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ABSTRACT
Shape completion is an intriguing problem in geometry pro-
cessing with applications in CAD and graphics. This paper
defines a new type of 3D curves, which can be utilized for
curve completion. It can be considered as the extension to
three dimensions of the 2D Euler spiral. We prove several
properties of these curves – properties that have been shown
to be important for the appeal of curves. We illustrate their
utility in two applications. The first is “fixing” curves de-
tected by algorithms for edge detection on surfaces. The
second is shape illustration in archaeology, where the user
would like to draw curves that are missing due to the in-
completeness of the input model.

Categories and Subject Descriptors
I.3 [Computer Graphics]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object repre-
sentations

General Terms
Algorithms, Design

Keywords
Euler spirals, 3D curves

1. INTRODUCTION
Shape completion has been an important task in compu-

tational geometry with applications to CAD and computer
graphics [2, 3, 28]. While most of the work has focused on
completing or repairing polyhedra and CAD models, this
paper focuses on completing curves in three dimensions. It
presents a practical solution to the problem, which is demon-
strated by real-life data.

Given two point-tangent pairs, one way to complete them
is to use any of the variety of known splines [7, 10]. Such
curves possess many attractive properties, however, Fig-
ure 1(b) illustrates that they (in this case Hermite splines)
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(a) Our completion (b) Hermite completion

Figure 1: 3D Euler spirals (red) complete the curves
on a broken Hellenistic oil lamp – curves that would
most likely be drawn if the model were complete.
The scale of the Hermite splines is determined
manually (magenta), since the automatically-scaled
splines (green) are inferior due to the large ratio
between the length of the curve and the size of the
model. Note the perfect circular arcs of our curves.

might not always produce the preferable results. This is also
supported by psychological studies that indicate that splines
may be unsatisfactory for curve completion [30].

This paper defines a new type of 3D curves that can be
used for this purpose (Figure 1(a)). We show that our curves
are not only appealing, but also qualitatively outperform
some splines. In a nutshell, our curves can be considered as
an extension to 3D of the planar Euler spirals. An impor-
tant consideration in aesthetic curve design is the curve’s
fairness [25], which has been shown to be closely related to
how little and how smoothly a curve bends. An Euler spiral,
also referred to as a clothoid or a Cornu spiral, is an exam-
ple of such an aesthetic curve. Its curvature varies linearly
with arc-length [16, 20, 21]. Our proposed curve has both
its curvature and torsion change linearly with length.

The contribution of this paper is threefold. First, the pa-
per defines the 3D Euler spiral (Section 4) and proves that
it satisfies some desirable properties – properties that have
been claimed to produce eye-pleasing curves [17] (Section 5).



Figure 2: Archaeological drawing of a broken lamp
found in the archaeological site of Dor. This is a
manual drawing from [31].

In particular, we prove that our curves are invariant to simi-
larity transformations and that they are symmetric, extensi-
ble (i.e., refinable), smooth, and round (i.e., if the boundary
conditions lie on a circle, then the curve is a circle, as illus-
trated in Figure 1(a)). Second, we present a parameter-less
algorithm for computing these curves (Section 6). Last but
not least, we demonstrate the use of these curves in two
curve completion applications (Section 7).

In the first application, our spirals complete curves miss-
ing due to “weak” surfaces patches. The second application
is curve completion of broken shapes, such as archaeological
artifacts. Currently, this task is performed by drawing the
missing curves manually in 2D (Figure 2). This is an expen-
sive and time-consuming process, which is prone to biases.
Our curves can replace this manual task while performing
it in 3D, directly on the scanned artifact. With the growing
popularity of digital documentation in archaeology, the abil-
ity to draw curves in 3D is becoming ever more important.

2. RELATED WORK
Curve completion: Given two point-tangent pairs, the
most common way to perform completion is to use splines,
such as a cubic Hermite spline [7, 10]. Splines are fast and
easy to compute, but they are not always the curves pre-
ferred by the human visual system.

Ullman [32] suggests properties that 2D curves should sat-
isfy: invariance to rigid transformations, smoothness, min-
imization of the total curvature, and extensibility. These
properties led to a Biarc solution – a curve consisting of two
circular arcs. Biarcs are smooth and invariant to rigid trans-
formations, but they do not guarantee that the total curva-
ture is minimized and they are not extensible [5]. Biarcs are
generalized to 3D in [6, 29].

Knuth [17] proposes different properties of eye-pleasing 2D
curves: invariance to similarity transformations and cyclic
permutations (for closed curves), extensibility, smoothness,
roundness, and being locally constructed. Knuth also shows
that the latter four properties cannot take place together.
These properties are the base of the METAFONT system of

LATEX. [5, 17, 27] propose to use 2D cubic splines, giving
up extensibility and roundness.

