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Abstract. We investigate the existance of simple policies in finite discounted

cost Markov Decision Processes, when the discount factor is not constant.

We introduce a class called “exponentially representable” discount functions.

Within this class we prove existence of optimal policies which are eventually

stationary—from some time N onward, and provide an algorithm for their

computation. Outside this class, optimal policies with this structure in general

do not exist.
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1. Introduction

In Markov decision models (MDPs), discounting is used to model the fact that
the further in the future something happens, the less important it is. Simple dis-
counting, where the reward is multiplied by a constant discount factor at each
epoch, arises naturally from economic considerations, when constant rates of in-
terest (bonds) or constant inflation are assumed. Such models are relatively easy
to analyze. In particular, in this case there exists an optimal policy which is sta-
tionary, namely deterministic and independent of the time and of past states [5].
Because it can be intuitively understood and handily analyzed, simple discounting
has been thoroughly researched and applied to countless models—from machine
learning, computer networks to game theory and psychology.

However, in general the decrease in value of the future need not be geometric. In
models of “learning curves”, the cost of “getting to know” the system is added to
the original criterion. The discounting in this criterion typically has a power-law
form, though some models have geometric learning curves. Additional geometric
decreases arise from models such as “Moore’s law,” in which a cost (in this case
of a unit of computation power) decreases geometrically fast. The addition of an
exponentially-decreasing component (with a rate different from the discount factor)
to a discounted Markov decision model results in a weighted discounted criterion—
that is, a criterion that is the sum of several standard discounted criteria. A theory
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for finite models with weighted discounted criteria was developed by Feinberg and
Shwartz [2]. The main results are that for such criteria there are optimal policies
that are stationary from some finite time onwards, called N -stationary policies, and
an algorithm for the computation of these policies is given.

In models of human preferences, it makes sense to use discounting with a decreasing
rate. Intuitively, while tomorrow may be less important than today, a year and a
day from now is just about the same as a year from now. “Hyperbolic discount

functions”, of the form (1 + αn)
−γ/α

with α, γ > 0, feature a decreasing discounting
rate, and are reported to effectively model psychological preferences (see [3] for
presentation, and [6] for critique). Even Moore’s Law seems to be breaking down,
leading to non-constant discounting.

Because of the difficulty of analyzing decision processes with general discount
functions, most theoretical results are obtained with “toy functions”, for exam-
ple f =

[

1, δβ, δβ2, δβ3, . . .
]

, which in a sense has a decreasing discounting rate for
0 < δ < 1, and often serves as a replacement of the hyperbolic function mentioned
above (see, e.g. [4]). Following the lines of the weighted discounted theory, we de-
fine the class of “exponentially representable” functions, prove that when they are
used as discount functions there exist N -stationary optimal policies, and describe a
computation algorithm. These functions display the decreasing discount rate of the
hyperbolic discount functions. However, the hyperbolic discount functions are not
exponentially representable, and moreover—exponentially representable discount
functions cannot be used to model power-law learning curves.

Below we define the model and the exponentially representable functions, and state
our main result. In section 2 we develop the algorithm for the computation of the
optimal policy and through it prove our result. In section 3 we further discuss the
meaning of exponential representability and which functions belong in that class.
Finally, in section 4 we show that the N -stationary property is not always assured.

1.1. Markov Decision Processes. Consider a discrete time process with a finite
state space X, where xn ∈ X denotes the state at time n = 0, 1, 2, .... At each time,
an action is chosen from a finite action set A(x). Let A =

⋃

x∈X
A(x) be the (finite)

action space—the set of possible actions and an ∈ A(xn) the chosen action at time
n. The state and chosen action at time n determine the probability distribution
of the next state through the transition probability p (xn+1|xn, an), assumed to be
independent of the time and of further information on the past. Additionally, the
state and action determine the immediate reward r (xn, an) given at time n.

The rule used to choose the action at each time is called a policy. We call hn =
x0a0 · · ·xn−1an−1xn the history at time n. Since the choice of action is required to
be causal, hn contains all the information available for making it. The most general
policy is therefore a mapping of every history hn to a probability measure π (·|hn)
on A(xn). Policies in which only one action is possible for each given history are
called deterministic, so that an = π(hn). Policies which depend only on the current
state and the time, i.e. π (·|hn) = π (·|xn, n) are called Markov policies, and Markov
policies which do not depend on the time are called stationary.
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The discounted criterion assigns to each policy and initial state numerical value

V β (x;π) = E
π
x

∞
∑

n=0

βnr (xn, an)

where E
π
x is the expectation induced by policy π, given that h0 = x, and 0 < β < 1

is the discount factor. Since r (x, a) is bounded, the value is always finite.

