
Image-Based Texture Replacement Using Multiview Images

Doron Tal∗

Technion – Israel Inst. of Technology
Ilan Shimshoni†

University of Haifa
Ayellet Tal‡

Technion – Israel Inst. of Technology

Abstract

Augmented reality is concerned with combining real-world data,
such as images, with artificial data. Texture replacement is one
such task. It is the process of painting a new texture over an ex-
isting textured image patch, such that depth cues are maintained.
This paper proposes a general and automatic approach for perform-
ing texture replacement, which is based on multiview stereo tech-
niques that produce depth information at every pixel. The use of
several images allows us to address the inherent limitation of previ-
ous studies, which are constrained to specific texture classes, such
as textureless or near-regular textures. To be able to handle general
textures, a modified dense correspondence estimation algorithm is
designed and presented.
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1 Introduction

A basic problem in many augmented reality systems is creating
new artificial images given real images [Azuma 1997; Berger et al.
1999; Debevec 1998; Keren et al. 2004]. Texture replacement is
a challenging example of this type, which can be utilized in other
applications, such as post-production in the entertainment industry.
It is the process of painting a new texture over an existing textured
image patch, in a manner that preserves the 3D appearance of the
original patch. The 3D appearance can be visualized by the de-
formation of the texture over the 3D body in two ways. First, the
texture pattern should be smaller on the more distant parts of the
object. Second, as the angle between the surface normal and the
viewing direction increases, the area of the texture in the image de-
creases (foreshortening).

Several texture replacement approaches have been suggested in re-
cent years. The key distinction between them is theshape extrac-
tion method they use. Some of the techniques rely onshape from
texturemethods [Liu et al. 2004; Scholz and Magnor 2006], while
others are based onshape from shading, where the luminance of
the object is used, assuming a Lambertian reflectance model [Fang
and Hart 2004; Zelinka et al. 2005]. In both cases a single im-
age is given and thus the techniques are limited to specific texture
types: near regular in the first case and textureless surfaces in the
latter. The limitation to certain texture types severely hinders these
approaches. Moreover, determining in advance whether a given tex-
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Figure 1: Texture replacement: Note that the input texture is neither
smooth nor near-regular

ture fits the restrictions of a given method might in itself be compli-
cated.

The key challenge is to design a texture replacement approach
that can handle all varieties of input textures. Since it cannot be
achieved using a single image, we propose to use a few images.
Given a set of multiview images of an object, one of which is the
referenceimage, the goal is to replace the texture of a given patch in
this image by some other texture, using the other images for shape
reconstruction.

This paper makes the following contributions. First, a general, end-
to-end, automatic approach for accurate texture replacement, which
is based on multiview stereo for shape reconstruction, is presented.
Second, a method specifically tailored for dense correspondence
estimation between textured images, is described. Figure 1 gives
an example of the results of our approach.

2 Related Work

In the following we describe previous texture replacement algo-
rithms. Then, we discuss multiview stereo methods, which have
not been utilized before for texture replacement.

Texture replacement: The first class of texture replacement ap-
proaches is based on shape from texture. These methods use texture
deformations to extract the geometric characteristics of the surface.
One of the first papers on texture replacement is [Tsin et al. 2001],
which focuses on decoupling the illumination and the texture. The



new texture is recoupled with the original illumination to create
pleasing results. This method is limited to regular textured inputs
and to fronto-parallel planes.

In [Liu et al. 2004] a wider set of textures is handled. This al-
gorithm uses near-regular textures both for the source and for the
target textures. The deformation field is extracted from the source
texture interactively. Using the deformation field, this texture is de-
warped into a regular texture. Finally, a regular texture coupled with
the original illumination is deformed back into the same geometric
structure.

In [Scholz and Magnor 2006] a technique for texture replacement
of garments on a monocular video sequence is presented. Special
coded print on the garment enables the surface coordinate system
to be extracted from it with relative ease.

