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Abstract

Partial matching is a fundamental problem in shape analysis, a field that is recently gaining an increasing
importance in computer graphics. This paper proposes a novel approach to performing partial matching of
surfaces. Given two surfaces MA and MB, our goal is to find the best match to MA within MB. The key
idea of our approach is to integrate feature-point similarity and segment similarity. Specifically, we introduce
a probabilistic framework in which the segmentation and the correspondences of neighboring feature points
allow us to enhance or moderate our certainty of a feature-point similarity. The utility of our algorithm is
demonstrated in the domain of archaeology, where digital archiving is becoming ever more widespread. In
this domain, automatic matching can serve as a worthy alternative to the expensive and time-consuming
manual procedure that is used today.
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1. Introduction

Finding correspondences between objects is a
fundamental problem in computer vision, computer
graphics, and geometry processing, with applica-
tions in a variety of areas, such as medicine, biol-
ogy and archaeology [1, 2]. This paper focuses on
matching surfaces, which are represented as polygo-
nal meshes. Previous work mainly concentrated on
determining the similarity of whole surfaces. There
exists a large amount of work related to this topic;
see [1, 3, 4] for comprehensive surveys. In cer-
tain applications, however, this does not suffice – we
wish to find only similar sub-surfaces. The added
difficulty stems from the fact that helpful global
techniques, such as scaling, alignment, or symme-
try cannot be utilized.

A reasonable avenue to address partial matching
is to examine local feature points, e.g., [5, 6, 7,
8]. In contrast to global descriptors, which attempt
to represent the overall shape of the surface, local
descriptors are defined only for salient points of the
surface. However, there are often many points on
the surface with similar local descriptors. Which of
them should be selected?

The term partial matching has been used to
describe three different variants: part-in-whole
matching, part-to-part matching, and partial

matching. Part-in-whole matching attempts to
match whole objects, but with special emphasis on
a selected part, thus taking into account the context
within which the part is defined [9, 10]. Part-to-part
matching attempts to match subregions of two in-
put surfaces, where the parts to be matched are not
known beforehand [11, 12, 13, 14, 15, 16, 17]. This
is important for applications such as alignment and
registration of partial views of 3D objects acquired
by a 3D scanner, as well as for self-similarity and
other shape analysis tasks [18]. The third category
of partial matching is the problem addressed in this
paper. Given a specific part of an unknown surface,
our goal is to detect similar parts on other surfaces,
regardless of the global surface this part belongs
to. Since the surface from which the query is ex-
tracted is unknown, neither global information nor
the scale and the orientation of this part relative to
the whole object, can be utilized.

We propose an algorithm for detecting partial
matching of surfaces. In [19], an interesting ap-
proach is presented, in which the objects in the
database are processed and decomposed into seg-
ments. We avoid such pre-processing and maintain
only the whole objects. Our key observation is that
though isolated feature points often do not suffice,
their aggregation provides adequate information re-
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(a) The query The detected matches (b) The query The detected matches

Figure 1: (a): Matching a dancer from a broken Hellenistic (first century BCE) amphora (top left) to dancers on a vase (right).
(b): Detecting cupids on Hellenistic oil lamps

garding similarity. We introduce a probabilistic
framework in which segmentation and neighboring
feature points allow us to enhance or moderate the
certainty of feature similarity. We show that this
scheme manages to detect partial similarity auto-
matically, even when the data is very noisy and the
scales are unknown.

We demonstrate the usefulness of our algorithm
for archaeology (Figure 1). This domain is an
intriguing application of computer graphics tech-
niques [20] and a variety of topics has been investi-
gated including matching fragments [21, 22], shape
illustration [23, 24], relief extraction [25], and more.

We focus on partial similarity, which is a central
task in archaeology. After finding a new artifact,
the archaeologist aims at locating it in time and
space. Knowing where else in the world similar ar-
tifacts were found, reflects on commerce, mutual
influence, etc.

Traditionally, archaeological artifacts are drawn
by hand and printed in the reports of archaeologi-
cal excavations – an extremely expensive and time-
consuming procedure. This aids the archaeologist
to compare artifacts without actually holding them
in her hand. Such drawings are often inaccurate,
since the precision of the drawing depends on the
qualifications of the artist. In addition, this tech-
nique does not always suffice due to space limita-
tions that force the archaeologist to choose which
objects will be drawn and decide on a small fixed set
of viewing directions. Digitizing the findings by a

high resolution scanner and creating archaeological
databases will be a welcome alternative.

Since most artifacts are found broken, whole sim-
ilarity and part-in-whole similarity are not helpful.
Part-to-part matching is also insufficient, since the
archaeologists usually wish to mark the “meaning-
ful” parts they are looking for. Instead, partial sim-
ilarity is the only alternative. An added difficulty
in this domain is that the objects are often eroded
or noisy, so the algorithm should be fundamentally
robust.