We discuss a more general discounted criterion, in which βn is replaced with f(n):

V gen (x;π) = E
π
x

∞
∑

n=0

f(n)r (xn, an) . (1)

A sufficient condition for the above summation to be well defined is |f(n)| ≤ Kβn

for some 0 < β < 1 or, equivalently, f(n) = βng(n) for 0 < β < 1 and some bounded
function g(n). We call a function that satisfies this condition exponentially bounded.

The weighted discounted criterion is a sum of a finite number of standard discounted
criteria, each with a possibly different immediate reward function:

V wd (x;π) = E
π
x

∞
∑

n=0

K
∑

k=1

βnk rk (xn, an) with β1 > β2 > · · · > βK . (2)

Let us define the maximal and minimal values of an MDP, respectively:

V (x) ≡ sup
π
V (x;π) V −(x) ≡ inf

π
V (x;π) . (3)

An optimal policy is a policy for which V (x;π) = V (x), for all x ∈ X.

Definition 1.1. A Markov policy π is called N-stationary if

π(x, n) = π(x,N) ∀x ∈ X, n ≥ N .

Definition 1.2. A function f : {0, 1, . . .} → R is called exponentially repre-
sentable (ER) if there exist sequences {ck}

∞
k=1 and {βk}

∞
k=1 such that:

• {βk}
∞
k=1 is positive, strictly decreasing and β1 < 1.

• f(n) =
∑∞

k=1 ckβ
n
k , the sum converges absolutely after some N <∞.

Example 1.3. The function

f(n) =
1

e− 1

∞
∑

k=1

1

k!

(

βk0
)n

=
eβ

n
0 − 1

e− 1

is ER for 0 < β0 < 1 and logarithmically convex ((log f (x))
′′

> 0)—hence with a de-
creasing rate of discounting, since the rate is inversely proportional to f (n+ 1) /f (n).
This is the required property in aforementioned the human preferences models.

1.2. The main result. Our starting point will be the following result on the
structure of optimal policies under criteria (2) and (1).

Theorem 1.4. In a weighted discounted MDP (2), there exists an optimal policy
which is Markov and deterministic. This holds also in MDPs with general discount-
ing (1) when the discount function is exponentially bounded.
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For a weighted discounted MDP, a proof (under more general conditions) is given
in [2], Thm. 2.2. The idea is to embed the process in an ordinary discounted MDP

with a countable state space X̃ = (X × N+), where time is added so that the new
state is x̃n = (xn, n), and use the standard result that discounted criteria have
deterministic and stationary optimal policies. The same embedding can be carried
out in the case of a single general discount function which is exponentially bounded.
This theorem also extends straightforwardly to a criterion that is a sum of several
criteria with general discount functions, as long as those functions are exponentially
bounded. Since this is a straightforward extension, we omit the details.

From now on we focus on ER discount functions. Since they are exponentially
bounded, using Theorem 1.4 we restrict our policies to be Markov and deterministic.

Theorem 1.5. Consider a finite MDP with an ER discount function. There exists
an N -stationary optimal policy for this problem, with N < ∞. This policy can be
found using Algorithm 2.6.

2. Optimal policies

The generalized discounted criterion in (1), with f (n) ER, is an infinite version of
the weighted discounted criterion. To see this, find {ck}

∞
k=1 and decreasing {βk}

∞
k=1

such that f(n) =
∑∞

k=1 ckβ
n
k , and rewrite the criterion as

V gen (x;π) = E
π
x

∞
∑

n=0

f(n)r (xn, an) = E
π
x

∞
∑

n=0

∞
∑

k=1

βnk ckr (xn, an) (4)

which is an infinite weighted discounted criterion with rk (xn, an) = ckr (xn, an).

We now adapt the algorithm from part 3 of [2] to infinite weighted discounted
criteria induced by an ER discount function. We will also prove that this algorithm
halts after a finite number of iterations, and provide a bound on that number. Let

Vk (x;π) = E
π
x

∞
∑

n=0

βnk ckr (xn, an) (5)

denote the value of the kth summand in (4), and let Vk (x) and V −
k (x) be the

maximal and minimal value for initial state x. Define a “conserving set”:

Γ1(x) ≡







a ∈ A(x) | V1(x) = c1r(x, a) + β1

∑

y∈X

p (y|x, a) V1(y)







. (6)

It is easy to see that a policy is optimal for this criterion if and only if it chooses
actions from the (conserving) set Γ1 (x) when in state x: see Lemma 3.1 in [2].