Another way to construct curves is Elastica [14, 19, 24,
26], which refers to the curves that minimize the total square

curvature of the curve: E [κ(s)] =
R L

0
κ2(s)ds, where s ∈

[0, L] is the arc-length parameter and κ(s) is the curvature.
Horn [14] argues that Elastica is the “smoothest” 2D curve
to complete the gap between two point-tangent pairs. It is
extensible, but neither scale-variant nor round. Already in
1906 [4] discussed Elastica for 3D curves. A Curve that ap-
proximates the solution to Elastica in 3D is explicitly defined
in [24]. In 2D this curve is the 2D Euler spiral (discussed
next), which has a linear curvature. In 3D, the curvature of
this curve is expressed as a hyperbola.

2D Euler spirals: Euler spirals are curves whose cur-
vature evolves linearly along the curve. They were dis-
covered independently by three researchers [20]. In 1694
Bernoulli wrote the equations for the Euler spiral for the
first time, but did not draw the spirals or compute them nu-
merically. In 1744 Euler rediscovered the curve’s equations,
described their properties, and derived a series expansion to
the curve’s integrals. Later, in 1781, he also computed the
spiral’s end points. The curves were re-discovered in 1890 for
the third time by Talbot, who used them to design railway
tracks. Euler spirals are also known as “Cornu spirals” (after
Cornu who plotted them) and “Clothoid” (after Clotho, the
youngest of the three Fates of Greek mythology). They are
defined as the curves that penalize the curvature variation,
hence minimizing the following (κs is the derivative of κ):

E [κ(s)] =

Z L

0

κ2
s(s)ds.

In [30] psychological experiments show that in 2D an inter-
polation between two point-tangent pairs using Euler spiral
outperforms parabolic curves and circular arcs. This is at-
tributed to its monotonous change in curvature, which has
a good fit to the way the human eye interpolates curves.

2D Euler spirals were used in computer aided design. In [14,
23] they are used as an approximation to the solution of Elas-
tica. In [22] the conditions under which the spirals can form
a transition curve are investigated. Two spirals are used
in [33] to form a parabola-like segment between consecutive
points of a control polygon. In [21] a formulation for fitting
spiral primitives to a dense polyline data is developed.

In [16] an algorithm is described for 2D curve completion
using an Euler spiral. The algorithm is an iterative gradient-
descent, initialized by a 2D Biarc. Since there are infinite
possible Biarcs, the Biarc that minimizes the total curvature
variation is chosen. Some properties that characterize eye-
pleasing curves are also proved. In [34] a faster and more
accurate algorithm is proposed. It is proved that given two
point-tangent pairs, there always exists an Euler spiral that
interpolates them.

3D Euler spirals: An attempt to generalize Euler spirals
to 3D, maintaining the linearity of the curvature, is pre-
sented in [13]. A given polygon is refined, such that the
polygon satisfies both arc-length parameterization and lin-
ear distribution of the discrete curvature binormal vector.
The algorithm ignores the torsion, despite being an impor-
tant characteristic of 3D curves.

We propose a novel algorithm, which produces continu-



ous, rather than discrete, curves and takes both curvature
and torsion into account. The algorithm, which is inspired
by [16], is general and does not require an initial polygon.
We prove that our curve satisfies properties that character-
ize fair and appealing curves and reduces to the 2D Euler
spiral in the planar case.

3. BACKGROUND
A spatial curve C(s) is determined by its curvature κ(s)

and its torsion τ(s). Intuitively, a curve can be obtained
from a straight line by bending (curvature) and twisting
(torsion).

This section reviews the Frenet-Serret Equations and the
Euler-Lagrange Equations, which will be necessary in the
derivation of our 3D Euler spirals. In the following, ~T (s) =
dC
ds

(s) is the unit tangent vector, ~N(s) is the unit normal

vector, and ~B(s) = ~T (s)× ~N(s) is the binormal vector. We
assume an arc-length parameterization.

Frenet-Serret Equations: Given a curvature κ(s) > 0
and a torsion τ(s), according to the fundamental theorem
of the local theory of curves [9], there exists a unique (up to
rigid motion) spatial curve, parameterized by the arc-length
s, defined by its Frenet-Serret equations, as follows:

d~T (s)

ds
= κ(s) ~N(s),

d ~N(s)

ds
= −κ(s)~T (s) + τ(s) ~B(s), (1)

d ~B(s)

ds
= −τ(s) ~N(s).