The other class of methods is based onshape from shading, where
the reflection model of the surface is usually assumed to be near-
Lambertian. The method proposed in [Fang and Hart 2004] is based
on automatic extraction of a putative normal field and is followed
by a manual correction stage. The corrected normal field is then
approximated using 2D planes, and a texture is synthesized for each
plane separately. Finally, the textured regions are seamed together.
The method is limited to textureless input surfaces.

The method described in [Zelinka et al. 2005] extends the class of
textures to include piecewise constant textures. It does so by an
initial stage of image segmentation into different colors. Then, the
surface normals of the most reliable color are extracted and later
propagated into less reliable regions. The texture synthesis is done
using jump maps [Zelinka and Garland 2004], which produce lower
quality results than alternative methods but are very fast.

The advantage of the above approaches is that they are based on a
single image. This comes at a hefty price of constraining the texture
types, assuming an ideal reflection model. Since these assumptions
are usually not precisely satisfied, user interaction is often required.
To overcome these limitations, we propose to perform texture re-
placement using multiple images.

Multiview stereo: There are numerous stereo vision methods,
where two or more images of the same object, taken from differ-
ent directions, are used to reconstruct the 3D shape of the object.
[Scharstein and Szeliski 2002] surveysnarrow-baseline two-frame
stereomethods, i.e., using two fairly similar images of the object.
[Seitz et al. 2006] surveysmultiview stereoalgorithms. It is demon-
strated that multiview algorithms present significantly better results
for 3D reconstruction than the single-image approaches mentioned
above.

None of these algorithms has taken the process onward to include
texture replacement. Moreover, these algorithms have usually been
applied to textureless surfaces, implying that with a high proba-
bility, image gradients correspond to depth discontinuities. This
assumption does not hold for textured images. Our proposed algo-
rithm handles this case.

3 General Approach

Our approach requires, as input, a set of images, one of which is
regarded as thereference image, in which the texture patch should
be replaced. The approach consists of four stages: sparse matching,
bundle adjustment, dense reconstruction, and texture mapping, as
described below.

3.1. Sparse matching: In this stage we acquire an initial match be-
tween two images at a time. This match is composed from a sparse

set of point correspondences and thefundamental matrixthat re-
lates corresponding points in the two images [Hartley and Zisser-
man 2004].

This step consists of three stages: feature extraction from each im-
age; creation of an initial putative list of matches; and identifying
correct matches (inliers).

The features extracted by our algorithms are the widely usedscale-
invariant feature transform (SIFT)[Lowe 2004; Lowe ]. Feature
vectors obtained by SIFT are invariant to image scale and rotation,
and partially invariant (i.e. robust) to changes in viewpoint and
illumination.

Given two sets of feature points, one for each image, a putative
match is constructed by matching each descriptor of the first set to
its nearest neighbor descriptor in the other set. From this set of
matches, the pairs selected are those whose distance to the closest
neighbor is much smaller than the distance to the second-closest
neighbor. (In our implementation, the ratio threshold is 0.6.) Many
incorrect matches are thus removed.

The process described above yields a set of putative matches, many
of which are still incorrect. The goal is to identify the inlier
matches. This is done by using the RANSAC (Random Sample
Consensus) approach [Fischler and Bolles 1981]. RANSAC esti-
mates the parameters of a mathematical model from a set of ob-
served data that contains outliers. In our case, the mathematical
model is the fundamental matrix, the observed data is the point
matches, and the outliers are the incorrect matches.

RANSAC achieves its goal by iteratively applying the following
procedure. A minimal random subset of the original data points
is selected. From this subset a model is computed. This model
will be close to the correct model if these points are inliers. The
hypothesis that this is so is then tested by checking for each of the
data points its agreement with the model. If sufficiently many points
have been classified as inliers relative to the estimated model, then
the model is reasonably good. This iterative procedure is repeated a
fixed number of times, each time producing either a rejected model
because too few points are classified as inliers, or a refined model,
together with a corresponding error measure.

