy the triangle inequality. More recent studies (e.g., [36, 33, 2, 8, 30,
4, 5]) address the general scenario of networks with arbitrary pairwise similarity weights. These
algorithms substantially differ from ours, because they do not rank clusters and are not guaranteed
to output all maximal clusters.

Pereira, Tishby, and Lee [31] present a hierarchical soft clustering algorithm for weighted net-
works that lie in a metric space, using a technique called deterministic annealing. This technique
bares some similarity to the increasing threshold used by C-Rank to find candidate clusters.

Several works studied communities in email networks. Tyler et al. [37] mined communities
in sociocentric email networks, i.e., ones extracted from the viewpoint of an organization’s mail
server. Fisher and Dourish [12, 11] study egocentric mailbox networks as we do, yet they detect
communities by manual inspection and not by an automatic algorithm. Boykin and Roychowdhury
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[6] mined communities in mailbox networks in order to detect “spam communities”. Their clus-
tering algorithm, however, is too coarse to reveal the overall community structure of the network.
McCallum el al. [26] cluster email messages in an individual’s mailbox, based on their text content,
rather than on the message headers.

3 Cluster ranking framework

Throughout, G = (VG, EG) is an undirected network and n = |VG| is the number of nodes in G.
G has no parallel edges, yet self loop edges are allowed. Every edge e ∈ EG is associated with a
non-negative weight W (e). The weight represents the strength of the tie between the two connected
nodes. The self loop weight represents the intrinsic “importance” of the corresponding node. If u
and v are not connected by an edge, we implicitly assume W (u, v) = 0. In the special case all edge
weights are 1, G is called an unweighted network. Note that edge weights can be arbitrary, and in
particular need not correspond to a metric.

The first basic ingredient of the cluster ranking framework is the following:

Definition 1 (Cluster strength measure). A cluster strength measure is a function µ, mapping
networks to non-negative real values. µ(C) is the cluster strength of a network C.

Intuitively, µ(C) represents how “strong” C is as a cluster. There could be many possible
realizations of this definition, depending on the properties of a cluster viewed as making it “strong”.
One simple example is the clique strength measure for unweighted networks. This measure takes
on only Boolean values: a network C is of strength 1 if it is a clique, and is of strength 0 otherwise.
Under this measure, then, only cliques are considered clusters. In Section 4 we propose a new
strength measure that suits weighted networks with overlapping clusters.

Cluster strength is an intrinsic property of the network C. Typically, C is a subset of a larger
network G. The cluster strength depends only on the internal connectivity within C and not on
how C is connected to the rest of the network G. Nevertheless, cluster strength by itself is clearly
insufficient to represent the “desired” clusters in a network. For example, a small clique A, which
is embedded in a larger clique B, is strong under the clique strength measure, but is evidently not
very interesting, because it is simply an integral part of the larger clique. In order to capture these
redundant clusters, we introduce the second basic ingredient of the framework:

Definition 2 (Maximality criterion). Let G = (VG, EG) be a network. A maximality criterion
is a Boolean function, mapping subsets of VG to {0, 1}. All the subsets that are mapped to 1 are
called maximal and all the subsets that are mapped to 0 are called non-maximal.

A natural maximality criterion in the cliques example maps a set C to 1 if and only if it is a
clique and not contained in any other clique. The maximal clusters in this case are the maximal
cliques in G.

We can now state the cluster ranking problem:

The cluster ranking problem

Input: A network G.
Output: The maximal clusters in G ordered by their strength.
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The cluster ranking problem, as stated, could be a hard optimization problem. One immediate
difficulty is that the number of maximal clusters may be very large, so just outputting them may
take a long time. We thus measure the performance of ranking algorithms not only relative to the
input length but also relative to the output length (the so called “input-output complexity”). A
more serious problem is that typically the computational problem itself (even when the output is
short) is hard. Sometimes even the computation of µ(C) on a given network C might be intractable.
It follows that in reality we cannot expect a ranking algorithm to provide an exact solution to the
ranking problem. A typical ranking algorithm may include on its list non-maximal clusters and/or
may miss some maximal clusters. We thus adapt information retrieval metrics to evaluate the
quality of cluster ranking algorithms.

For a network G and for a ranking algorithm A, let A(G) be the list of clusters returned by A
when given G as input. Let I(G) denote the “ideal” desired output of A, i.e., the list of all maximal
clusters in G. Our metrics try to quantify the difference between A(G) and I(G).

The recall of A is the fraction of maximal clusters output by A:

recall(A,G) =
|A(G) ∩ I(G)|

|I(G)| .

The precision of A is the fraction of maximal clusters among the clusters output by A:

precision(A,G) =
|A(G) ∩ I(G)|

|A(G)| .

4 New cluster strength measure and maximality criterion

In this section we develop a new measure of cluster strength and a corresponding maximality
criterion. Our measure is quite general, and in particular is suited for finding overlapping clusters
in networks with arbitrary weights.

4.1 Unweighted networks

We start with the simpler case of unweighted networks. In such networks, two nodes are “satisfied”
being in the same cluster if and only if they are connected by an edge. Satisfied pairs of nodes wish
to keep the cluster intact, while unsatisfied pairs want to break it apart. A strong cluster is one
which is “cohesive” in the sense that no decomposition of the cluster into pieces will create more
satisfaction than keeping the cluster undivided.

The above intuition has been formalized via various notions of graph partitioning, such as
normalized cuts [34], conductance [21], edge betweenness [16], modularity [29], and relative neigh-
borhoods [13]. The underlying principle in all these approaches is the same: a network is cohesive
if and only if it does not have any “weak” edge separator (a.k.a. edge cut). An edge separator is
a subset of the network’s edges whose removal from the network makes the network disconnected.
The above approaches differ in the way they measure the “weakness” of the edge separator.

We observe that regardless of the weakness measure used, edge separators sometimes fail to
capture the cohesion of networks, especially in the presence of overlapping clusters. While the
existence of a weak edge separator in a network is sufficient to make the network noncohesive, it
is not a necessary condition. A simple example for this is illustrated in Figure 1. Here, we have
two cliques of size n that overlap in a single node. It is easy to check that any edge separator
of this network has Ω(n) edges and thus will be considered relatively strong almost under any
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Figure 1: Overlapping cliques.

measure. However, this network is clearly noncohesive because it naturally decomposes into the
two overlapping cliques.

We propose using vertex separators, rather than edge separators, to measure the cohesion of a
network. A vertex separator is a subset of the network’s nodes whose removal leaves the network
disconnected. In the example network above, the single node in which the two cliques overlap is a
vertex separator. Intuitively, a network is cohesive if and only if it is robust to removal of nodes,
i.e., it does not have a small vertex separator that separates the network into large pieces.

Formally, a vertex separator of an undirected and unweighted network C = (VC , EC) is a subset
S of VC s.t. the network induced on VC \ S (i.e., the network obtained from C by removing S and
all its incident edges) is disconnected. A partition induced by a vertex separator S is a partition
of VC \ S into two disjoint sets A and B s.t. no edge in EC connects A and B. Note that the same
separator may induce multiple different partitions. We define the cohesion of a network via the
notion of “vertex separator sparsity” (cf. [1, 10]):

Definition 3 (Network cohesion). Let C = (VC , EC) be an unweighted network. The cohesion
of C is:

cohesion(C) = min
(S,A,B)

|S|
min{|A|, |B|}+ |S| ,

where the minimum is over all vertex separators S of C and over all partitions of C induced by S.
The cohesion of a singleton (a network of size 1) is 1, if it has a self loop, and 0 otherwise.

The ratio |S|
min{|A|,|B|}+|S| is called the sparsity of the partition. It is minimized when S is small

and A and B are both large. That is, under the above definition, a network C is cohesive if and
only if it cannot be broken into large pieces by removing a small number of nodes from the network.
The fact that the two pieces are large is important, because it may be easy to cut off a small part
from a network, even if the network is cohesive, e.g., by isolating a single leaf node.

The cohesion of a network takes on values between 0 (for disconnected networks) and 1 (for
cliques). Note that sparse vertex separators subsume weak edge separators: if the network has a
weak edge separator, then it must also have a sparse vertex separator. However, as the example
network above demonstrates, the converse is not true.

Computing the cohesion of a network is an NP-hard optimization problem [7]. Yet, it can
be approximated in polynomial time [25, 10]. In this paper we use a faster heuristic flow-based
approximation of network cohesion, which is described in Section 6.