The curve C is defined by:

C(s) =

Z s

0

~T (v) dv + x0

=

Z s

0

"Z t

0

d~T (u)

du
du+ ~T0

#
dt+ x0. (2)

Euler-Lagrange Equation: The Euler-Lagrange Equa-
tion is fundamental in calculus of variations [11]. It is a
differential equation, useful for solving optimization prob-
lems in which, given some functional, one seeks the function
that optimizes it. It is satisfied by a function q of a real
argument s, which is a stationary point of the functional

S(q) =

Z s2

s1

L(s, q(s), q′(s))ds, (3)

where q = (q1, . . . , qn) is the function to be found, q′ =

(q′1, . . . , q
′
n), q′i = dqi

ds
, i = (1, . . . , n), and the positions

q (s1) and q (s2) are defined.
The function q that optimizes Equation (3) satisfies the

Euler-Lagrange Equations:

d

dt

„
∂L
∂q′i

«
− ∂L
∂qi

= 0 (i = 1, . . . , n). (4)

4. 3D EULER SPIRALS
This section defines the 3D Euler spiral – the curve having

both its curvature and torsion evolve linearly along the curve
(Figure 3). Furthermore, we require that our curve conforms
with the definition of a 2D Euler spiral. We start with some

Figure 3: A 3D Euler spiral

intuition, then define the 3D Euler spiral, and finally prove
its existence and uniqueness up to a rigid transformation.

We seek a functional that will penalize the change in cur-
vature and torsion along the curve. Thus, the curve should
minimize the sum of the square variation of the curvature
and the torsion. Formally, we require that the following
integral be minimized:

S((κ, τ)) =

Z L

0

[κ2
s(s) + τ2

s (s)] ds, (5)

where L is the curve’s length, κs = ∂κ
∂s

, and τs = ∂τ
∂s

. Note
that in the planar case τ = 0, therefore our definition indeed
conforms with the definition of the 2D Euler spiral.

Minimizing Equation (5) can be performed using the Euler-
Lagrange Equation. In our case, Equation (5) corresponds
to Equation (3) as follows:

q1(s) 7→ κ(s),

q′1(s) 7→ κs(s),

q2(s) 7→ τ(s),

q′2(s) 7→ τs(s),

L
`
s, q(s), q′(s)

´
7→
ˆ
κ2
s(s) + τ2

s (s)
˜
.

Hence, the corresponding Euler-Lagrange Equations are
(by Equation (4)):

κ :
d

ds

„
∂(κ2

s + τ2
s )

∂κs

«
= 0 ⇒ d

ds
(2κs) = 0 ⇒ κss = 0,

τ :
d

ds

„
∂(κ2

s + τ2
s )

∂τs

«
= 0 ⇒ d

ds
(2τs) = 0 ⇒ τss = 0.

By integrating κss and τss twice, these equations lead to
a curve whose curvature and torsion evolve linearly. Thus,
for some constants κ0, τ0, γ, δ ∈ R, and for 0≤s≤L :

κ(s) = κ0 + γs, τ(s) = τ0 + δs. (6)

In summary, we have shown that the curve that minimizes
our functional (Equation (5)) is a curve whose curvature
and torsion change linearly along the curve. Note that since
our curve has a linear relation between the curvature and
torsion, it is a special case of Bertrand curves [12]. This,
however, neither helps in deriving the properties proved in
Section 5 (which do not hold for general Bertrand curves)
nor provides a method for constructing them (Section 6).

Next, we define the curve that satisfies Equation (6). This
definition is in the form of a set of differential equations. We
assume that we are given the following initial conditions: a
point x0 on the curve, a tangent ~T0 at x0, and a normal ~N0.



Definition 4.1. 3D Euler spiral: The 3D curve that
satisfies Equation (6) and the initial conditions is the curve
C, for which the following conditions hold:

1.
dC(s)
ds

= ~T (s),

2.
d~T (s)

ds
= (κ0 + γs) ~N(s),

3.
d ~N(s)

ds
= −(κ0 + γs)~T (s) + (τ0 + δs) ~B(s),

4.
d ~B(s)

ds
= −(τ0 + δs) ~N(s),

5. C(0) = x0, ~T (0) = ~T0, ~N(0) = ~N0, ~B(0) = ~T0 × ~N0.

To understand this definition, observe that 1 is the defi-
nition of the tangent, 2–4 are the Frenet-Serret Equations
with our curvature and torsion, and 5 represents the initial
conditions.

Finally, the following proposition proves the existence of
this curve and its uniqueness up to a rigid transformation.

Proposition 4.1. Given constants κ0, τ0, γ, δ,∈ R, there
exists a 3D Euler spiral having a linear curvature κ(s) =
κ0 + γs and a linear torsion τ(s) = τ0 + δs. Moreover, this
curve is unique up to a rigid transformation.

Proof. By definition of the curvature of curves in R3,

κ(s) =
˛̨̨
d2 ~C
ds2

(s)
˛̨̨
≥ 0. According to the fundamental theo-

rem of local theory of curves, for every differential function
with κ(s) > 0 and τ(s), there exists a regular parameter-
ized curve, where κ(s) is the curvature, τ(s) is the torsion,
and s is the arc-length parameterization [9]. Moreover, any
other curve satisfying the same conditions, differs by a rigid
motion.