The algorithm selects the fundamental matrix for which the largest
number of matches conform. In our implementation, we use a vari-
ant of the algorithm known as MSAC, in which the score is not
based only on the number of inlier matches, but also on the actual
distances computed for them [Torr and Zisserman 2000].

In our implementation, 1000 cycles of RANSAC are run. Assuming
that 50% of the matcher are inliers, 1000 cycles reflect a probability
of 99.999% that an error-free minimal (seven) set of matches will
be chosen. Figure 2 shows a result in which the blue points indicate
matched features.

3.2. Bundle Adjustment: Once stereo sparse matching has been
accomplished for all image pairs, the next step is to build a con-
sistent model of all the images.Bundle adjustmentperforms this
task of visual reconstruction to produce a jointly optimal 3D struc-
ture and viewing parameter estimates (camera pose and/or calibra-
tion). Optimal refers to minimizing a cost function that quantifies
the model fitting error. Jointly refers to a solution that is simulta-
neously optimal with respect to both structure and camera parame-
ters [Triggs et al. 1999].

In a nutshell, the problem can be formulated as follows. Assume
that n 3D points are seen inm views. Furthermore, assume that
each cameraj is parameterized by a vectora j which represents the
rotation and translation parameters of the camera in vector form.
Let xi j be the projection of theith point on thejth image. Bundle



Figure 2: Sparse matching. The matched features are marked in
blue.

adjustment amounts to refining the set of initial camera and struc-
ture parameter estimates in order to find the set of parameters that
most accurately predicts the location of the observedn points in the
set of them available images. It minimizes thereprojection error
with respect to all 3D points and camera parameters.

General purpose solutions of the non-linear problems are computa-
tionally demanding when employed to minimize functions that de-
pend on many parameters. Fortunately, when solving minimization
problems in bundle adjustment, the absence of interaction among

parameters for different 3D points and cameras can be exploited, as
done in [Lourakis and Argyros 2004].

3.3. Dense Reconstruction: Once accurate sparse matching has
been accomplished and the 3D structure and the viewing parameters
were found for this sparse set of points, they are used to perform
the multiview dense reconstruction. This step calculates the depth
of all the pixels in the reference image. Our algorithm, which is
specifically tailored for textured images, is described in Section 4.

3.4. Texture Mapping: The last stage of the framework is cast-
ing a new textured image on the depth map acquired. The aim
is to perform isometric-preserving texture mapping, i.e., distance-
preserving mapping. There are several known algorithms for ap-
proximated isometric surface parametrization [Sorkine et al. 2002;
Zigelman et al. 2002]. Our algorithm follows the general approach
of the latter.

The key idea is to calculate the geodesic distances on the
mesh [Kimmel and Sethian 1998; Mitchell et al. 1987; Surazhsky
et al. 2005] and then find an optimal embedding on a 2D plane that
preserves these distances. This is done usingMulti-Dimensional
Scaling (MDS)[Kruskal and Wish 1978; Cox and Cox 1994]. We
use a simple MDS method calledclassical scaling, which uses the
first two eigenvectors of the distance matrix to project the points to
the plane.

After the 2D isometric embedding has been extracted, it is possi-
ble to “paint” the 3D mesh. This is done by first laying the texture
image on the plane of the 2D embedding. Then, by traversing the
original image, each pixel is associated with a triangle on the mesh.
The sparse isometric mapping is interpolated using barycentric co-
ordinates. Eventually, a bilinear interpolation is performed in order
to find the texture color painted over the original pixel position, as
illustrated in Figure 3.

Figure 3: Texture mapping. To paint a new texture over the original image(bottom left), each pixel in the image is mapped to the 2D mesh
embedding (bottom right). The triangle that includes the pixel is found in the simplified mesh (up). Then using barycentric coordinates, the
mapping to the 2D mesh embedding is computed.