4.2 Weighted networks

In weighted networks cohesion is no longer the sole factor determining cluster strength. Edge
weights should be taken into account as well. For example, a clique of size n all of whose edges are
of weight 1 and a clique of size n all of whose edges are of weight 100 are equally cohesive. Yet,
clearly the latter clique is “stronger” than the former. How do we then combine cohesion and edge
weights into a single strength measure?
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One of the popular methods for dealing with weighted networks is “thresholding” (see, e.g.,
[30]): given a weighted network C, one selects a weight threshold T ≥ 0, and transforms C into an
unweighted network CT by changing all the weights that are greater than T to 1 and all the weights
that are at most T to 0. C is then clustered by simply clustering CT . This approach, though, is
too coarse, especially in the presence of overlapping clusters. To illustrate the problem, consider
the example network depicted in Figure 2. In this example, we have two nested cliques. A smaller
clique A all of whose edges are of weight 10 is nested within a larger clique B, whose other edges
are of weight 1. Clearly, both A and B are clusters of interest, yet any choice of a single threshold
results in the loss of at least one of them. If the threshold is set to be less than 1, then A is lost,
while if the threshold is set to be at least 1, then B is lost.

B
A

1

10

Figure 2: Nested cliques.

Our crucial observation is that in order to determine the strength of a weighted network,
we should not fix a single weight threshold, but rather consider all possible weight thresholds
simultaneously. A strong cluster is one that has high cohesion under many different thresholds.
Formally, this is captured by the following measure:

Definition 4 (Integrated network cohesion). Let C be a weighted network. The integrated
cohesion of C is defined as:

intcohesion(C) =
∫ ∞

0
cohesion(CT )dT.

For example, the integrated cohesion of a clique all of whose edges are of weight k is k. Similarly,
the integrated cohesion of a singleton whose self loop weight is k is also k. Although integrated
cohesion is defined as a continuous infinite sum, in practice: (1) It is always finite, as for all
thresholds T that are greater than the maximum edge weight, CT is an empty graph, and thus
cohesion(CT ) = 0. (2) It can be computed by summing up a finite number of cohesion values.
The only weight thresholds in which the induced unweighted network can change are the distinct
edge weights of C. Therefore, by summing up at most |EC | cohesion scores, one can compute the
integrated cohesion.

4.3 Maximality criteria

We now define maximality criteria for weighted and unweighted networks.

Unweighted networks In order to define maximality in unweighted networks, we first discuss
the notion of cluster subsumption. Our maximal clusters will be the ones that are not subsumed
by any other cluster.

Let us begin with a motivating example. Consider the two clusters depicted in Figure 3. The
larger cluster D is the union of two overlapping cliques D1, D2 of size n each, whose overlap is of
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size k. The smaller cluster C is a union of two overlapping cliques C1, C2 of size n/2 each. C1

is a subset of D1, C2 is a subset of D2, and the overlap between C1 and C2 coincides with the
overlap between D1 and D2. It can be checked that C is more cohesive than D, yet clearly C is
“uninteresting”, since it is an integral part of D. We would like then to say that D subsumes C,
and thus C cannot be maximal. In fact, in this example C is not unique. Any union of a subset
of D1 with a subset of D2 whose overlap coincides with D1 ∩D2 will give a cluster, which is more
cohesive than D, but is subsumed by D.

n/2 nk

D1
C1 D2C2

n/2n

D

C

Figure 3: Example of cluster subsumption.

What really makes D subsume C in the above example? If we break up D into its natural
clusters D1 and D2, then also C breaks up into different pieces (C1 and C2). That is, the partition
of D induces a partition of C. In fact, it can be argued that every time a partition of some set A
into clusters induces a partition of a subset B ⊆ A into clusters, then A subsumes B. In order to
formally define subsumption, we introduce some terminology:

Definition 5 (Covers). Let V be a set. A cover of V is a collection of subsets V1, . . . , Vk ⊆ V
whose union is V :

⋃k
i=1 Vi = V . Note that sets participating in a cover, unlike a partition, can

overlap. The cover is called trivial, if at least one of V1, . . . , Vk equals V . Given a subset V ′ ⊆ V ,
the cover of V ′ induced by V1, . . . , Vk is V ′

1 = V1 ∩ V ′, . . . , V ′
k = Vk ∩ V ′.

Vertex separators not only provide us with a robust notion of network cohesion, but they also
enable us to break up networks into their “natural” top-level clusters:

Definition 6 (Vertex separator cover). Let G = (VG, EG) be an unweighted network and let S
be a vertex separator of G. Let A1, . . . , Ak be the k connected components of G \ S. The S-cover
of G is S ∪A1, S ∪A2, . . . , S ∪Ak.

Note that the clusters participating in a vertex separator cover overlap, because all of them
contain the separator. In the example depicted in Figure 3, the intersection D1 ∩D2 is a (sparsest)
vertex separator of both D and C. The corresponding covers of D and C are D1, D2 and C1, C2,
respectively. We can now define subsumption:

Definition 7 (Subsumption). Let C ( D be two clusters in an unweighted network G. D is
said to subsume C, if there exists a sparsest vertex separator S of D, whose corresponding cover
induces a non-trivial cover of C.

In the example above D subsumes C, because the cover corresponding to the sparsest vertex
separator of D is D1, D2, and this cover induces the non-trivial cover C1, C2 of C.

Two remarks are in order:
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1. The notion of subsumption does not properly handle cliques, because the vertex separator of
any clique is already trivial, and thus the covers it induces on all its subsets are trivial too.
In particular, non-maximal cliques are not subsumed by any of their supersets under this
definition. To fix this anomaly, we explicitly postulate that if D is a clique, then it subsumes
all its proper subsets.

2. In the current definition of subsumption we consider only the sparsest separators of D. But
what happens if D has a very sparse separator, which is only close to being the sparsest,
and this separator induces a non-trivial cover of C? Clearly, D should be considered as
subsuming C also in this case. We thus define α-subsumption as follows: D α-subsumes C,
if D has a vertex separator whose sparsity is at most (1 + α) times the optimum, and whose
corresponding cover induces a non-trivial cover of C. α is called the subsumption parameter.

We can now define maximality in unweighted networks:

Definition 8 (Maximality in unweighted networks). Let G = (VG, EG) be an unweighted
network. A subset C ⊆ VG is called maximal, if it is not subsumed by any other subset of VG.

In the example network depicted in Figure 3, the cluster C cannot be maximal, because it is
subsumed by the cluster D.

Using α-subsumption rather than subsumption, we could define a corresponding notion of α-
maximality. For simplicity of exposition, our presentation focuses on standard maximality (α = 0).

We would like to show that the above maximality criterion captures natural types of clusters:

Lemma 9. Let G be an unweighted network. Then, the connected components of G and the maximal
cliques in G are maximal.

Proof. We start with the connected components. Let C be a connected component of G. If G
itself is connected, then C = G, and the whole network is always maximal, because it is simply not
a proper subset of any other subset of G. Suppose, then, that G is disconnected. Let D be any
subset of G that strictly contains C. Since C is a connected component, D must be disconnected.
It follows that the sparsest vertex separator of D is empty and the cover corresponding to this
separator consists of the connected components of D. C must be one of these components, and
thus the cover induced on C by the vertex separator cover is trivial. We conclude that D does not
subsume C. As this holds for every D that strictly contains C, C is maximal.

Let C be now a maximal clique in G. If C = G, we are done, so suppose C is a proper subset
of G. Let D be any subset of G that strictly contains C. D cannot be a clique, because C is
a maximal clique. Let S be the sparsest vertex separator of D, let A1, . . . , Ak be the connected
components of D \ S, and let D1 = S ∪ A1, . . . , Dk = S ∪ Ak be a vertex separator cover of D.
Since D is not a clique, then k ≥ 2. Let C1 = C ∩D1, . . . , Ck = C ∩Dk be the cover of C induced
by D1, . . . , Dk. We next argue that there must be an i ∈ {1, . . . , k} s.t. C ⊆ Di.

Suppose, to reach a contradiction, that C is not a subset of any of D1, . . . , Dk. It follows that
C must intersect at least two sets among A1, . . . , Ak. Suppose, for example, C ∩ A1 6= ∅ and
C ∩ A2 6= ∅. Let u be any node in C ∩ A1 and let v be any node in C ∩ A2. Since A1, A2 are
different connected components of D \ S, then u and v are not connected by an edge in G. On the
other hand, both u and v belong to C, contradicting the fact C is a clique.

We conclude that C ⊆ Di for some i. Hence, Ci = C, implying C1, . . . , Ck is a trivial cover of
C, and thus C is not subsumed by D. Since this holds for all subsets D of G that strictly contain
C, C is maximal.
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Weighted networks Having defined maximality in unweighted networks, it is quite straightfor-
ward to extend the definition to weighted networks:

Definition 10 (Maximality in weighted networks). Let G = (VG, EG) be a weighted network.
A subset C ⊆ VG is called maximal, if there exists at least one threshold T ≥ 0, for which C is
maximal in the unweighted network GT .

In the example network depicted in Figure 3, if the edges of the cluster C are all of weight 10
and the rest of the edges in the cluster D are of weight 1, then C is now maximal, because it is
maximal in the unweighted network GT , for all T ∈ [1, 10).