If κ(s) = 0 ∀s, the curve is a straight line, which is unique
up to a rigid transformation. It is also possible that κ(s) = 0
for a single point. In this case, the tangent and hence the
curve are well-defined at this point, which is the inflection
point at which the normal switches directions. (Note that
by our definition κ(s) may be negative. In this case, we
consider |κ(s)| and regard the switch of the sign as a change
of the normal direction.)

5. PROPERTIES OF 3D EULER SPIRALS
The aesthetics of curves has been studied in a variety of

papers [16, 17, 32]. In addition to having its curvature and
torsion change linearly – a property acknowledged to char-
acterize eye-pleasing curves – this section proves that our
3D Euler curves also hold the following properties.

1. Invariance to similarity transformations (translation,
rotation, and scaling).

2. Symmetry: The curve leaving the point x0 with tan-
gent ~T0 and reaching the point xf with tangent ~Tf ,
coincides with the curve leaving the point xf with tan-

gent −~Tf and reaching the point x0 with tangent −~T0.

3. Extensibility: For every point xm ∈ C between points
x0 and xf , the curves C1 between x0 and xm and C2
between xm and xf coincide with C, each in its own
section.

4. Smoothness: The tangent is defined at every point,
i.e., ∂C

∂s
is finite. (In fact, our curves are C∞-smooth.)

5. Roundness: If C interpolates two point-tangent pairs
lying on a circle, then C is a circle. The importance of
this property is demonstrated in Figures 1,6–7, where
our spirals are both appealing and correct, since the
boundary conditions indicate completion by a circular
arc.

Proposition 5.1. A 3D Euler spiral is invariant to sim-
ilarity transformations.

Proof. Invariance to rotation and translation results from
Proposition 4.1. Below we prove invariance to scale. We are
given an Euler spiral C of length L, which interpolates x0 =
C(0) and xf = C(L), and whose parameters are κ0, τ0, γ, δ.
We should show that the spiral Cλ, which interpolates λx0

and λxf for λ > 0, is equal to C multiplied by λ, i.e.,
∀s, 0 ≤ s ≤ L:

Cλ(s) = λC(s). (7)

Hence, we need to find the constants fκ0, eτ0, eγ, eδ, eL that
define an Euler spiral Cλ that passes through λx0 and λxf
(i.e., Cλ(0) = λx0 and Cλ(λL) = λxf ) with tangents ~T0 and
~Tf respectively. Moreover, for every point on the curve, it
should coincide with λC.

We examine the 3D Euler spiral that satisfies Definition 4.1,

having parameters fκ0 = κ0
λ
, eτ0 = τ0

λ
, eγ = γ

λ2 , eδ = δ
λ2 , eL =

λL. According to 2–4 in Definition 4.1, we get:

d~T (u)

du
=

“κ0

λ
+

γ

λ2
u
”
~N(u),

d ~N(u)

du
= −

“κ0

λ
+

γ

λ2
u
”
~T (u) +

„
τ0
λ

+
δ

λ
u

«
~B(u), (8)

d ~B(u)

du
= −

„
τ0
λ

+
δ

λ2
u

«
~N(u).

By defining a new parameter v = u/λ (⇒ dv = du/λ), we

get that d~T
du

= d~T
dv

dv
du

= 1
λ
d~T
dv

. Similarly, d ~N
du

= 1
λ
d ~N
dv

and
d~B
du

= 1
λ
d~B
dv
. Equation (8) now becomes:

d~T (v)

dv
= (κ0 + γv) ~N(v),

d ~N(v)

dv
= −(κ0 + γv)~T (v) + (τ0 + δv) ~B(v),

d ~B(v)

dv
= −(τ0 + δv) ~N(v).

Note that this could be done since all the properties of
the Frenet-Serret Equations hold for every parameterization,
not necessarily the arc-length parameterization [9] .

We can now proceed to calculating the 3D Euler spiral
and its tangent:

~Tλ(s) =

Z λs

0

d~T

du
du+ ~T0,

Cλ(s) =

Z λs

0

"Z t

0

d~T

du
du+ ~T0

#
dt+ λx0.

By defining new parameters v = u/λ(⇒ dv = du/λ) and
t̂ = t/λ(⇒ dt̂ = dt/λ), we get:

~Tλ(s)
v=u/λ

=

Z s

0

1

λ

d~T

dv
λdv + ~T0 = ~T (s),



Cλ(s)
v=u/λ

=

Z λs

0

"Z t/λ

0

1

λ

d~T

dv
λdv + ~T0

#
dt+ λx0

t̂=t/λ
=

Z s

0

"Z t̂

0

d~T

dv
dv + ~T0

#
λdt̂+ λx0

= λC(s).