Since the depth map is large and complex (usually more than
100,000 pixels), texture mapping is preceded by simplifica-
tion [Garland and Heckbert 1997; Garland ].

4 Dense Reconstruction

Dense reconstruction is a process that calculates the depths of all
the pixels. Assume that we are givenm imagesIi , i = 1. . .m, which
associate each 2D-coordinatex with intensity valuesIi(x). The im-
ages are taken with a set of cameras, for which the internal and
external calibrations are known, as a result of an internal calibra-
tion procedure [Strobl et al. ] and bundle adjustment. Our aim is to
estimate the depth mapD1 that assigns a depth-valueD1(x) to all
pixel locations in the reference imageI1. In this multiview stereo
problem, the information from all the images will contribute to the
computation of each pixel of the mapD1.

To enable free image acquisition using a hand-held digital camera,
the algorithm should handlewide baselines. However, inherent to
the wide-baseline setting, is the problem ofocclusions, in which not
all parts of the scene visible in a particular image, are also visible
in the other images. Moreover, because of the large difference in
viewpoint, pixels in different images, which are projections of the
same point in the scene, might have different color values.

We are seeking a multiview reconstruction algorithm that satisfies
the following requirements: (1)Occlusion handling.Occlusion is
a difficult problem because, when a pixel in the reference image is
occluded in one of the other images, their photometric values will
usually be different. The algorithm should distinguish between this
case and the case where the pixels differ because there is an error
in the depth estimation (i.e., the pixels do not match). (2)Textured-
surface handling – reconstructing objects regardless of their tex-
ture. In a given image of a textured surface, the algorithm may
detect texture edges or it may detect edges that appear as a result
of depth discontinuities. An algorithm that uses the edge cue in
the 3D reconstruction as a depth discontinuity cue has to be able to
distinguish between both types of edges.

We base our algorithm on [Strecha et al. 2004], which is a
probability-based optimization approach for multiview reconstruc-
tion. Though this algorithm generally produces accurate results, it
has a couple of drawbacks. First, the algorithm’s performance de-
pends largely on a good initialization, otherwise it might get stuck
in local minima. Textured images are, by their very nature, not pho-
tometrically smooth, because a small error in the depth of a pixel
can cause a non-smooth change in its color. Thus, this algorithm
often fails to converge for our examples. Second, the assumption
made that the photometric properties of all occluded pixels are sim-
ilar, is beneficial for the case of specularities, but is insufficient for
dealing with real occlusions. In particular, not only occluded pix-
els need not have the same color, but also in textured images, their
colors vary significantly.

In our approach, the first problem is overcome by extracting many
feature points in the previous stages. A key observation is that
this can be achieved by taking several narrow-baseline image pairs,
such that for each image pair many matches can be easily found
(e.g., Figure 5(a)-(f)). Occlusion and foreshortening are handled
through the use of a few pairs, rather than a single stereo pair, and
are stitched together via bundle adjustment. The depth of these
points, which have been estimated accurately by bundle adjustment,
is kept fixed throughout the algorithm. These points are used as an-
chor points, and the depth has to be estimated only in the regions
between them.

The second problem is solved by changing the way occlusion is
handled. Intuitively, rather than assuming that all occluded pix-

els have a similar color, we base the visibility update on the pre-
vious pixel likelihood estimation. Namely, we assume that pixels
which are very similar to their counterparts in the reference image
are probably visible, as explained below. The rest of this section
outlines the algorithm.

Given the camera calibrations and a depth valueD1(x1) for a posi-
tion x1 in I1, the corresponding pixel location in theith image can
be computed by:

λixi = D1(x1)KiR
T
i R−1

1 x1 +KiR
T
i (t1− ti), (1)

whereKi , Ri andti are the internal calibration matrix, rotation, and
translation of theith camera, respectively. The overall mapping is
denoted asxi = l i(x1,D1(x1

i )) or xi = l i(x1).