Let X1 = {x ∈ X | Γ1(x) 6= A(x)} be the set of states for which suboptimal actions
for criterion V1 exist. If X1 6= ∅, define:

ε1 ≡ min
x∈X1,a∈A(x)\Γ1(x)



V1(x) − c1r(x, a) − β1

∑

y∈X

p (y|x, a)V1(y)



 . (7)



EVENTUALLY-STATIONARY POLICIES UNDER NON CONSTANT DISCOUNTING 5

ε1 is the value of the smallest “mistake” one can make in the choice of a single
action, with regard to criterion V1. If X1 = ∅ define N1 ≡ 0. Otherwise define:

N1 = min

{

n ≥ 0 | ε1 >
∞
∑

k=2

(

βk
β1

)n

max
x∈X

(

Vk(x) − V −
k (x)

)

}

. (8)

Lemma 2.1. If f(n) is ER, N1 is well defined and finite.

Proof. Define S(n) =
∑∞
k=2 (βk/β1)

n maxx∈X

(

Vk(x) − V −
k (x)

)

. Denote the span
semi-norm of r (x, a) by M = maxx∈X,a∈A(x) r (x, a)−minx∈X,a∈A(x) r (x, a). Then

∀k : max
x∈X

(

Vk(x) − V −
k (x)

)

≤ |ck|
M

1 − βk
≤ |ck|

M

1 − β1
(9)

S(n) ≤
β−n

1 M

1 − β1

∞
∑

k=2

βnk |ck| . (10)

This proves N1 is finite—see [1].

Remark 2.2. Let X = {x0} and A = {a1, a2} with r (x, a1) = 1 and r (x, a2) = 0.
Then, maxx∈X

(

Vk(x) − V −
k (x)

)

= |ck| /1−βk for any k, so S(n) = β−n
1

∑∞
k=2 β

n
k |ck|.

Here S(n) −→
n→∞

0 only if
∑∞
k=2 β

n
k ck converges absolutely for some N <∞, i.e. only

if f(n) is ER. Thus for a given discount function f , the bound N1 is well-defined
for any model if and only if the discount function is ER.

Using the definitions (6) and (8) of Γ1(x) and N1 respectively,

Lemma 2.3. Consider a finite MDP with an ER discount function. If σ is an
optimal Markov policy then n ≥ N1 and P

σ
x {xn = z} > 0 imply σ(z, n) ∈ Γ1(z).

Proof. The proof extends that of Lemma 3.3 in [2], using the same basic ideas. It
is simple to show (see [2]) that the optimality of σ implies that for any stationary
policy φ, time m and state z ∈ X such that P

σ
x {xm = z} > 0:

E
σ
x

{

∞
∑

n=m

f(n)r (xn, an) |xm = z

}

≥ E
φ
x

{

∞
∑

n=m

f(n)r (xn, an) |xm = z

}

.

By substituting f(n) =
∑∞

k=1 ckβ
n
k in the above equation, denoting the time-shifted

optimal policy by σm (x, n) = σ (x, n+m), and using Vk as defined in (5), the above
inequality can be rewritten as

∞
∑

k=1

βmk Vk (z;σm) ≥
∞
∑

k=1

βmk Vk (z;φ)

and therefore
∞
∑

k=2

βmk (Vk (z;σm) − Vk (z;φ)) ≥ βm1 (V1 (z;φ) − V1 (z;σm)) . (11)

We now suppose by contradiction that for some time m ≥ N1 and for some state
z ∈ X such that P

σ
x {xm = z} > 0, σ (z,m) /∈ Γ1(z). Let φ be the optimal stationary
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policy for criterion V1, so that V1(x, φ) = V1(x) for all x ∈ X. Since m ≥ N1, and
by the definition of N1 (which is meaningful due to the fact that f is ER) we have:

ε1 >

∞
∑

k=2

(

βk
β1

)m

[Vk(z) − V −
k (z)]

≥
∞
∑

k=2

(

βk
β1

)m

[Vk(z;σ
m) − V −

k (z;φ)] ≥ V1 (z;φ) − V1 (z;σm) (12)

where the second inequality comes from the definitions and the last from (11). On
the other hand, since σ (z,m) /∈ Γ1(z) and from the definition of ε1:

V1(z) − V1 (z;σm) ≥ V1(z) −



r (z, σ (z,m)) + β1

∑

y∈X

p (y|z, σ (z,m))V1(y)



 ≥ ε1

(13)

Inequalities (12) and (13) contradict each other, thus proving this lemma.