Since this holds for every 0≤s≤L, Equation (7) holds. We
also specifically get the boundary conditions Cλ(0) = λC(0) =

λx0, ~Tλ(0) = ~T (0) = ~T0 and Cλ(λL) = λC(L) = λxf , ~Tλ(λL) =
~T (L) = ~Tf .

Proposition 5.2. A 3D Euler spiral is symmetric. (Proof
in Appendix A)

Proposition 5.3. A 3D Euler spiral is extensible. (Proof
in Appendix B)

Proposition 5.4. A 3D Euler spiral is smooth.

Proof. According to Proposition 4.1, there exists a solu-
tion for the Frenet-Serret equations. Therefore, ∂C

∂s
= ~T (s)

is defined for every 0≤s≤L.

Proposition 5.5. A 3D Euler spiral is round.

Proof. For given two point-tangent pairs lying on a cir-
cle, the circle defined by κ0 6= 0, τ0 = 0, γ = 0, δ = 0 is a
solution for the Frenet-Serret Equation.

6. CURVE CONSTRUCTION ALGORITHM
In Section 4 we have shown that given curve parameters

κ0, τ0, γ, δ, L ∈ R and initial conditions x0, ~T0 and ~N0, there
exists a 3D Euler spiral determined by these parameters and
satisfying the initial conditions.

In practice, however, we are given two points and their

associated tangents
“
x0, ~T0

”
and

“
xf , ~Tf

”
. Our goal is to

find the parameters κ0, τ0, γ, δ, L ∈ R that define the 3D
Euler spiral that starts at x0 and ~T0 and minimizes both
the difference between the curve’s position at s = L and xf ,
and the difference between the curve’s tangent at s = L and
~Tf . In other words, we attempt to minimize the following
error:

ε = (εx + εT ) , (9)

εx =
ˆ
(x(L)− xf )2 + (y(L)− yf )2 + (z(L)− zf )2˜ ,

εT =
ˆ
(Tx(L)− Tf,x)2 + (Ty(L)− Tf,y)2 + (Tz(L)− Tf,z)2˜ .

We experimented with other weights of εx and εT as well,
but they were not proven beneficial.

We propose the Gradient-descent approach to find the pa-
rameters of the 3D Euler spiral that minimizes the error in
Eq. (9). This approach, which guarantees convergence to a
local minimum, is described below and explained thereafter.

Parameter initialization (Step 1): The 3D Euler spiral
is initialized using a planar Euler spiral [34]. The question
is which plane to choose. We define the plane for which
three out of the four boundary conditions hold: x0, xf , and
~T0. Therefore, the plane (whose normal is denoted by ~N0)

is defined by two vectors: ~T0 and the vector between x0 and
xf . Note that the resulting planar Euler spiral interpolates

Algorithm 1 Gradient-descent 3D Euler spiral construction

1: Parameter initialization < κ0, τ0, γ, δ, L >
2: While the current error ε and the current step size ∆ are

large:
3: Calculate the gradient direction
4: Define the step size ∆
5: Update the curve parameters < κ0, τ0, γ, δ, L >

~T0 at x0 and the projection of ~Tf onto the plane at xf . The
parameters of this 2D spiral κ0, γ, L are used to initialize
our curves. Since it lies on a plane, the torsion’s parameters
are initialized to zero (τ0 = 0, δ = 0).

Our experiments indicate that this initialization gives a
good approximation to κ0 and γ, which hardly change af-
terwards. We also tested other initialization methods (e.g.,
Hermite spline, 3D Biarc, and 2D Euler spiral on the binor-
mal plane). We found that our initialization is the fastest
and the most accurate.

Iterative step (Steps 3-5): First, the gradient direction,
which is the direction of the steepest descent, is calculated.
Since the curve is described as a set of differential equations
that do not have an explicit solution, we cannot explicitly
find the best gradient direction. Instead, at each iteration,
we first find the parameters among κ0, τ0, γ, δ, L, that when
modified by ±∆, yield a decrease of the error ε. We then
compare the Euler spirals that result by modifying only one
of these parameters to the spiral that results by modifying
them all, and choose the spiral that obtains the minimum
error ε.

Each of these candidate curves is computed by numerically
solving the Frenet-Serret Equations (Definition 4.1). This
is done by sampling the arc-length parameter s uniformly
and solving the equations at these sampled points, using
the Euler method [1]. This method only needs the solution
at the immediately preceding point to compute the function
at the next point. The first point is the input x0, ~T0 and
the normal to the initial plane ~N0 (from Step 1).

Next, the step size is modified. If the error ε of the chosen
direction is smaller than the error obtained in the previous
iteration, ∆ is unchanged. Otherwise, it is decreased to 3∆

4
.

Finally, the parameters are updated. If ∆ is unchanged,
the parameters that determined the gradient direction are
updated according to the chosen direction.