Remark. A common pattern in social networks is the “onion pattern” [12]: a sequence of nested
clusters, each of which is only slightly stronger than the cluster it is contained in. This pattern
characterizes, for instance, the collaboration within projects: most of the interaction occurs within
a core team of project members, while larger circles of consultants are only peripherally involved.
The different layers of an “onion” give rise to clusters that are all maximal. Nevertheless, it is
clear that not all of them are of interest. This motivates us to search for clusters that are not just
maximal but are rather maximal by a margin.

We say that a cluster C is maximal by a margin ε, if there exists an interval [T1, T2], where
T2 ≥ (1+ ε)T1, s.t. C is maximal in GT , for all T ∈ [T1, T2]. For instance, if in the network depicted
in Figure 3, the weight of edges in C is 1.1 rather than 10, then C is maximal in GT , for T ∈ [1, 1.1).
It follows that C is maximal, if the maximality margin ε is at most 0.1, but is not maximal, if this
margin is greater than 0.1.

5 The C-Rank algorithm

In this section we describe C-Rank: an algorithm for detecting and ranking clusters in weighted
networks. C-Rank consists of three major phases: (1) identification of candidate clusters; (2)
ranking the candidates by integrated cohesion; and (3) elimination of non-maximal clusters.

5.1 Candidate identification in unweighted networks

We start with the description of a candidate identification algorithm for unweighted networks. In
Section 5.2, we build on this algorithm to identify candidate clusters in weighted networks. Our
candidate identification procedure (see Figure 4) finds the sparsest vertex separator of the given
network, uses its induced cover to split the network into overlapping clusters, and then recurses on
the clusters. The recursion stops when reaching cliques or singletons, since they cannot be further
partitioned. If more than one vertex separator exists, one of them is chosen arbitrarily.

As the procedure detects overlapping clusters, it may encounter the same cluster more than
once. For example, if clusters C and C ′ overlap, then a cluster within the intersection C ∩C ′ may
be detected both at the recursive call on C and at the recursive call on C ′. Our procedure therefore
checks that a cluster is not already on the list, before recursively processing it. This guarantees
that the procedure does not perform redundant work.

The procedure not only produces a list of maximal clusters from the given network G, but also
implicitly organizes them in a hierarchy, similarly to hierarchical clustering. The difference is that
here, due to the overlapping clusters, the hierarchy is not necessarily a tree, but is rather a DAG
(directed acyclic graph). The root of the hierarchy is the whole network G and its leaves are either
singletons or cliques. Each cluster in the hierarchy is covered by its child clusters. We call such a
hierarchy a hierarchical overlapping clustering.
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1:Procedure unweightedCRank(G, L)
2: add G to L
3: if G is a clique or a singleton return
4: S := sparsest vertex separator of G
5: A1, . . . , Ak := connected components of G \ S
6: for i = 1 to k do
7: Gi := sub-network of G induced on S ∪Ai

8: if Gi not already in L then
9: unweightedCRank(Gi, L)

Figure 4: Identifying candidate clusters in unweighted networks.

Example run Figure 5 shows an example run of the above procedure on a simple 5-node network.
The procedure first detects S = {c, d} as the sparsest vertex separator of the network and removes
it from the network. The resulting connected components are A1 = {a, b} and A2 = {e}. The
procedure adds S to each of the connected components, obtaining the two overlapping clusters
{a, b, c, d} and {c, d, e}. No recursive calls need to be made in this example, because both of these
clusters are cliques.
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b d
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e
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e
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Figure 5: Identifying unweighted clusters: Example run.

Analysis We next analyze the quality and the performance of the algorithm. We start by showing
that the algorithm is guaranteed to have an ultimate recall of 1:

Lemma 11. Given an unweighted network G, C-Rank outputs all the maximal clusters in G.

Proof. Suppose, to reach a contradiction, there exists a maximal cluster C, which is not output by
C-Rank. That is, C does not belong to the hierarchy of overlapping clusters constructed by the
algorithm. C is clearly a subset of the root of the hierarchy (the whole network G). It cannot be a
subset of any of the leaves of the hierarchy, because each of these leaves is either a singleton (which
has no proper subsets) or a clique (all of whose proper subsets are non-maximal). We conclude
that there must be some internal node D in the hierarchy s.t. C ⊆ D but C is not contained in any
of the children of D.

Let D1, . . . , Dk be the children of D in the hierarchy. D1, . . . , Dk form a vertex separator cover
of D. Let C1 = C ∩D1, . . . , Ck = C ∩Dk be the cover of C induced by D1, . . . , Dk. Since C is not
a subset of any of D1, . . . , Dk, then none of C1, . . . , Ck equals C. We conclude that C1, . . . , Ck is a
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non-trivial cover of C, and thus C is subsumed by D. This contradicts our assumption that C is
maximal.

The analysis above establishes that C-Rank has ultimate recall. But what about precision?
How likely is C-Rank to output clusters that are non-maximal? When C-Rank splits a cluster C
into sub-clusters C1, . . . , Ck using a vertex separator, C1, . . . , Ck are not subsumed by C. If C is
maximal, then C1, . . . , Ck are likely to be maximal too. However, this intuition does not always
work, as C1, . . . , Ck may be subsumed by subsets of C. This situation, though, rarely happens.
We do not have theoretical guarantees about the precision of C-Rank, but we provide empirical
evidence in Section 7 that its precision is reasonable.

The performance of C-Rank is directly related to the number of clusters it produces. Clearly,
since the number of maximal clusters can be exponential in the size of the input network G, then
C-Rank may run for an exponential amount of time. However, when the list of maximal clusters is
short, then C-Rank will also run more quickly:

Lemma 12. Suppose that on a given network G C-Rank outputs a list of m candidate clusters
C1, . . . , Cm. Then, the running time of C-Rank is O(

∑m
i=1 (r(|Ci|) + |Ci|2)), where r(n) is the

amount of time needed to compute the sparsest vertex separator of a network of size n.

Proof. For each cluster Ci output by C-Rank, C-Rank performs the following tasks: (1) testing
whether Ci is a clique or a singleton (O(|Ci|2) time); (2) computing a sparsest vertex separator S of
Ci (O(r(|Ci|)) time); (3) computing the connected components of Ci \S (O(|Ci|2) time using BFS);
(4) iterating over the connected components of Ci \S and checking whether each one is already on
the list of candidates L (a total of O(|Ci|) time). Hence, the total running time for each cluster Ci

is O(r(|Ci|) + |Ci|2).
Recall that finding the sparsest vertex separator of a network is NP-hard. Hence, in a naive im-

plementation of C-Rank, r(n) will be exponential in n, which is of course unacceptable. Therefore,
C-Rank does not compute exact sparsest separators, but rather approximate sparsest separators.
These separators are computable in O(n4) time. The approximation procedure is described in
Section 6.

5.2 Candidate identification in weighted networks

The simplest way to extract all maximal clusters from a weighted network G = (VG, EG) is the
following. We enumerate all possible thresholds T (there are at most |EG| such thresholds), compute
GT , and output all the maximal clusters in GT using the procedure unweightedCRank. This
guarantees that we output all maximal clusters of G, and hence obtain ultimate recall.

The above brute force enumeration could be very time-consuming, since we need to make up
to |EG| calls to unweightedCRank, and each call is made over the entire network G. Furthermore,
this approach tends to be wasteful, as we may identify the same clusters again and again under
different thresholds. For example, a maximal clique all of whose edges are of weight T will be
discovered at all thresholds T ′ < T . A natural question is then whether we can trade the ultimate
recall guarantee for better performance?

To this end, we make the following observation. What is the reason for a cluster C to be
maximal at GT , for some threshold T , while not being maximal at GT ′ , for all T ′ < T? This can
happen only if for every T ′ < T , there exists a cluster D ) C that subsumes C at GT ′ , but does
not subsume it anymore at GT . If D itself was maximal at GT ′ , then the algorithm should have
identified D at that time. This gives us an opportunity for large savings in running time. For
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every threshold T ′, after having identified the maximal clusters at GT ′ , we do not need to search
the entire network for new maximal clusters at the subsequent threshold, but rather only within
the maximal clusters of GT ′ . This limits our search space and also enables faster advancement of
thresholds.

In practice, our algorithm does not even search within all the maximal clusters, but rather only
within the most cohesive ones. Note that the efficiency gains of this approach may come at the
price of compromising the ultimate recall guarantee of the algorithm, because we may miss clusters
that are subsumed by non-maximal clusters or by noncohesive clusters.

The procedure for identifying candidate clusters in weighted networks is depicted in Figure 6.
Given a network G, the procedure sets a threshold T to be the minimum edge weight in G and
computes the unweighted network GT under this threshold. Note that GT has the same edges as G,
except for the minimum weight edges that are eliminated. The procedure then finds the maximal
clusters in GT and adds them to the list of candidate clusters. Next, the procedure recursively
searches for more clusters within the clusters of GT whose cohesion exceeds the cohesion threshold
β.