The contribution of this paper is hence twofold.
First, we propose a novel technique for partial simi-
larity, which handles noisy data (Sections 2-5). The
major novelty of this technique is a probabilistic
method for integrating point similarity and seg-
ment similarity. In addition, both point similarity
and segment similarity are discussed and new algo-
rithms for addressing them are introduced. Second,
we demonstrate its applicability in a challenging do-
main – archaeology.

2. General approach

Given two surfaces MA and MB, the goal is to
find the best match of MA within MB. The key
idea of our method is to base the search not only
on feature similarity, but also on segment similar-
ity. We show that combining these similarity mea-
sures is beneficial. This general scheme is not re-
stricted to any specific feature-point similarity or
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Algorithm 1 Partial matching
Input: Meshes MA and MB.
Output: The region of MB that best matches MA.

1: Point similarity:
1.1 Detect a set of salient points (vertices) both on MA and on MB.
1.2 Compute the local descriptors for the salient points.
1.3 Measure the similarity between the salient points of MA and those of MB.

2: Segment similarity:
2.1 Segment MA and MB.
2.2 Compute descriptors for the segments.
2.3 Measure the similarity between the segment descriptors of MA and MB.

3: Integrate point similarity (Stage 1) and segment similarity (Stage 2).
4: Obtain the region(s) in MB that is most similar to MA.

segment similarity, and can successfully integrate
other types of similarity. Nevertheless, we pro-
pose specific methods for performing feature-point
matching and segment matching. In practice, the
surfaces are given as polygonal meshes, represented
by sets of vertices and faces.

Our algorithm is outlined in Algorithm 1 and il-
lustrated in Figure 2. First, the salient points are
detected and their similarity is computed. Avoid-
ing the consideration of all the vertices of the mesh
not only improves the performance, but also en-
hances the results, since non-distinctive vertices are
ignored. Then, both MA and MB are segmented
into meaningful components and their segments are
matched. Next, given the above similarity mea-
sures, they are integrated. The goal is to com-
pute consistent correspondences between the salient
vertices. Finally (Step 4), the similar region(s) in
MB is determined according to the correspondence
established in the previous stage. The bounding
ellipsoid of the partial model is aligned with the
detected region in MB using Principal Component
Analysis (PCA). If a more precise alignment, which
follows the meaningful boundaries, is sought, it is
determined by employing the ICP algorithm [26].
We elaborate on Stages 1-3 in Sections 3-5.

3. Salient points – detection & similarity

This section defines the saliency of points (ver-
tices in the polygonal mesh representation) and
proposes algorithms for detecting them, comput-
ing their descriptors, and measuring their similarity
(Stage 1 of Algorithm 1).

Salient vertices: Our definition of salient vertices
is inspired by SIFT [27] and is similar to [15]. Recall

that in scale-space a signal is represented as a family
of smoothed signals, the scale-space representation,
parameterized by the size s of the smoothing ker-
nel used for suppressing fine-scale structures [28].
Given an input surface, the scale-space representa-
tion is a series of surface approximations, at coarser
and coarser scales of detail, constructed using ge-
ometric low-pass filtering. These surfaces are then
encoded relative to each other by expressing each
level as a scalar displacement of its predecessor. In-
tuitively, as the scale grows, smoother versions of
the surface are obtained. Over time the small dis-
turbances thin out, smoothing the high frequencies,
while the general shape is only slightly degraded.
The difference between two versions of the surface,
smoothed at two scales s1 and s2, occurs at regions
that contain features of scales between s1 and s2.

Let the normal displacement of a point be the
difference between its locations in the direction of
the normal in two adjacent levels. (In practice we
use 10 scales.)

Definition 3..1. A salient vertex is a vertex for
which the normal displacement between consecutive
levels of scale space is a local extremum.

Vertex descriptor: We are seeking a local de-
scriptor that is invariant to similarity transforma-
tions (translation, rotation, and scaling). We pro-
pose a combination of two normalized signatures –
the shape index SI and the Willmore energy W.

The shape index is a local signature that provides
a quantitative measure of the shape [5]. It is invari-
ant to scale and Euclidean transformations. Let k1

and k2 be the maximal and the minimal principal
curvatures respectively. At point p the shape index

3



Input: MA & MB Step 1: Salient vertices Initial correspondence Step 2: Segmentation

Segment matching Step 3: Improved correspondence Step 4: Result

Figure 2: Algorithm Outline. Given a cupid-shaped relief extracted from a Hellenistic oil lamp MA (top) and a different
Hellenistic oil lamp MB (bottom), our algorithm detects the part within MB that is most similar to MA. The two cupids
(query and result) differ both in shape and in pose. (The other cupid of MB will be found as a second match.)

is defined as

SI(p) =
1
2
− 1
π

arctan
k1(p) + k2(p)
k1(p)− k2(p)

. (1)

The Willmore energy measures the amount of de-
viation of a surface S from a sphere [29]. Let H be
the mean curvature and K be the Gaussian curva-
ture. The Willmore energy is defined as:

W =
∫

S

H2 dA−
∫

S

K dA, (2)

where dA is the area. Since the integrand (H2 −
K)dA is invariant to Möbius transformations, W is
a conformal invariant of the surface.