Termination (Step 2): In our experiments, ∆ is initialized
to 0.1. The algorithm runs until ∆ <1e-5 or the error ε <1e-
6. Smaller values yield negligible changes to the curves.

Optional bound on L (Step 5): Since our curve is a
spiral, the obtained solution can have multiple revolutions.
For the type of input we expect, it is often desirable to limit
the solution to have at most one revolution. This is done by
bounding the parameter L, as follows. We first approximate
the maximal possible length as the length of the planar Euler
spiral with parameters κ0, γ. Since the tangent angle of such
a curve is θ(s) = 1

2
γs2 + κ0s+ θ0 [16], we require that

θ(L)− θ0 =
1

2
γL2 + κ0L ≤ 2π.

Implementation issues: Calculating the numerical solu-
tion to the Frenet-Serret Equations at each iteration of the
Gradient-descent algorithm might be expensive. In addition,



Figure 4: Fixing the curves detected by [18]. Our
curves (red) manage to capture the “S” shape, in
contrast to the automatically-scaled Hermite splines
(green).

Figure 5: Completing the curves produced by [8] on
the Buddha – 3D Euler spirals (red) and Hermite
splines (green). Note how the spirals nicely capture
the “S” shapes.

the number of samples along the curve should be carefully
determined. Using too many samples will result in a long
computation time, while too few samples will cause accu-
racy problems and result in a large error ε. To accelerate
the computation while using a fixed and rather small num-
ber of samples, we scale the region of interest to the box
(−1,−1,−1),(1, 1, 1), prior to applying Algorithm 1, and
then scale it back. Recall that Proposition 5.1 allows us
to scale the problem back and forth.

In practice, the problem is first translated by −x0. Then,
it is scaled by D = max(Mx = |xf−x0|,My = |yf−y0|,Mz =
|zf − z0|), while leaving the tangents at the endpoints unal-
tered. Then, the curve’s parameters are found by Algorithm
1 using 100 samples along the curve for performing the nu-
merical calculations. Once a solution is obtained, it is scaled
back to the original range.

7. RESULTS AND APPLICATIONS
This section demonstrates the use of our spirals in two

curve completion applications. In the first, the entire model

(a) Our completion (b) Hermite completion

Figure 6: Completing the curves produced by [15]
on the Column model: Our Euler-spiral completion
(red) is circular and resembles the real column.

Figure 7: Completing the curves produced by [8] on
the Rocker-arm model. The roundness property is
visible.

is given, but the algorithm for edge detection on surfaces
generates incomplete curves. This is a common problem
with most edge-detection algorithms, which may be vital for
the shape analysis algorithms that use these curves. In the
second application, the given models are broken – a situation
prevalent in archaeology. The user is interested in drawing
the curves that would be drawn should the entire model be
given. In both cases, the user needs only mark the endpoints
of the curves and the system creates an Euler spiral between
the given endpoints. No parameter tuning is necessary.

Curve completion on polyhedral surfaces: Figures 4–
7 demonstrate the use of our spirals for completing the
curves detected by various edge detection algorithms: sug-
gestive contours [8], apparent ridges [15], valleys and ridges
[35], and demarcating curves [18]. In this application the
user needs only choose the endpoints of existing curves that
should be connected, since the system can automatically
compute the tangents at these endpoints.

Our curves are also compared to the results obtained us-
ing Hermite splines. Since Hermite splines depend on the
magnitude of the tangent, we used automatic scaling. The



(a) Our completion (b) Hermite completion

Figure 8: Completing a (manually) broken lamp.
The 3D Euler spirals (red) are more appealing than
the Hermite splines (green) due to the nice cir-
cles produced. This is guaranteed by the roundness
property of our curves.

(a) Unbroken model (b) Our completion (c) Hermite

Figure 9: The completion of a (manually) broken
pot. Our curves better resemble the original unbro-
ken model.

tangents provided for the computation of the Hermite splines
are multiplied by D (described in Section 6), so as to relate
their length to the distance between the endpoints.

It can be seen that our curves manage to satisfactorily
complete the curves, regardless of how they were created.
The two features that are most visible in our spirals, are the
ability to create perfect circular arcs (Figures 6– 7) and the
“natural” S-shapes (Figure 5).

In this application, the generated curves should lie on the
surface. Since our curves are not constrained to lie on any
surface, the produced 3D Euler curves are projected to the
surface. This is done by projecting each point on the curve
to its closest point onto the mesh. Though this method is
straightforward, it yields good results.

Shape illustration in archaeology: Archaeology sets
many challenges to geometry processing. Many of the ar-
tifacts found by the archaeologists are scanned and need to
be processed and analyzed. These artifacts are often broken
and eroded and thus are difficult to handle. One specific
problem is the drawing of the artifact, which is tradition-
ally performed manually by archaeological artists in 2D, as
shown in Figure 2. This is an expensive and time-consuming

procedure, which is prone to biases and inaccuracies. Our
curves propose a 3D alternative, as illustrated in Figure 8.