Each input imageIi , i = 2, . . . ,m is regarded as a noisy measurement
of the reference imageI1:

Ii(l i(x1)) = I1(x1)+ ε, (2)

whereε ∼ N(0,Σ) is the image noise, assumed to be normally dis-
tributed with zero mean and covariance matrixΣ.

Occlusion is modeled by a set of visibility mapsVi(x1), which spec-
ify whether a scene pointX that projects ontox1 in I1 is also visible
in imageIi . Every element ofVi(x1) is a binary random variable,
which is either 1 or 0, corresponding to visibility or occlusion, re-
spectively. The setVi contains thehidden variables, and their values
must be inferred from the input images. Note that, as the first image
was chosen as the reference image, all pixels in the first image are
visible and therefore,V1(x1) = 1.

Under the assumption that the image noise is independent and iden-
tically distributed for all pixels in all views, the data likelihoodL
can be written as the product of all individual pixel probabilities,
where the product is:

L =
m

∏
i=1

∏
x∈I1

N(I1(x)− Ii(l i(x));0,Σ). (3)

The algorithm assumes that the surface is smooth nearly every-
where (smoothness prior). The smoothness prior is modeled as
an exponential density distribution of the form exp(−R(I1,D1)/λ ).
Here,λ is a parameter that reflects our prior belief as to how smooth
D1 is andR(I1,D1) is a data-driven regularizer that relates image
gradients to depth discontinuities. A high image gradient existing
at a particular pointx1 causes the algorithm to assume that a large
depth discontinuity at that point and in that direction is more likely
a-priori. The following regularizer is used:

R(I1,D1) = ∇DT
1 T(∇I1)∇D1. (4)

Here,T(∇I1) is a diffusion tensor defined by:

T(∇I1) =
1

|∇I1|2 +2ν2 (∇I⊥1 ∇I⊥T
1 +ν21), (5)

where1 is the identity matrix,ν is a parameter controlling the de-
gree of anisotropy, namely it controls the level of alignment be-
tweenD1’s andI1’s gradients.

The downside of this data-driven regularizer is when attempting
to recover the depth map of textured scene. Textures usually do
not have depth discontinuities however, they do contain significant
intensity gradients. Using the data-driven regularizer may lead to
increased noise within the texture elements. In our algorithm, we
adjust the anisotropy parameterν according to the scene at hand.



(a) Depth map (b) Textured depth map of the reconstructed scene fromdifferent views

Figure 4: Reconstruction results

Minimizing the negative logarithm leads to the following energy
formulation:

E(D1,V) = 1
2

m
∑

i=2
∑

x∈I1
Vi(x)

(

di(x)TΣ−1di(x)+ log(
√

2π|Σ|)
)

+ 1
λ R(I1,D1),

(6)
wheredi(x) = I1(x)− Ii(l i(x)). Each term in the sum is weighted
by the probability of the pixel to be visible.

To minimize the energy, anexpectation maximization (EM)pro-
cedure is used. This procedure iterates between the estimation of
V (the visibility maps) and the minimization ofE(D1,V) (Equa-
tion 6), as follows.

E-step: In the (k+ 1)th iteration, the hidden variablesVi(x1), are
replaced by their conditional expectation, given the current estimate

D(k)
1 for D1.

The question is how to updateVi . Basing it on aglobal estimation
of the probability of a pixel of a certain color to be occluded, as
done in [Strecha et al. 2004], is insufficient for producing accurate
visibility maps. This is so since it focuses mostly on photomet-
ric problems such as specular reflections, where all specular pixels
have the color of the light source. Occluded pixels, however, are
usually not of the same color.

