
The Natural 3D Spiral – Supplementary

Extended Figure 4: Figures 1–2 extend Figure 4 of the paper. They show all the objects used in our experiment.

(a) Scanned object (b) Ratio curvature / torsion (c) Linear fit to $\frac{1}{\kappa}$ (d) Linear fit to $\frac{1}{\tau}$

Figure 1: Scanned seashells (a); the ratios between their radii of torsion and their radii of curvature (b); the radii of curvature (c); the radii of torsion (d)

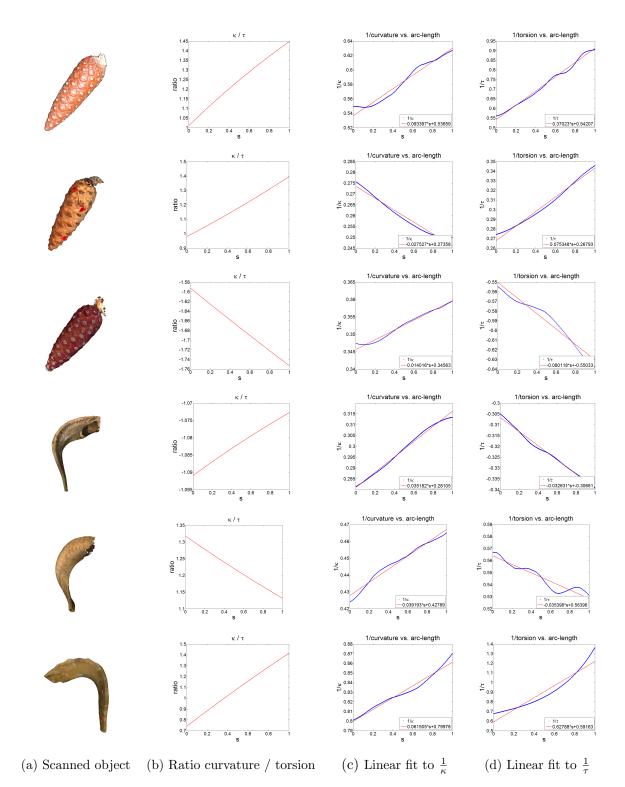


Figure 2: Scanned pine cones and horns (a); the ratios between their radii of torsion and their radii of curvature (b); the radii of curvature (c); the radii of torsion (d)

Scanned object	S_2	S_3	Our spiral	MSE
Ó	<u></u>	A	J.	$S_2: 5.7E-3$
				$S_3: 1.4\text{E-}3$
				Ours: 0.85E-3
	Ju	Ju	J	$S_2: 7.0E-3$
				$S_3: 0.57E-3$
				Ours: 0.39E-3
Ó	M	J (j)	J.	$S_2: 6.7E-3$
				$S_3: 0.66E-3$
				Ours: 0.54E-3
		R	Ø	$S_2: 1.9E-3$
				$S_3: 1.4\text{E-}3$
				Ours: 1.2E-3
١	3	N	3	$S_2: 0.62E-3$
				$S_3: 1.2E-3$
				Ours: 0.35E-3
	\sim	\sim		$S_2: 0.77E-3$
				$S_3: 1.6E-3$
				Ours: 0.21E-3
				$S_2: 11.5\text{E-4}$
				$S_3: 19.9E-4$
				Ours: 1.5E-4
	\sum	\searrow	$\underbrace{}$	$S_2: 0.92\text{E-}4$
				$S_3: 1.4\text{E-}4$
				Ours: 0.66E-4
ſ				$S_2: 1.9E-4$
				$S_3: 1.0E-4$
				Ours: 0.54E-4
				$S_2: 8.5E-3$
				$S_3: 5.5E-3$
				Ours: 0.09E-3
1	e /			$S_2: 5.4\text{E-4}$
				S ₃ : 7.8E-4
				Ours: 2.2E-4

Extended Figure 6: The following figure is an extension of Figure 6 of the paper. It compares our spiral, as well as the other proposed spirals (S_2, S_3) , to the spirals obtained from all our scanned objects.

Figure 3: Fitting the different spirals (red) to the spirals of the real data (blue) in Figures 1(a)-2(a). Right: the error obtained by fitting the spirals.