Figures 9–11 show several additional models, which show
that our completed curves are not only more appealing, but
also better resemble the shape of the original unbroken mod-
els. For example, the curl completion in Figure 10 demon-
strates the S-shape property of our spirals, while the ear
completion illustrates a more “circular” shape. Figure 11
demonstrates that since our curves have more“volume”, they
avoid intersecting the mesh, which might occur when using
the Hermite completion.

Running times: The algorithm was implemented in Mat-
lab and C and ran on a 2Ghz Intel Core 2 Duo-processor
laptop with 2Gb of memory. The running time, which de-
pends on the complexity of the required interpolation curve,
is 0.01–0.5 second for the curves demonstrated in this pa-
per. The further the curve is from being planar, the longer
the time required. This is probably due to initializing the
torsion to zero. The size of the model has little affect on the
time; it is relevant only when projection is performed. The
projection itself is straightforward and quick to compute.

8. CONCLUSION
This paper presented a novel definition of curves, which

extends the 2D Euler spiral to 3D. We proved that for given
parameters, a unique curve always exists. Moreover, we
showed that our curves satisfy several desired aesthetic prop-
erties, including invariance to similarity transformation, sym-
metry, extensibility, smoothness, and roundness. Given bound-
ary conditions – endpoints and tangents – this paper pro-
posed a novel technique for generating these curves, based
on the gradient-descent approach.

The utility of our curves is demonstrated for edge comple-
tion on polyhedral surfaces and for artifact illustration in ar-
chaeology – a task that is traditionally performed manually
in 2D. In archaeology, when automatic 3D curve drawing
replaces the traditional manual 2D drawing, automatic or
interactive curve completion, would be the only alternative.
We believe that the proposed curves may be found a fea-
sible alternative for additional applications involving shape
design, artistic design, and shape analysis.

In the future, we wish to prove existence of the curves
given point–tangent boundary conditions. In 2D, an algo-
rithm was first established [16] before existence was proved
several years later [34]. We hope that the same will happen
in 3D. In practice a solution exists for all the inputs we tried.
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APPENDIX
A. SYMMETRY (PROPOSITION 5.3)

Proof: We are given a 3D Euler spiral C that interpolates
the point-tangent pairs (x0, ~T0) and (xf , ~Tf ) and has param-
eters κ0, τ0, γ, δ, L. We need to show that the 3D Euler spiral
Csym that interpolates the point-tangent pairs (xf ,−~Tf ) and

(x0,−~T0) coincides with C.
Thus, we need to find the constants fκ0, eτ0, eγ, eδ, eL that de-

fine the Euler spiral Csym and show that at every point the
curves coincide and their tangents are opposite:

~TCsym(L− s) = −~TC(s) ∀s, 0≤s≤L,

Csym(L− s) = C(s) ∀s, 0≤s≤L.

We examine the 3D Euler spiral Csym that satisfies Defi-
nition 4.1 and has parameters fκ0 = κ0 + γL, eτ0 = τ0 + δs,eγ = −γ, eδ = −δ, eL = L.

According to 2–4 in Definition 4.1, we get:

d~TCsym(u)

du
= (κ0 + γL− γu) ~NCsym(u),

d ~NCsym(u)

du
= − (κ0 + γL− γu) ~TCsym(u) (10)

+ (τ0 + δL− δu) ~BCsym(u),

d ~BCsym(u)

du
= − (τ0 + δL− δu) ~NCsym(u).

By defining a new parameter v = L − u (⇒ dv = −du),

we get that
d~TCsym

du
=

d~TCsym

dv
dv
du

= − d
~TCsym

dv
= d~TC

dv
. Sim-

ilarly,
d ~NCsym

du
= − d

~NCsym

dv
and

d~BCsym

du
= − d

~BCsym

dv
. This

could be done since all the properties of the Frenet-Serret
Equations hold for every parameterization, not necessarily
the arc-length parameterization [9] . By tangent definition
we get:

~TCsym(L− s) =

Z L−s

0

d~TCsym

du
du− ~Tf

v=L−u
=

Z s

L

d~TCsym

dv
dv − ~Tf = −

Z L

s

d~TCsym

dv
dv − ~Tf

=

Z L

s

d~TC
dv

dv − ~Tf =

Z L

s

d~TC
dv

dv −

 Z L

0

d~TC
dv

dv + ~T0

!
= −

Z s

0

d~TC
dv

dv − ~T0 = −~TC(s).