The first call to the procedure (i.e., with the original network G) slightly differs from subsequent
recursive calls: the threshold T is set to be 0 and not the minimum edge weight. This guarantees
that the first unweighted network processed is G0, which has exactly the same edges as G.

1:Procedure weightedCRank(G, β, L)
2: T := minimum edge weight in G
3: GT := unweighted network obtained from G using threshold T
4: LT := an empty list of clusters
5: unweightedCRank(GT , LT )
6: append LT to L
7: for all clusters C ∈ LT for which cohesion(C) ≥ β do
8: weightedCRank(C, β, L)

Figure 6: Identifying candidate clusters in weighted networks.

The recursion stops when reaching a cluster C and a threshold T s.t. CT cannot be further
partitioned into sub-clusters by the procedure that identifies unweighted clusters. This means that
CT must be either a clique or a singleton, and thus C is either a homogeneous clique (i.e., a clique
all of whose edges are of the same weight) or a singleton.

Example run Figures 7 and 8 show an example run of the above procedure on a 5-node network
G. The procedure applies a threshold of T = 0 and obtains the unweighted network G0 depicted in
Figure 7(b). The procedure then finds unweighted clusters in G0, resulting in the clusters {a, b, c, d}
and {c, d, e} depicted in Figure 7(c). A recursive call is made on each of these two clusters. We
focus, for example, on the cluster {a, b, c, d} (Figure 8(a)). The minimum edge weight in this cluster
is 2, and thus the procedure applies a threshold T = 2, resulting in the unweighted network depicted
in Figure 8(b). This network breaks into the two clusters {a, b, c} and {d}. More recursive calls
are made on these clusters, and we focus on the one made on {a, b, c} (Figure 8(c)). The minimum
edge weight this time is T = 5 and thus the resulting unweighted network is the one depicted in
Figure 8(d). Note that the network now consists of singletons only, and therefore the recursion
stops. The final list of clusters that will be returned is: {a, b, c, d, e}, {a, b, c, d}, {c, d, e}, {a, b, c},
{a}, {b}, {c}, {d}, and {e}. Some of these clusters (namely, {a},{b}, and {e}) will be eliminated
at the third phase of C-Rank, because they are not maximal.
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Figure 7: Identifying weighted clusters: Example run.
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Figure 8: Identifying weighted clusters: Example run (cont).

Setting the threshold The above procedure chooses a threshold T that equals the minimum
edge weight in the given network G. If the network has many distinct edge weights and the
gaps between them are small, the procedure may need to make many recursive calls, each time
eliminating only a small number of edges from the network.

In order to speed up the performance of the procedure on such networks, we select the threshold
T differently. Let w1, . . . , wt be the distinct edge weights in G, ordered from smallest to largest. T
is set to be the smallest weight that is significantly smaller than the subsequent weight. Formally,
let γ > 0 be the weight gap parameter and let i∗ be the first i ∈ {1, . . . , t−1}, s.t. wi(1+γ) ≤ wi+1.
T is set to be wi∗ .

5.3 Candidate ranking

At its second phase, C-Rank computes the integrated cohesion of each one of the candidate clusters
and ranks them accordingly. The main thing to note is that calculating the integrated cohesion of
a cluster C requires computing the cohesion of CT for k values of the threshold T , where k is the
number of distinct edge weights in C. Thus, each such calculation requires at most |EC | sparsest
separator calculations, giving a total of O(|EC | · r(|C|)) running time.

5.4 Candidate elimination

The third and last phase of C-Rank consists of eliminating non-maximal clusters from the ranked
list of clusters. Testing maximality directly is hard, since to check whether a cluster C is maximal
or not, we would need to compare C against all its supersets D ) C. Each comparison entails
testing whether D subsumes C under each one of the possible thresholds T . This process requires
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exponential enumeration, and moreover every single subsumption test may be prohibitive, since D
may have an exponential number of sparsest (or close to sparsest) vertex separators.

Our candidate elimination procedure, therefore, makes two relaxations. First, each cluster C is
compared not against all its possible supersets, but rather only against supersets that also belong
to the list of candidates. This significantly reduces the search space and makes the enumeration
only polynomial in the number of candidates.

Given a candidate cluster D that strictly contains a candidate cluster C, we do not test directly
whether D subsumes C under at least one threshold T . We rather simply compare intcohesion(D)
with intcohesion(C), and if intcohesion(D)(1 + ε) ≥ intcohesion(C) (where ε is the maximality
margin), we declare D as subsuming C. The idea is that if D subsumes C at GT , then D is at least
(and usually more) cohesive than C in GT . Since cohesion is monotone, D is also expected to be
more cohesive than C at GT ′ for all T ′ < T . This is likely to make the integrated cohesion of D
higher (or at least not much lower) than the integrated cohesion of C.

The above is of course a heuristic, and we may thus misclassify some non-maximal clusters as
maximal and vice versa, affecting precision and recall. We evaluate the overall recall and precision
of the algorithm in Section 7.

6 Finding sparse vertex separators via vertex betweenness

We next address the issue of how to efficiently find sparse vertex separators in unweighted networks.
As mentioned above, finding the sparsest vertex separator is NP-hard, yet a separator whose sparsity
is at most O(

√
log n) times the optimum can be found in polynomial time [10]. Nevertheless, the

approximation algorithm is based on semi-definite programming, which can be quite inefficient to
solve in practice. We therefore opt for a heuristic estimate of the sparsest separator via network
flow.

6.1 Relating cohesion and vertex congestion

We start by giving some definitions related to network flow and congestion.
Let G = (VG,WG) be a directed, edge-weighted, and strongly connected graph, where n = |VG|.

A uniform demand multicommodity flow (UMFP) on G is a flow f that routes a unit of commodity
from every node u ∈ VG to every other node v ∈ VG. There are no capacity constraints on the flow;
that is, an arbitrary amount of total flow (summed over all commodities) can be routed over any
edge. Formally, we denote by Puv the set of all simple paths from u to v in G and P =

⋃
u6=v Puv.

The flow f is defined as a function from P to R+ that satisfies
∑

p∈Puv

f(p) = 1, ∀u, v ∈ VG, u 6= v.

The congestion on a vertex v ∈ VG due to flow f , denoted VCf (v), is the total amount of
flow routed through that vertex. Paths that start or end at v contribute half of their flow to the
congestion of v:

VCf (v) =
∑

p passes through v
f(p) +

1
2

∑

p starts or ends at v
f(p),

where the first summation is over paths in which v is an internal node.
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Proposition 13. If n ≥ 2 and if f is a uniform demand multicommodity flow on G, then for each
v ∈ VG, VCf (v) ≥ 1.

Proof. Since f is a uniform demand flow, each vertex is the endpoint of paths whose total flow is
2 · (n− 1) and thus the congestion on each vertex is at least n− 1 ≥ 1.

The congestion on an edge e = (u, v) (where u, v ∈ VG) due to flow f , denoted ECf (e), is the total
amount of flow routed through that edge, normalized by the weight of the edge, w(e) = WG(u, v):

ECf (e) =

∑
p passes through e f(p)

w(e)
.

The vertex (resp., edge) congestion on the network due to f , denoted VCf (G) (resp., ECf (G)),
is the maximum congestion on a vertex (resp., edge) in the network: maxv∈VG

VCf (v) (resp.,
maxe∈WG

ECf (e)). The minimum vertex congestion (resp., minimum edge congestion) on the net-
work is defined as the minimum vertex (resp., edge) congestion over all flows: VC(G) = minf VCf (G)
(resp., EC(G) = minf ECf (G)).

Remark. The standard way to define a flow is actually different. A flow is defined as a mapping from
edges to R+, rather than from P to R+. Moreover, the flow must satisfy the capacity constraints
and the value of the flow is defined as the minimum percentage of the demands, satisfied by the
flow. It can be shown that the two definitions are equivalent and that the value of the optimal flow
essentially equals the inverse of the minimum edge congestion. See Sinclair’s work [35] for more
details.

Let (U,U c) be a partition of G into two non-empty, disjoint, and complementary sets. The edge
separator, 〈U,U c〉, is the set of edges directed from U to U c. The sparsity of an edge separator in
a UMFP is defined as the weight of the separator normalized by the product of the sizes of U and
U c:

ρ(U,U c) =
w(U,U c)
|U ||U c| ,

where w(U,U c) =
∑

e∈〈U,Uc〉w(e) is the weight of the separator and the summation is over edges
directed from U to U c. The sparsest edge separator of the network, denoted as ρ(G), is the edge
separator of minimum sparsity. Leighton and Rao [25] showed the following relationship between
the sparsest edge separator and the minimum edge congestion:

Theorem 14 (Leighton-Rao).