While the shape index represents the shape well,
it falls short of discriminating between certain
shapes, such as shapes having k2 ≈ 0. The Will-
more energy does not distinguish between convex

and concave shapes. Their combination into a sin-
gle 2D vector, manages to better distinguish be-
tween shapes. This is illustrated in Figure 3. Given
the query point in magenta (left), using only the
Willmore energy, the points in magenta and green
(right) equally match. Using only the shape index
signature, the points in magenta and blue equally
match. The combined signature retrieves only the
magenta point, as expected.

Vertex similarity & confidence: For each
salient vertex v ∈ MA, the Euclidean distances
dist between its descriptor to those of the vertices
of MB are computed. A pair whose distance is be-
low a certain threshold is considered similar. In
practice, this threshold is set to 0.01.

We associate with each corresponding pair an ini-
tial probability value, which expresses our confi-
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(a) query (b) matched vertices

Figure 3: The Willmore energy matches the magenta point
also to the green point, whereas the shape index matches
it also to the blue point. The combined signature retrieves
only the matching magenta point.

dence in this correspondence. A pair will get a high
probability if the distance between the descriptors
of its vertices is small. This is realized by setting

P ((v, u)) =
1

ε+ dist(descriptor(v), descriptor(u))
,

where in our implementation ε = 1e− 5.

4. Segmentation – computation & similarity

This section introduces our segmentation tech-
nique and our segment descriptors and then pro-
poses a novel algorithm for measuring segment sim-
ilarity (Stage 2 of Algorithm 1).

Segmentation: Given a mesh (either MA or
MB), the goal is to efficiently segment it into mean-
ingful components. We base our algorithm on the
general linear region growing scheme of [30]. This
is an incremental strategy of starting from a ran-
dom face and collecting faces along the way until
no adjacent faces can be found whose distance to
the current patch is sufficiently small. The benefit
of this scheme is its efficiency.

The major consideration is how to define the dis-
tances between faces. Differently from [30], our dis-
tance is defined as follows. For each face f , we con-
sider the mean curvature of the face H(f) as the
average curvature of its vertices. Then, the distance
between two faces is defined as:

dist(f1, f2) = η |H(f1)−H(f2)| ,

where η is a small positive constant (0.1 in our im-
plementation) if the sign of H(f1) is the same as
the sign of H(f2) and 1 otherwise.

Other segmentation algorithms can be utilized as
well, depending on the application at hand. For
instance, for a few objects (Figures 1(a), 10(a),11),
we use the relief segmentation algorithm of [25].

Segment descriptor: The descriptor of a segment
is the 3D Shape Spectrum Descriptor (SSD) of [31].
It is defined as the distribution of the shape index
over the entire segment. In practice, the distribu-
tion is represented by a histogram whose bins uni-
formly quantize the range of the shape index values.

Similarity between segments: We are given
the sets of segments SA = {A1, A2, . . . , An} and
SB = {B1, B2, . . . , Bm} of MA and MB and their
descriptors. The goal is to establish a match be-
tween every segment in SA to a subset of SB . Our
algorithm consists of two stages. First, we define
a single Earth Mover’s Distance (EMD) [32] opti-
mization problem that determines the correspon-
dences between segments of MA to segments of
MB. Then, to improve the obtained similarity mea-
sure, we employ the Random Sample Consensus
(RANSAC) algorithm [33] that distinguishes be-
tween the true correspondences (inliers) and the
false correspondences (outliers). As discussed be-
low, RANSAC estimates the similarity transforma-
tion between the inliers and hence guarantees in-
variance to similarity transformation, and in par-
ticular to scale.
1. Computing the Earth Mover’s Distance: The
EMD evaluates the dissimilarity between two multi-
dimensional distributions. It has a couple of bene-
fits that make it appropriate for our problem. First
and foremost, it enables partial matching in a very
natural way. Second, it can be applied to gen-
eral variable-size descriptors, which subsume his-
tograms.

To apply the EMD distance, the distance between
a “pile of earth” i to a “hole” j is the L1 distance
between the SSD histogram of segment Bi ⊂ MB
to the histogram of segment Aj ⊂MA. The weight
of Bi is a scalar defined as wBi

= Area(Bi)/4πR2
i ,

where Ri is the radius of the bounding sphere of
segment Bi .
2. Improving the similarity measure with
RANSAC: The correspondences obtained in the
previous stage may be inaccurate due to two rea-
sons. First, depending on the segmentation algo-
rithm used, the segmentations of MA and MB
might differ even if the models look similar to the
naked eye. Second, sinceMA is a sub-surface, some
meaningful parts may be missing or be adjacent to
the boundaries, as illustrated in Figure 4.