Instead, we base the visibility update on the previous pixel likeli-
hood estimation, assuming that the pixel in imagei have a similar
color to its corresponding pixel in the reference. We use the follow-
ing update step:

Vi(x)← N(di(x);0,Σ)

max
y∈I1

N(di(y);0,Σ)
. (7)

M-step: At the M-step the intent is to compute values forD1 that
minimize Equation 6, given the current estimates ofVi . To mini-
mizeE w.r.t D1, we follow a gradient descent approach. By apply-
ing the Euler-Lagrange formalism, we get:

∂E
∂D1

=
m

∑
i=2
−2Vi(I1− Ii(l i))

TΣ−1∇Ii(l i)∂ l i +
1
λ

div(T(∇I1)∇D1).

(8)
ImageI1 is excluded from the sum, becausel1(x1) is the identity
transformation. The derivative∂ l i is a 2-vector, whose expression
is derived from Equation 1.

Figure 4 illustrates the 3D reconstruction results of our running ex-
ample.

5 Results

The input images were taken using an off-the-shelf standard Canon
A70 with 3MP. As a prepossessing stage, the radial distortion and
internal calibration of the camera are extracted [Strobl et al. ]. Then,
the images are dewarped, to eliminate the camera radial distortion.

We have built an interactive utility, in which the user can select the
scale, position, and rotation of the new texture. This is done during
the final step of the algorithm, by placing the new texture on the
flattened surface (i.e., the result of the MDS step described above).
This utility provides immediate feedback on how the final result
would look.

Figures 1,5,6 illustrate our results. Note that these results cannot be
compared to previous results, since previous work assumed that the
input is a single image and the texture is constrained, while in our
case the input consists of a few images and the texture is arbitrary.

To generate the result shown in Figure 1 three images are used and a
total of 1996 correspondences are automatically extracted. For Fig-
ure 5, six images are used and a total of 3765 correspondences are
extracted. There are three pairs of close images, each is regarded as
a narrow-baseline stereo pair. The advantage of this image configu-
ration is that it is able to solve the main problem in the dense recon-
struction – not having enough sparse points. The narrow-baseline
image pair produces many correspondences for 3D points whose
normals point roughly towards the camera. In order to extract cor-
respondences of points that point in other directions, two additional
narrow-baseline image pairs are used.

A similar configuration is used in Figure 6 (top), for replacing a
bread texture using 880 correspondences. For obtaining the results
shown in Figure 6 (bottom), 3 1.5MP images are used and 1269
correspondences are extracted.

The algorithm was implemented in unoptimized Matlab and ran on
a 1.86GHz Intel Core2. Sparse matching takes 6.5 minutes us-
ing [Lowe ], which can be accelerated to under 10 seconds using
more efficient data structures [Lowe 2004; Goshen and Shimshoni
2006]. Bundle adjustment and dense reconstruction take together 3
minutes. Texture mapping takes 1.5 minutes, mostly devoted to fast
marching.

6 Conclusions

This paper presents an automatic end-to-end approach for texture
replacement, which is based on state-of-the-art techniques for shape
reconstruction from multiview images. The dense reconstruction
stage of our approach is modified to deal with any kind of textured
surfaces.



(a) Reference image (b) Left angle (c) Right angle

(d) Straight angle (e) Left angle (f) Right angle

(g) Reconstructed mesh (h) Texture replacement

Figure 5: Chubby statue result. Input images that consist of three narrow-baseline image pairs (a-f), reconstructed mesh (g), and texture
replacement results (h).

As the results show, the major advantage of this method over pre-
vious methods, is its ability to paint a new texture on an image
containing any type of texture. The drawback of the approach is
that more than a single image has to be used. The benefits of taking
several images outweigh the drawbacks of the single-image tech-
niques, which are inaccurate, and thus require user interaction, and
are constrained to special classes of textures.

In the future we wish to design a method that can handle video
streams of deforming textures, rather than utilizing a small set of
images of a static surface. We would also like to develop meth-
ods for illumination extraction for general textured images, which
would complement this work.
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