1
EC(G)

≤ ρ(G) ≤ O

(
log n

EC(G)

)
.

Our goal is to show a similar relationship between vertex separators and minimum vertex con-
gestion in undirected and unweighted networks. To this end, we use the following transformation1,
which we denote as ϕ: given an undirected, unweighted, and connected graph G = (VG, EG), we
will produce a directed and weighted graph ϕ(G) = G∗ = (VG∗ ,WG∗) where

VG∗ = {vin|v ∈ VG} ∪ {vout|v ∈ VG}
1A similar transformation was used by Leighton and Rao [25], however our transformation includes some tech-

nical differences, which allow showing the relation between the sparsest vertex separator and the minimum vertex
congestion.
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and
WG∗(vin, vout) = 1, ∀v ∈ VG,

WG∗(vout, vin) = ∞, ∀v ∈ VG,

WG∗(uout, vin) = ∞, ∀(u, v) ∈ EG,

WG∗(vout, uin) = ∞, ∀(u, v) ∈ EG,

WG∗(u, v) = 0 otherwise.

1 2 3 2in

3in

2out

3out

1out1in
�

1
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Figure 9: Transforming an unweighted graph to a weighted graph.

Figure 9 demonstrates the operation of ϕ on a simple graph G.

Lemma 15. For each UMFP f∗ on G∗, there exists a UMFP f on G, such that

VCf (G) ≤ ECf∗(G∗).

Proof. First, we define P∗,io as the set of all simple paths in G∗, which start at a node uin and end
at a node vout, where u 6= v

P∗,io =
⋃

u6=v∈VG

Puinvout .

Next, we define ψ : P∗,io → P as a function mapping simple paths in G∗ that belong to P∗,io to
simple paths in G in the following way:

ψ(vin
1 , vout

1 , vin
2 , vout

2 , ..., vin
k , vout

k ) = (v1, v2, ..., vk),

where vi ∈ VG and v1 6= vk. It is clear by the definition of G∗ that each path in P has exactly one
source in P∗,io that is mapped to it by ψ.

Now, given a uniform demand multicommodity flow f∗ on G∗, we will construct f as a uniform
demand multicommodity flow on G in the following way:

∀p∗,io ∈ P∗,io s.t. f∗(p∗,io) > 0, f(ψ(p∗,io)) = f∗(p∗,io).
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Note that since (1) f∗ passes a unit of commodity in total on all paths between each ordered pair
of vertices s, t ∈ V ∗

G s.t. s 6= t, and particularly it passes a unit of commodity between each s, t s.t.
s = uin and t = vout and (2) each path in P has exactly one source in P∗′ that is mapped to it by
ψ , then f must pass a unit of commodity between each pair of vertices u, v ∈ VG s.t. u 6= v.

From the way f was constructed, it follows that for each v ∈ VG

VCf (v) ≤
∑

p passes through v
f(p) +

∑

p starts or ends at v
f(p) =

=
∑

p∗,io ∈ P∗,io and passes through (vin, vout)

f∗(p∗,io)

≤ ECf∗(vin, vout).

As the above inequality holds for each v ∈ VG, we get the desired result.

Corollary 16.
VC(G) ≤ EC(G∗).

Lemma 17. For each UMFP f on G, there exists a UMFP f∗ on G∗, such that

ECf∗(G∗) ≤ 5 · VCf (G).

Proof. We will define four functions ψii, ψio, ψoi, ψoo : P → P∗ mapping simple paths in G to simple
paths in G∗ in the following way. Let p = (v1, v2, ..., vk) be a path in G, where vi ∈ VG and v1 6= vk.
Then,

ψii(p) = (vin
1 , vout

1 , vin
2 , vout

2 , ..., vin
k ),

ψio(p) = (vin
1 , vout

1 , vin
2 , vout

2 , ..., vin
k , vout

k ),

ψoi(p) = (vout
1 , vin

2 , vout
2 , ..., vin

k ),

ψoo(p) = (vout
1 , vin

2 , vout
2 , ..., vin

k , vout
k ).

In other words, ψii, ψio, ψoi, ψoo map each path from u to v in G to four paths in G∗ that start
at uin or uout and end at vin or vout. It is clear by the definition of G∗ that for each u, v ∈ VG

and for each x, y ∈ {in, out}, every path in P∗ from ux to vy has exactly one source in P that is
mapped to it by ψxy.

Now, given a uniform demand multicommodity flow f on G, we will construct f∗ as a uniform
demand multicommodity flow on G∗ in the following way:

∀p ∈ P s.t. f(p) > 0, f∗(ψii(p)) = f∗(ψio(p)) = f∗(ψoi(p)) = f∗(ψoo(p)) = f(p),

∀v ∈ VG, f∗(vin, vout) = 1 , f∗(vout, vin) = 1,

otherwise, f∗(p∗) = 0.

Note that from the first rule for constructing f∗ and since (1) f passes a unit of commodity in
total on all paths between each ordered pair of vertices u, v ∈ VG s.t. u 6= v and (2) each path in
P∗ from ux to vy s.t. x, y ∈ {in, out} and u 6= v has a source in P, it follows that f∗ must pass
a unit of commodity between each pair of the form (ux, vy) s.t. x, y ∈ {in, out} and u 6= v. Then,
taking into account the second rule for constructing f∗, we get that f∗ satisfies all the demands.
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As the congestion on all edges whose weight equals ∞ is 0 by definition, the edge congestion
on G∗ due to f∗ derives from the congestion on the edges of the form (vin, vout). From the way f∗

was constructed, it can be easily seen that

ECf∗(vin, vout) =

= 4 ·
∑

p passes through v
f(p) + 2 ·

∑

p starts or ends at v
f(p) + 1

= 4 · VCf (v) + 1.

Using Proposition 13, we get

ECf∗(vin, vout) ≤ 5 · VCf (v).

Since the above inequality holds for each edge of the form (vin, vout) s.t. v ∈ VG and as these are
the only edges in G∗ whose congestion is greater than 0, we get the desired result.

Corollary 18.
VC(G) ≤ EC(G∗) ≤ 5 · VC(G).

Lemma 19. G∗ is strongly connected.

Proof. First, it is clear from the definition of G∗ that there is a path from vin to vout and from vout

to vin for each v ∈ VG. Then, given an ordered pair of vertices (ux ,vy), where x, y ∈ {in, out} and
u 6= v, the path from ux to vy will be built based on the path from u to v in G. The latter must
exist as G is connected.

We showed a tight relation between the minimum vertex congestion in G and the minimum
edge congestion in G∗, but in order to relate Theorem 14 to vertex separators, we also need to find
the relation between the sparsest vertex separator in G and the sparsest edge separator in G∗.

To this end, we use a slightly different definition for the sparsity of a vertex separator than
the one used in Section 4 (we relate the two definitions later in this section). Let S be a vertex
separator in G, which induces a partition of VG \ S into A and B. The sparsity of S is

ηG(S, A, B) =
|S|

(2|A|+ |S|)(2|B|+ |S|) .

We now define χ as a function mapping vertex separators in G to finite-weight edge separators
in G∗ as follows. Let S = {s1, ...sl} (l ≥ 1) be a vertex separator in G, which induces a partition
of VG \ S into A = {a1, ..., aq} (q ≥ 0) and B = {b1, ..., br} (r ≥ 0), where l + q + r = n. Then,

χ(S,A, B) = ({Ain ∪Aout ∪ Sin}, {Sout ∪Bin ∪Bout}),

where Sin = {sin
1 , ..., sin

l }, Sout = {sout
1 , ..., sout

l }, and analogously for Ain, Aout, Bin, and Bout.

Lemma 20. The function χ is a one-to-one mapping from the vertex separators in G onto the
finite-weight edge separators in G∗.
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Proof. First, we will show that the range of χ consists of finite-weight edge separators only. To this
end, we will examine the edges directed from U = {Ain ∪Aout ∪ Sin} to U c = {Sout ∪Bin ∪Bout}.
No edges are directed from Ain towards U c as by definition of G∗, all outgoing edges from Ain are
directed to Aout ⊆ U . No edges are directed from Aout towards U c as by definition of G∗, such
edges would have been possible only towards Bin, however as S separates A and B in G, such edges
do not exist in G∗. Hence, the only edges from U to U c are edges from Sin and by definition of G∗,
such edges can only be directed towards Sout. As all edges from Sin to Sout are of finite weight,
the total weight of the separator is finite.