If Γ1(x) is a singleton for all x ∈ X, then the lemma requires any optimal policy
to be N1-stationary, and determines the stationary part of the policy. If it is not a
singleton, we know that after time N1 our action sets reduce to Γ1(x) and for every
admissible policy, V1 will attain its maximum value and therefore be irrelevant. Our
task therefore becomes finding the optimal policy for the weighted sum starting
from the second discount factor, with the action sets restricted to Γ1. To iterate
the above process, define recursively for k > 1, the restricted action sets in iteration
k — Ak (x) = Γk−1 (x), the mth value function restricted to the kth action set —
V Ak
m (x), and similarly the minimal value function V −,Ak

m (x). Additionally:

Γk(x) ≡







a ∈ Ak(x) | V
Ak

k (x) = ckr(x, a) + βk
∑

y∈X

p (y|x, a)V Ak

k (y)







(14)

Xk = {x ∈ X | Γk(x) 6= Ak(x)} (15)

εk ≡ min
x∈Xk,a∈Ak(x)\Γk(x)



V Ak

k (x) − ckr(x, a) − βk
∑

y∈X

p (y|x, a)V Ak

k (y)





(16)

Nk = min

{

n ≥ Nk−1 | εk >
∞
∑

m=k+1

(

βm
βk

)n

max
x∈X

(

V Ak
m (x) − V −,Ak

m (x)
)

}

(17)

where εk is set to ∞ in the case that Xk = ∅. Again, Nk is well defined when f (n)
is ER. With these definitions, the following is evident:

Lemma 2.4. Consider a finite MDP with ER discount function. If σ is an op-
timal Markov policy, then for every k ≥ 1, n ≥ Nk and state z ∈ X such that
P
σ
x {xn = z} > 0, we have σ(z, n) ∈ Γk(z).

Proof. By induction using Lemma 2.3 and the above definitions.

We will now prove that iterating this procedure does indeed provide us with an
N -stationary policy after a finite and bounded number of computations.
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Lemma 2.5. Consider a finite MDP with an ER discount function. Let S = |X|.
Then for all k ≥ 2S − 1 and every x ∈ X, Γk (x) = Γ2S−1 (x).

Proof. If Γ2S−1 (x) is a singleton for all x ∈ X, then the lemma is immediate.
Otherwise, let Φ = {φ1, φ2, ..., φL} be the set of stationary policies such that φi (x) ∈
Γ2S−1 (x) for all x ∈ X, i = 1, 2, ..., L. For φ ∈ Φ, define fφ : [0, 1) → R

S as

[fφ (β)]s = E
φ
xs

∞
∑

n=0

βnr (xn, an) ,

so that Vk (xs;φ) = ck (fφ (βk))s. Let [Pφ]m,n ≡ p (xn|xm, φ (xs)) and [rφ]s =

r (xs, φ (xs)) be the state transition matrix and reward vector induced by φi. Then

fφ (β) = rφ + βPφfφ (β) ⇒ fφ (β) = (I − βPφ)
−1 rφ . (18)

Since Pφ is stochastic, by the Perron–Frobenius theorem I − βPφ is invertible for
β ∈ [0, 1) and singular for β = 1. Since M−1 = adj (M) / det (M), by (18) every
entry (coordinate) of fφ is a rational function of β, with numerator degree S − 1
and denominator degree S, with a pole at β = 1, which possibly cancels with a zero
in some of the entries. Since φ ∈ Φ if and only if it is optimal for all criteria Vk for
k = 1, 2, ..., 2S − 1 (under different action sets for each k), all policies in Φ must
have the same values for β1, β2, ..., β2S−1. Consequently, for every i, j ≤ L:

fφi
(βk) = fφj

(βk) , ∀k = 1, 2, ..., 2S − 1 . (19)

Fix i and j and consider each entry of fφi
(β) − fφj

(β) = 0. It is a polynomial
equation of degree 2S − 2 (since the common poles at β = 1 cancel). However,
according to (19), this polynomial has 2S− 1 distinct roots—and is therefore iden-
tically zero. We conclude that fφi

(β) = fφj
(β) for all β ∈ [0, 1) and every two

policies φi, φj ∈ Φ, and accordingly Vk(x;φ) is the same over all φ ∈ Φ, for each
x ∈ X and k ≥ 2S − 1. This means that for k ≥ 2S − 1, all possible policies have
identical values, and will therefore all be optimal. Since the set of optimal policies
remains constant, so do the conserving sets.