We now show that the curve Csym coincides with the curve C:

Csym(L− s) = xf +

Z L−s

0

"Z t

0

d~TCsym

du
du− ~Tf

#
dt

v=L−u
= xf +

Z L−s

0

"Z L−t

L

d~TCsym

dv
dv − ~Tf

#
dt

= xf +

Z L−s

0

"Z L

L−t

d~TC
dv

dv − ~Tf

#
dt

t̂=L−t
= xf −

Z s

L

"Z L

t̂

d~TC
dv

dv − ~Tf

#
dt̂

= xf −
Z s

L

"Z L

t̂

d~TC
dv

dv −
Z L

0

d~TC
dv

dv − ~T0

#
dt̂

= x0 +

Z s

0

"Z t̂

0

d~TC
dv

dv + ~T0

#
dt̂

Eq. (2)
= C(s). 2

B. EXTENSIBILITY (PROPOSITION 5.4)

Proof: Given a 3D Euler spiral C interpolating the point-
tangent pairs (x0, ~T0), (xf , ~Tf ), we will show that for every

(xm, ~Tm) on C, the curves C1 between x0 and xm and C2
between xm and xf coincide with C, each in its own section.

Assume that C has parameters κ0, τ0, γ, δ, L. Let L1 be
the length of the sub-curve of C from x0 to xm. By the
tangent definition and by Equation (2):

~Tm =

Z L1

0

d~T

du
du+ ~T0, (11)

xm =

Z L1

0

"Z t

0

d~T

du
du+ ~T0

#
dt+ x0. (12)



Below we first show that C1 with the parameters κ̂0 = κ0, τ̂0 =
τ0, γ̂ = γ, δ̂ = δ, L̂ = L1, coincides with C for 0≤s≤L1. Then
we show that C2 with the parameters fκ0 = κ0 + γL1, eτ0 =

τ0 + δL1, eγ = γ, eδ = δ, eL = L − L1, coincides with C for
L1≤s≤L. The latter is done in two steps: First we use
Equation (11) to prove that the tangents are equal and then
we use both Equations (11) and (12) to prove that the co-
ordinates are the same.

The proof that C1 coincides with C for 0≤s≤L1 is trivial
and derived from Proposition 4.1. Since both curves have
the same parameters, they must be the same curve, by the
uniqueness of the curve.

Let us denote the tangent of the curve C at C(s) by ~TC(s)

and the tangent of the curve C2 at C2(s) by ~TC2(s). In order
to show that C2 coincides with C, we need to show that a 3D
Euler spiral C2 that starts at (xm, ~Tm) and has parametersfκ0, eτ0, eγ, eδ, eL, reaches C(s) with tangent ~TC(s), ∀s, L1≤s≤L.

We first show that ∀s, L1 ≤ s ≤ L, the tangent at C2(s−
L1) is ~TC(s). According to Definition 4.1, 2–4, we get:

d~TC2(u)

du
= (κ0 + γL1 + γu) ~NC2(u)

d ~NC2(u)

du
= − (κ0 + γL1 + γu) ~TC2(u) + (τ0 + δL1 + δu) ~BC2(u)

d ~BC2(u)

du
= − (τ0 + δL1 + δu) ~NC2(u),

and by the tangent definition:

~TC2(s− L1) =

Z s−L1

0

d~TC2
du

du+ ~Tm.

In a similar manner to the proof of Proposition 5.3, by defin-
ing a new integration parameter v = u+L1 and substituting
Equation (11), we get:

~TC2(s− L1) =

Z s

L1

d~TC
dv

dv + ~Tm

=

Z s

L1

d~TC
dv

dv +

Z L1

0

d~TC
dv

dv + ~T0 =

Z s

0

d~TC
dv

dv + ~T0 = ~TC(s).

Next, we show that ∀s, L1 ≤ s ≤ L, C2(s−L1) = C(s). By
Equation (2), we can define the endpoint of C2 as follows:

C2(s− L1) = xm +

Z s−L1

0

"Z t

0

d~TC2
du

du+ ~Tm

#
dt

v=u+L1= xm +

Z s−L1

0

"Z t+L1

L1

d~TC
dv

dv + ~Tm

#
dt

t̂=t+L1= xm +

Z s

L1

"Z t̂

L1

d~TC
dv

dv + ~Tm

#
dt̂.

(13)

Substituting Equation (12) into Equation (13) and then sub-
stituting Equation (11) will give us:

C2(s− L1) =

= x0 +

Z L1

0

"Z t̂

0

d~TC
dv

dv + ~T0

#
dt̂+

Z s

L1

"Z t̂

L1

d~TC
dv

dv + ~Tm

#
dt̂

= x0 +

Z L1

0

"Z t̂

0

d~TC
dv

dv + ~T0

#
dt̂+

Z s

L1

"Z t̂

0

d~TC
dv

dv + ~T0

#
dt̂

= x0 +

Z s

0

"Z t̂

0

d~TC
dv

dv + ~T0

#
dt̂ = C(s),

where the last equality holds by Equation (2). 2