The fact that χ is a one-to-one mapping follows directly from the definition of χ.
Finally, we will show that every finite-weight edge separator in G∗ has a vertex separator in G

that is mapped to it by χ. Given a finite-weight edge separator 〈U,U c〉, we will show a corresponding
vertex separator {S, A, B} in G. As 〈U,U c〉 has finite weight, all edges from U to U c must be of
weight 1, i.e., directed from vin to vout. We will define S = {v : (vin, vout) ∈ 〈U,U c〉}. Note that
since G∗ is strongly connected and since U and UC are not empty, each edge separator 〈U,U c〉
must contain at least one edge directed from U to U c and thus S is non-empty. As no edges of the
form (vout, vin) can be directed from U to U c, there are no other vertices u ∈ VG \ S s.t. uin and
uout are on opposite sides of the cut (U,U c). Hence, we can define A = {v : {vin, vout} ∈ U} and
B = {v : {vin, vout} ∈ U c}. Note that S ∩ A = ∅, S ∩ B = ∅, A ∩ B = ∅, and S ∪ A ∪ B = VG.
Note also that no edge can connect a node u ∈ A with a node v ∈ B, as there would then be an
infinite-weighted edge from uout ∈ U to vin ∈ U c. Hence, {S, A,B} is a vertex separator in G, for
which χ(S, A, B) = 〈U,U c〉.

Lemma 21.
ρ(χ(S,A, B)) = ηG(S,A, B).

Proof. In the proof of the previous lemma, we showed that the edges from U = {Ain ∪Aout ∪ Sin}
to U c = {Sout ∪ Bin ∪ Bout} consist solely of edges from Sin to Sout . Since the number of edges
from Sin to Sout is |S| and since the weight of each such edge is equal to 1, we get w(U,U c) = |S|.
Putting the last equation in the formula for ρ(U,U c) and considering the fact that |U | = 2|A|+ |S|
and |U c| = 2|B|+ |S|, we get the desired result.

Lemma 22.
ρ(G∗) = min

S,A,B
ηG(S,A, B).

Proof. From the fact that χ is a one-to-one mapping from the vertex separators in G onto the finite-
weight edge separators in G∗ (Lemma 20), and from the fact that it preserves the value of sparsity
(Lemma 21), it follows that the value of the sparsest vertex separator of G is equal to the value of
the sparsest edge separator of G∗ (which must derive from a finite-weight edge separator).

Theorem 23.

Θ
(

1
VC(G)

)
≤ min

S,A,B
ηG(S, A, B) ≤ Θ

(
log n

VC(G)

)
.

Proof. Corollary 18 ties the minimum vertex congestion in G with the minimum edge congestion
in G∗. Then, Lemma 22 ties the sparsest vertex separator of G with the sparsest edge separator of
G∗. Using these two relations with Theorem 14 for G∗, we get the desired result.

As noted above, we used a slightly different definition for the sparsity of vertex separators than
the one used in Section 4. We now relate the two definitions:
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Lemma 24.

min
S,A,B

ηG(S,A, B) = Θ
(

cohesion(G)
n

)
.

Proof. Feige et al. [10] used the following definition for the sparsity of a vertex separator: η′G(S, A,B) =
|S|

(|A|+|S|)·(|B|+|S|) . This definition is equivalent to the one we use here as

1
4
· |S|
(|A|+ |S|) · (|B|+ |S|) =

|S|
(2|A|+ 2|S|)(2|B|+ 2|S|) ≤

≤ |S|
(2|A|+ S)(2|B|+ |S|) ≤

|S|
(|A|+ |S|)(|B|+ |S|) .

and thus
ηG(S,A, B) = Θ(η′G(S,A, B)) , ∀{S, A, B}.

Feige et al. show that η′G(S, A,B) = Θ
(

1
n · |S|

min{|A|,|B|}+|S|
)

(see Feige et al. [10], Section 2), and
thus we get

ηG(S, A, B) = Θ
(

1
n
· |S|
min{|A|, |B|}+ |S|

)
.

As this result is valid for any vertex separator {S, A, B}, we get the desired relationship.

Corollary 25.

Θ
(

n

VC(G)

)
≤ cohesion(G) ≤ Θ

(
n · log n

VC(G)

)
.

In our algorithm (Section 5), we used a normalized version of the congestion on a vertex v ∈ VG

due to flow f :

NCf (v) =
1(

n−1
2

)
∑

p passes through v
f(p).

Note that this definition of normalized congestion is different from the definition we used so far in
two manners: (1) Paths that begin or end with v do not contribute anything to the congestion—
as the demands are uniform, each vertex is the endpoint of paths whose total amount of flow is
2(n − 1). (2) The congestion is normalized by its highest possible value,

(
n−1

2

)
, and thus assumes

values in [0, 1].
NCf (G) and NC(G) are defined analogously to VCf (G) and VC(G).

Lemma 26.
1

Θ(1 + n · NC(G))
≤ cohesion(G) ≤ log n

Θ(1 + n · NC(G))
.

Proof. The following relationship between NC(G) and VC(G) follows from the definition of nor-
malized congestion:

NC(G) =
VC(G)− (n− 1)(

n−1
2

) .

The result follows from using the above equation with Corollary 25.
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6.2 Estimating vertex congestion via vertex betweenness

A shortest path multicommodity flow, fsp, is one that splits the single unit of commodity routed from
u to v evenly among all the shortest paths from u to v. For example, consider the graph depicted
in Figure 11(a). There are two shortest paths from vertex a to vertex e: ace and ade. Hence, the
shortest path flow, fsp, gives value of 1

2 to each of these paths. As the graph is undirected, the
shortest paths from e to a are, symmetrically, eca and eda. Thus, fsp(eca) = fsp(eda) = 1

2 . In a
similar way, as there are two shortest paths between b and e, the value of the flow on the paths
bce, bde, ecb, and edb is 1

2 . All other (ordered) pairs of vertices are of adjacent vertices, and thus
there is a single shortest path connecting them (the one that goes through the connecting edge).
Hence, the flow value of these paths is 1 (e.g: fsp(ab) = 1, fsp(ca) = 1). The value of fsp for the
rest of the paths in the graph is 0.

The normalized vertex betweenness of a network G, denoted nvb(G), is the normalized conges-
tion on G due to the shortest path flow:

nvb(G) = NCfsp(G).

While it is not guaranteed that the shortest path flow achieves the minimum congestion (i.e.,
NCfsp(G) = NC(G)), it has been empirically shown to give good estimates of NC(G) [29]. Fur-
thermore, vertex betweenness can be computed in O(|VG||EG|) time using dynamic programming
[27].2 We therefore adopt normalized vertex betweenness as means for estimating the cohesion of
networks. Specifically, in our experiments we measure the cohesion of a network G as 1− nvb(G).

We saw how to use vertex betweenness to measure the cohesion of a network, but how do we use
it to find a sparse separator? We employ a simple algorithm (see Figure 10), which computes the
nvb separator of a network. The algorithm is an adaptation of Girvan and Newman’s algorithm
[16] for finding edge separators via edge betweenness. Given a network G, the algorithm initializes
the separator to the empty set. It then repeatedly executes the following steps, until the network
becomes disconnected. The algorithm calculates the nvb of each node in the network, and adds
the node v∗ with highest nvb to S. When there are several nodes with maximum nvb, v∗ is chosen
to be the one with smallest id. The algorithm then removes v∗ and all its incident edges from the
network. Note that the nvb values are re-computed at each iteration of the loop.

1:Function computeNVBSeparator(G)
2: S := ∅
3: while G is connected do
4: calculate nvb(v) for all v ∈ G
5: v∗ := node in G of highest nvb
6: add v∗ to S
7: remove v∗ and all its incident edges from G
8: return S

Figure 10: Algorithm for computing the nvb separator of a network.

Figure 11 shows an example run of the above algorithm on a 5-node network. The nodes c
and d have the maximum nvb values (1

6) and c is chosen to be removed (Figure 11(a)), since it
has a smaller id. After removing c and recalculating nvb values, d turns out to be the node of
highest nvb value (2

3) and is thus removed (Figure 11(b)). The network is then decomposed into

2Newman’s algorithm was actually designed to compute another un-normalized version of vertex betweenness. We
adapted it to compute normalized vertex betweenness.
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two connected components: {a, b} and {e} (Figure 11(c)), and thus {c, d} is the nvb separator of
the network.

a

b d

c

e

(a)

a

b d

e

(b)

a

b

e

(c)

Figure 11: Computing an nvb separator: Example run.

As the process of finding the node with highest nvb value might repeat O(|VG|) times in the
worst case, the running time of the above algorithm is O(|VG|2|EG|). Note that this is a heuristic
algorithm and thus it is not guaranteed that it finds the sparsest vertex separator.

7 Experiments

7.1 Experimental setup

We tested C-Rank on our own mailboxes as well as on the Enron email data set3, which consists
of 150 mailboxes of Enron employees. The data set contains more than 500,000 messages, mostly
sent along the years 2000-2002.