The proof of Theorem 1.5 now follows—see [1] for details.

The computation of {Nk}
2S−1
k=1 involves evaluations of infinite sums, which are usu-

ally not feasible. To avoid this, we can instead find upper bounds N̂k ≥ Nk for
each k, and compute an N̂2S−1-stationary optimal policy with a stationary part

determined by the conserving sets. One way to find N̂k is to use the semi-norm
bounds in (10). In each iteration, the semi-norm of the reward function should be
computed with respect to the restricted action set, and therefore decrease.

Algorithm 2.6.

1. Find {βk}
∞
k=1 and {ck}

∞
k=1 of Definition 1.2, set S = |X| and k = 1.

2. Compute Γk (x) for all x ∈ X, εk and Nk or an appropriate upper bound.
3. If Γk (x) is a singleton for every x ∈ X, or k = 2S + 1, set N = Nk and

continue. Else set Ak+1 (·) = Γk (·), increment k by 1 and go back to step 2.
4. Fix a stationary policy ψ, such that ψ (x) ∈ Γk (x) for all x ∈ X.
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5. Compute an optimal Markov policy σ for the N -step MDP with immediate
rewards rn (x, a) = f (n) r (x, a), for n = 0, 1, ...N − 1 and terminal reward

E
ψ
xN

∞
∑

n=0

f (n+N) r (xn+N , an+N ) =

∞
∑

k=1

βNk Vk (xN ;ψ) .

6. The N -stationary optimal policy is defined by π (x, n) = σ (x, n) for n < N
and π (x, n) = ψ (x) for n ≥ N .

Step 5 is standard—see [5].

Remark 2.7. Our results can be extended to criteria of the form:

V (x;π) = E
π
x

∞
∑

n=0

K
∑

k=1

fk (n) rk (xn, an) , fk (n) =
∞
∑

i=1

ci,kβ
n
i,k

where for each k, fk (n) is ER and the additional condition

βi,k > β1,k+1 , ∀i, k. (20)

Lemmas 2.3 and 2.4 can be extended by changing the definitions of the Nk’s to
include the rest of the discount functions, with condition (20) making sure they
remain well defined. The N -stationary optimal policy can then be obtained by
finding Γ2S−1,1 (x) for the first discount function. In the case it is not a singleton,
the action space will be restricted appropriately, and the procedure will be applied
to f2. This may continue until Γ2S−1,K (x) is computed, from which we may choose
the stationary part of the optimal policy arbitrarily. Finally, we remark that if
rk (·) = bkr (·) for some function r (x, a), the procedure will end in the computation
of Γ2S−1,1 (x), since afterwards all permissible policies for the stationary part will
have the same value.

3. Structure of ER functions

ER functions behave asymptotically as exponential functions:

Lemma 3.1. Let f (n) be an ER function. Then there exist 0 < β < 1 such that

lim
n→∞

β−nf (n) = c 6= 0 and c <∞ .

Proof. Write f (n) =
∑∞
k=1 ckβ

n
k . Without loss of generality, we may assume that

c1 6= 0. Since f is ER, we have absolute convergence from some time N < ∞.
Therefore, for n > N and some C <∞:

β−n
1

∣

∣

∣

∣

∣

∞
∑

k=2

ckβ
n
k

∣

∣

∣

∣

∣

≤ β−n
1

∞
∑

k=2

|ck|β
n
k <

βn−N2

βn1

∞
∑

k=2

|ck|β
N
k = C

(

β2

β1

)n

→
n→∞

0 .

Consequently, lim
n→∞

β−n
1

∞
∑

k=2

ckβ
n
k = 0 and choosing β ≡ β1 we have,

lim
n→∞

β−nf (n) = lim
n→∞

c1 + β−n
1

∞
∑

k=2

ckβ
n
k = c1 6= 0 and c1 <∞ .
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Functions with power-law form, like (1 +n2)−1 or the hyperbolic discount function
do not satisfy the conclusion of Lemma 3.1, and are therefore not ER. The same

holds for sub-exponential functions, like 1/n! and e−n
2

. Moreover, functions of the
form g (n)βn, where g (n) → 0 or g (n) → ∞ non-exponentially, are also not ER
for the same reason. Examples are nβn and βn/ (1 + n) for some 0 < β < 1.