Given a mailbox, we constructed two corresponding networks—an inbox network and an outbox
network—as follows. First, we cleaned the data, by removing duplicate messages, merging alias
addresses, and ignoring messages that did not include the mailbox’s owner as an explicit sender or
recipient. We then split the messages into “outgoing” and “incoming”. All the incoming messages
were used to construct the inbox network and all the outgoing messages were used to construct the
outbox network. The inbox (resp., outbox) network consists of all contacts that appear on headers
of incoming (resp., outgoing) messages, excluding the mailbox’s owner. Two contacts are connected
by an edge if and only if they appear on at least one message header together. The weight of the
edge is the number of message headers on which they co-occur. The self loop weight of a contact
is the number of message headers on which it appears.

We ran C-Rank with the following parameters: (1) maximality margin ε = 0.75; (2) subsumption
parameter α = 0; (3) cohesion threshold β = 1; (4) weight gap γ = 0.75. In most of the experiments,
we ignored the self loop weights altogether, in order to focus on the non-singleton communities,
which are less trivial to find and rank.

We enforced a hard time limit of 3,600 seconds on the execution of C-Rank on each mailbox.
C-Rank was unable to finish its execution on 19 of the 150 mailboxes by this time limit, and thus
these mailboxes were excluded from the data set. We ran the experiments on Intel Pentium 4
2.8GHz processor workstations with 2GB of RAM.

Evaluating clustering results automatically is a difficult task. Our situation is even more com-
plicated, because there is no benchmark cluster ranking algorithm to which we could compare
C-Rank. We thus created such a benchmark from the widely used edge betweenness hierarchical

3http://www.cs.cmu.edu/∼enron.
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clustering algorithm of Girvan and Newman [16] (In fact, we used Newman’s variant of the al-
gorithm [28], which is adapted to weighted networks). The benchmark algorithm, which we call
EB-Rank, is identical to C-Rank, except that it generates its candidate clusters using the edge
betweenness algorithm. The ranking and candidate elimination phases of EB-Rank are identical to
those of C-Rank.

7.2 Results

Anecdotal results In order to give a feel of the communities produced by C-Rank, we start with
some anecdotal results from two of our mailboxes and from a mailbox of an Enron employee. Figure
12 shows the top 10 non-singleton communities in the inbox of Ziv Bar-Yossef. The example demon-
strates that the strong communities output by the algorithm are indeed meaningful, as the owner
could easily attach a title to each one of them. This list consists of few overlapping communities,
since Ziv’s research projects tend to be separated and have very few common participants.

Rank Weight Size  Member IDs Description
1 163 2 1,2 grad student + co-advisor
2 41 17 3-19 FOCS program committee 
3 39.2 5 20,21,22,23,24 old car pool
4 28.5 6 20,21,22,23,24,25 new car pool
5 28 2 26,27 colleagues
6 28 2 28,29 colleagues
7 25 3 26,30,31 colleagues
8 19 3 32,33,34 department committee
9 15.9 19 35-53 jokes forwarding group
10 15 14 54-67 reading group

Figure 12: Ziv Bar-Yossef’s top 10 non-singleton inbox communities.

Figure 13 shows the top 10 communities output for the inbox of Ido Guy, including singleton
communities. This example demonstrates that singleton communities can blend well with non-
singleton communities and that they do not necessarily dominate the list of strong communities.
In fact, Ido’s list is quite diverse in terms of community sizes, ranging from singletons to groups of
over 10 participants. The workplace-related communities are highly overlapping, corresponding to
different projects with overlapping teams or to different sub-groups within the same project.

Rank Weight Size Member IDs Description
1 184 2 1,2 project1 core team
2 87 1 3 spouse
3 75 1 4 advisor
4 70.3 4 1,5,6,7 project2 core team
5 62 1 8 former advisor
6 48.2 6 1,2,9,10,11,12 project1 new team
7 46.9 13 13-25 academic course staff
8 46.7 9 1,5,6,7,26-30 project2 extended team (IBM)
9 42.3 5 1,2,9,10,31 project1 old team
10 41.3 13 1,5,6,7,26-30,32-35 project2 extended team (IBM+Lucent) 

Figure 13: Ido Guy’s top 10 inbox communities.

Figure 14(a) presents a graphical visualization of the top 10 non-singleton communities in the
inbox of Eric Bass, an Enron employee. This graph demonstrates that C-Rank is able to reveal
quite intricate structures of overlapping communities.
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(a) Graphical visualization (non-singleton communities)

Rank Weight Member Emails Description
1 71 shanna.husser@enron.com spouse
2 60 david.baumbach@enron.com friend
3 40 luis.mena@enron.com friend

4 34
brian.hoskins@enron.com

hector.campos@enron.com
lenine.jeganathan@enron.com

friends

5 31

daphneco64@bigplanet.com
daphneco64@yahoo.com
jason.bass2@compaq.com

lwbthemarine@bigplanet.com

mother, brother, father

6 29 admin.enron@enron.com Enrom mail sweeper admin
7 25 noreply@ccomad3.uu.commissioner.com sponsorship bar 

8 16

bryan.hull@enron.com
chad.landry@enron.com

matthew.lenhart@enron.com
phillip.love@enron.com

timothy.blanchard@enron.com

friends

9 16

brian.hoskins@enron.com
hector.campos@enron.com

lenine.jeganathan@enron.com
luis.mena@enron.com

shanna.husser@enron.com

spouse and mutual friends

10 13

bryan.hull@enron.com
david.baumbach@enron.com

harry.bucalo@enron.com
matthew.lenhart@enron.com
michael.walters@enron.com
o'neal.winfree@enron.com

phillip.love@enron.com
timothy.blanchard@enron.com

frineds

(b) Detailed description

Figure 14: Eric Bass’s top 10 inbox communities.

To complete the picture, Figure 14(b) shows the top 10 communities in the inbox of Eric Bass,
including singleton communities. The description of each community was detected by inspecting
the content of the messages.

26



Enron data set statistics Next, we present some statistical data about the results of C-Rank
on the 131 mailboxes of the Enron data set. Figure 15 shows the distribution of outbox and inbox
network sizes (number of nodes). The networks were ordered by size from smallest to largest, and
split into 10 deciles. The height of the bar at each decile represents the median size of networks
belonging to this decile. The graph indicates that the mailboxes are of highly variable sizes, while
inboxes are significantly larger than outboxes. Some mailboxes at the top decile consist of thousands
of nodes each.
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Figure 15: Enron network sizes.

Figure 16 analyzes the running time of C-Rank on the mailboxes on which it finished its execu-
tion by the time limit. For each decile of the networks, when ordered by size, the median running
time in seconds is given. The graph clearly exhibits the exponential running time behavior of C-
Rank. Yet, we note that C-Rank was able to run on networks of 1,075 nodes in about 3 minutes,
since the running time depends not only on the network size, but also on the “intricacy” of the
community structure of the network and on the number of communities found.
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Figure 16: Performance of C-Rank on the Enron data set.

Figure 17 provides evidence of the prominence of “singletons” in the data set. A “singleton
message” is one that has only one sender or one recipient, apart from the mailbox’s owner. Such
a message contributes only to the self loop weight of the corresponding sender/recipient. Figure
17(a) shows that about 80% of the outgoing messages and 50% of the incoming messages, regardless
of the mailbox size, were singletons. This huge density of singleton messages necessarily affected
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also the results of C-Rank. Indeed, 70% to 90% of the outbox communities and 20% to 65% of the
inbox communities detected by C-Rank were singleton communities (Figure 17(b)). We conclude
that the high density of singleton communities should be attributed to the nature of the data set,
rather than to biases of C-Rank. Since singletons are easy to handle separately, in the rest of our
experiments, we eliminated the self loops from the network, and thus focused only on the analysis
of non-singleton communities.
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(a) Density of singleton messages
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(b) Density of singleton communities

Figure 17: Density of singletons in the Enron data set.

Figure 18 depicts the distribution of community sizes output by C-Rank. For each mailbox,
we ordered all the output communities by their size, split them into 10 deciles, and calculated
the median community size in each decile. We then plotted for each decile the median of these
median values, over all mailboxes. The results demonstrate that C-Rank is not biased towards
small communities, as one may suspect initially. The median community size at the top decile, for
example, was about 20 contacts!
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Figure 18: Sizes of communities identified by C-Rank.

Comparison with EB-Rank We now describe a set of experiments that compare the results of
C-Rank with the results of EB-Rank (the edge betweenness based algorithm) on the Enron data
set. Figure 19 compares the numbers of maximal communities identified by the two algorithms.
For each decile of the mailboxes, when ordered by network size, we plotted the median number of
maximal communities identified in that decile. The results clearly indicate that C-Rank is able to
discover many more maximal communities than EB-Rank. The larger the network size, the more
dramatic is the difference. At the top decile, for example, the number of inbox communities found
by C-Rank was about 5 times larger than the number of communities identified by EB-Rank. This
difference underscores the advantage of overlapping clustering over partitional clustering, at least
in this application domain.
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Figure 19: Number of communities identified by C-Rank and EB-Rank.