4. A discount function with no N-stationary optimal policy

When a discount function decreases monotonically it seems natural that it should
produce a behavior that is monotonic, or stationary. However, this is not true:
we provide an example of a discount function and a model for which there is no
N -stationary optimal policy. By our results, the discount function is not ER.

Consider the function f(n) = βnh(n), with some 0 < β < 1 and

h(n) =

{

2 nmod 6 = 0

1 otherwise
= [2, 1, 1, 1, 1, 1, 2, 1, 1, 1, . . . ]

which is periodic with period 6. The condition of Lemma 3.1 does not hold for
f(n), and it is therefore not ER.

Now consider the following (deterministic) model:

X = {1, 2, 3, 4, 5} , A(1) = {a1, a2} , A(2) = A(3) = A(4) = A(5) = {a} (21)

p (2|1, a1) = p (3|1, a2) = p (4|3, a) = p (5|4, a) = p (1|5, a) = p (1|2, a) = 1

with the immediate reward function

r (1, a1) = 3 , r (1, a2) = 4 , r (2, a) = r (3, a) = r (4, a) = r (5, a) = 0 .

Let σ be a hypothetical N -stationary, optimal and possibly randomized policy for
this process. Since state 1 is recurrent, there exists a time M0 ≥ N such that
P
σ
1 (xM0

= 1) > 0. Consequently, P
σ
1 (xM0+4 = 1) > 0 and P

σ
1 (xM0+8 = 1) > 0,

since at those times there must be a positive probability that a single action is used
repeatedly. We know M0 is even because every return to state 1 takes either 2 or
4 steps, and therefore, either M0, M0 + 4 or M0 + 8 divides by 6. We may thus
choose M ≥ N such that M is a multiple of 6, and P

σ
1 (xM = 1) > 0.

Define the shifted value criterion:

VM (1;π) ≡ E
π

{

∞
∑

n=M

βnh(n)r (xn, an) |xM = 1

}

.

Criterion VM (1;π) comprises the part of V (1;π) that involves times M and on-
wards. If an optimal Markov policy for criterion V (1;π) has any chance of reaching
state 1 in time M , it must also optimize criterion VM (1;π), when taken from times
M onwards — this is a form of the principle of optimality. Therefore, and consid-
ering that σ is an optimal Markov policy for V (1;π), and P

σ
1 (xM = 1) > 0 by our

choice of M , the stationary policy σM (·) = σ(·, n + M) must be of optimal for
criterion VM . However,

VM (1;π) = E
π
1

∞
∑

n=0

βn+Mh(n+M)r (xn, an) = βMV (1;π)
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where the last equality follows from the periodicity of h (n) and our choice of M .
Since VM (1; ·) is proportional to V (1; ·), σM is optimal for the original criterion
as well, when starting from state 1. Moreover, if σM is randomized, a stationary
and deterministic policy σ̂M with V

(

1;σM
)

= V
(

1; σ̂M
)

= V (1) can be obtained.
This is done by using, for every state, an action that has positive probability under
σM . In conclusion, if this problem has an N -stationary optimal policy, a stationary
and deterministic policy must maximize V (1; ·).

Let σ1(1) = a1, σ2(1) = a2 be the two stationary policies in this model, and consider
the periodic Markov policy:

π(1, n) =

{

a2 nmod 6 = 0

a1 nmod 6 = 4

Let β = 0.45. The values of the 3 policies will then be:

V (1;π) =
8 + 3β4

1 − β6
≈ 8.19 (22)

V (1;σ1) =
6 + 3β2 + 3β4

1 − β6
≈ 6.79 (23)

V (1;σ2) =
8 + 4β4 + 4β8

1 − β12
≈ 8.17 . (24)

Evidently, both stationary policies are suboptimal when x0 = 1. Therefore, there
cannot be an N -stationary optimal policy, since our considerations have shown that
it will result in an optimal, stationary and deterministic policy when starting from
state 1. Since we chose β < 1/2, h(n) > βh(n+1) for every n, making the discount
function monotonically decreasing, as required.
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