In Figure 20 we compare the precisions of C-Rank and EB-Rank. Precision was calculated
as follows. For each mailbox, we compared the number of communities eventually output by the
algorithm (after elimination of non-maximal communities) to the number of communities identified
at the candidate identification phase. This ratio was assumed to represent the precision of the
algorithm on this mailbox. We then ordered the networks by size, and split them into 10 deciles.
We plotted the median precision of the algorithm in each decile. The results shown in the graph
demonstrate that precision goes down with network size. The explanation is quite simple: large
networks tend to be richer in complex community patterns, and “onions” (see Section 4.3) in
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Figure 20: Estimated precision of C-Rank and EB-Rank.

particular. Such patterns give rise to a large number of non-maximal communities, some of which
are selected in the first phase of the algorithm. Most of these communities are filtered at the
elimination phase of the algorithm. Surprisingly, although C-Rank outputs many more communities
than EB-Rank, its precision is comparable and even better than that of EB-Rank.

Figure 21 compares the relative recall of C-Rank and EB-Rank. For each mailbox, we calculated
the recall of algorithm A relative to algorithm B as follows. We compared the two lists LA and
LB of communities output by A and by B, respectively, when running on this mailbox. Intuitively,
the recall of A relative to B should be the fraction of the communities in LB that also appear in
LA. However, even when A and B detect the same community, they may have slightly different
“versions” of that community, differing in a few nodes. Therefore, when searching the list LA for
a community C that shows up on the list LB, we did not look for an exact copy of C, but rather
for a community C ′ that is “comparable” to C. Formally, we say that C ′ is comparable to C, if
C ′ ⊇ C and intcohesion(C ′)(1 + ε) ≥ intcohesion(C), where ε is the maximality margin. The recall
of A relative to B on the specific mailbox was then calculated as the fraction of the communities
in LB, for which we found a comparable community in LA.
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Figure 21: Relative recall of C-Rank and EB-Rank.

After calculating the recall for each mailbox, we ordered the networks by their size, split into
10 deciles, and plotted the median recall at each decile. The results prove that the recall of C-Rank
relative to EB-Rank is significantly higher than the recall of EB-Rank relative to C-Rank. The
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Figure 22: Comparison of median scores of C-Rank and EB-Rank.

difference even becomes higher for larger networks. This experiment stresses again the advantage
of using C-Rank, which can detect overlapping communities, to EB-Rank, which is a partitional
hierarchical clustering algorithm.

The previous experiments showed that C-Rank is much more successful than EB-Rank in de-
tecting many maximal communities. However, is it possible that these extra communities are all
weak, and if we focus only on the strong communities then the two algorithms are comparable?
In order to explore this possibility, we compared the strength scores of the communities output by
the two algorithms. For each mailbox and for each k = 5, 10, 15, . . . , m, where m is the minimum
number of communities output by the two algorithms on this mailbox, we calculated the median
integrated cohesion of the top k communities on each of the two output lists. For each k and for
each algorithm, we then plotted the median score over all networks for which m ≥ k (see Figure
22). These results indicate that C-Rank not only finds more maximal communities overall, but
also finds better communities. This phenomenon is consistent across inbox and outbox and across
different values of k.

Robustness experiments One indication of a good clustering algorithm is that it is robust to
small changes in the data. In order to test the robustness of C-Rank, we compared the communities
it output when running over on the entire Enron data set to the communities it output when running
over a sample of the data. For this experiment, we focused only on sufficiently large mailboxes:
ones in which the number of messages was at least 500. Overall, we used 36 outboxes and 41
inboxes in this experiment. For each such mailbox, we constructed 3 networks: one that was
constructed using all the messages in the mailbox, one that was constructed using 80% randomly
chosen messages from the mailbox, and one that was constructed using 20% randomly chosen
messages from the mailbox. (The latter two networks were constructed 5 times each, and the
results presented here are the medians over these 5 trials.) For each of the two latter networks,
and for each p = 10%, 20%, . . . , 100%, we calculated the recall of the top k = p ·m communities
output by C-Rank on this network (where m is the total number of communities output on this
network) relative to the top k communities output by C-Rank when running on the first, complete,
network. For each p, we then calculated the median recall over all networks. This value, which
we call “recall@p”, captures how well C-Rank was able to detect the strong communities of the
mailbox, when running over only a portion of the data in the mailbox.

The results indicate that C-Rank is rather resilient to random removal of data. On the networks
built over 80% of the data, C-Rank was able to maintain a recall of about 90% across all values of
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Figure 23: Relative recall of C-Rank on samples from the Enron data set.

p. When running on a mere 20% of the data, C-Rank was still able to maintain reasonable recall
of 45% at the top decile and 20% at the bottom decile.

To sum up, we believe that the above experiments provide convincing evidence that C-Rank
is able to achieve high recall values (i.e., covering many of the maximal clusters in the network),
while maintaining a relatively high precision. C-Rank is completely superior to EB-Rank, which is
based on the very popular edge betweenness clustering algorithm. C-Rank is also robust to random
removal of data, attesting to its quality.

8 Conclusions

We presented the cluster ranking problem as a novel framework for clustering. We then proposed
integrated cohesion as a new strength measure for clusters. We designed C-Rank: a cluster ranking
algorithm that detects and ranks overlapping clusters in arbitrary weighted networks. We demon-
strated the effectiveness of the framework and the algorithm by ranking clusters in egocentric
mailbox networks.

Finding a sparse vertex separator is an important part of C-Rank. To this end, we proposed
a heuristic algorithm, which is based on a new connection between vertex betweenness and multi-
commodity flow.

An interesting problem following this work is whether one can design an efficient cluster ranking
algorithm, which given an integer k, finds the top k maximal clusters directly, without computing
the full list of maximal clusters. Such an algorithm could be much more efficient than C-Rank,
when the list of maximal clusters is very long. We believe that finding the top k clusters exactly
is NP-hard, yet finding some “good” k clusters may be feasible to do. Addressing this question is
left for future work.

Acknowledgments

We thank Gail Gilboa-Freedman, Nili Ifergan, Idit Keidar, Natalia Marmasse, Elad Shahar, Uzi
Shvadron, Eyal Sonsino, and Gala Yadgar for sharing with us their mailboxes. We thank Ran
El-Yaniv and Ran Wolff for very helpful suggestions.

32



References

[1] E. Amir, R. Krauthgamer, and S. Rao. Constant factor approximation of vertex-cuts in planar
graphs. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC), pages
90–99, 2003.

[2] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney. Model-based overlapping
clustering. In Proceedings of the 11th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 532–537, 2005.

[3] J. D. Banfield and A. E. Raftery. Model-based guassian and non-gaussian clustering. Biomet-
rics, 49:803–821, 1993.

[4] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, M. Magdon-Ismail, and N. Preston.
Finding communities by clustering a graph into overlapping subgraphs. In Proceedings of the
IADIS International Conference on Applied Computing, pages 97–104, 2005.

[5] J. Baumes, M. K. Goldberg, and M. Magdon-Ismail. Efficient identification of overlapping
communities. In Proceedings of the IEEE International Conference on Intelligence and Security
Informatics (ISI), pages 27–36, 2005.

[6] P. O. Boykin and V. Roychowdhury. Personal email networks: An effective anti-spam tool.
IEEE Computer, 38(4):61–68, 2005.

[7] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is NP-hard.
Information Processing Letters, 42:153–159, 1992.

[8] G. Cleuziou, L. Martin, and C. Vrain. PoBOC: An overlapping clustering algorithm, appli-
cation to rule-based classification and textual data. In Proceedings of the 16th Eureopean
Conference on Artificial Intelligence (ECAI), pages 440–444, 2004.

[9] D. Fasulo. An analysis of recent work on clustering algorithms. Technical Report 01-03-02,
Department of Computer Science and Engineering, University of Washington, Seattle, 1999.

[10] U. Feige, MT. Hajiaghayi, and J. R. Lee. Improved approximation algorithms for minimum-
weight vertex separators. In Proceedings of the 37th ACM Symposium on Theory of Computing
(STOC), pages 563–572, 2005.

[11] D. Fisher. Using egocentric networks to understand communication. IEEE Internet Computing,
9(5):20–28, 2005.

[12] D. Fisher and P. Dourish. Social and temporal structures in everyday collaboration. In
Proceedings of the 2004 Conference on Human Factors in Computing Systems (CHI), pages
551–558, 2004.

[13] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of Web communities. In
Proceedings of the 6th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 150–160, 2000.

[14] G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization and identification of
web communities. IEEE Computer, 35(3):66–71, 2002.

33



[15] L. C. Freeman. The Development of Social Network Analysis: A study in the Sociology of
Science. Empirical Press, Vancouver, 2004.

[16] M. Girvans and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences of the United States of America (PNAS),
99(12):7821–7826, 2002.
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