To improve the obtained correspondence, we em-
ploy the RANSAC algorithm, which fits a model to
experimental data that might contain outliers. In
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(a) Segmentation of MA (b) Segmentation of
(part of) MB

Figure 4: The cyan leg in (a) is very different from its cor-
responding segment in (b), since MA is a broken piece of
MB.

our case, the model is a similarity transformation
betweenMA andMB, the inliers are the segments
of SA whose correspondences are correct (i.e, they
are compatible with the estimated transformation),
and the outliers are the other segments.

At each iteration four segment pairs are cho-
sen, from those found by the EMD optimization to
match. The similarity transformation between the
centers of mass of the segments is estimated [34].

The transformation that yields the maximum num-
ber of inliers is considered correct and the final set
of inliers is determined accordingly.

The matching probability of an inlier segment in
SA and its matched segment in SB is set to 1. To
determine the matching probabilities of an outlier
segment in SA and segments in SB , the similarity
transformation is applied to all the vertices of SA’s
segment. The matching probabilities are then set
to be proportional to the number of transformed
vertices that fall close to those of the segment in
SB .

Results: Figure 5 demonstrates the matching re-
sults of the two stages described above. It can be
seen that after Stage 1, one segment is matched
incorrectly. After applying RANSAC, the correct
correspondence is detected.

MA Initial match Final match

MA Initial match Final match

Figure 5: Top: Matching the segments of a flower to those on the fragment of a Hellenistic vase. After applying the EMD
the green segment is matched to a different flower on MB. RANSAC fixes it. Bottom: Matching cupid-shaped reliefs of two
Hellenistic oil lamps. After applying the EMD the heads and the torsos are matched correctly, but the legs are not. RANSAC
fixes the matching of the green legs.
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5. Integrating feature-point similarity and
segment similarity

We are given the similarity results of the salient
vertices (Stage 1 of Algorithm 1) and the similar-
ity results of the segments (Stage 2). Our goal is
to integrate these similarity measures, so as to ob-
tain more reliable and consistent correspondences
between the vertices (Stage 3).

Intuitively, if a pair of vertices resides in seg-
ments having a high matching probability, the cor-
respondence probability of the pair should increase.
Conversely, if the pair resides in segments having a
low matching probability, its correspondence prob-
ability should decrease. Moreover, the correspon-
dences of the vertices in the neighborhood of the
pair provide additional information regarding our
confidence in the correspondence of this pair.

Problem definition: Let SA = {A1, A2 · · · , An}
be the set of segments of MA, MA =

⋃n
i=1Ai and

SB = {B1, B2 · · · , Bm} be the set of segments of
MB,MB =

⋃m
j=1Bj . We are given a salient vertex,

v ∈ Ai, its corresponding salient vertex u ∈ Bk, and
their initial correspondence probability P ((v, u)).
We are also given the segment matching probabili-
ties P (AiBj) ∀Bj ⊂MB. Our goal is to modify the
known initial correspondence probability P ((v, u)),
so as to better reflect the matching probability of
segment Ai and the correspondence probabilities of
the other salient vertices in Ai.

The naive approach: Intuitively, in order to up-
date the correspondence probability P ((v, u)), in-
corporating the matching probability of the seg-
ment, we could simply multiply the two:

Pnew((v, u)) = P ((v, u)) · P (AiBk) .

Indeed, if the probability P (AiBk) is small, the
correspondence probability of (v, u) will decrease as
expected. However, this technique is not as robust
as we may wish. As illustrated in Figure 6, our con-
fidence in the probability should take into account
not only the probability of the segment correspon-
dence, but also those of the neighboring vertices.
The figure shows a case in which even if the corre-
spondence of (v, u) agrees with that of AiBk, the
correspondence should not increase but rather de-
crease, since the other vertices point to a different
correspondence.
Our approach: To overcome the drawback of the
naive approach, we take into account the correspon-
dence probabilities of the other vertices. Intuitively,

Figure 6: The naive correspondence is not sufficiently robust.
v should be matched to a vertex in Bj even if P (AiBk) is
high.

if we consider the correspondences of the neighbor-
ing vertices, we achieve a “voting procedure”, in
which similar correspondences increase the proba-
bility of a pair. There are various ways to perform
voting procedures that integrate different measures.
Our proposed approach is inspired by [35].

Formally, given the state of correspondences
LMA and a vertex v ∈ Ai, our goal is to calculate

Pnew((v, u)) = P ((v, u) | LMA) ,

where LMA = {(v′, u′, Bj)|v′ ∈ MA, u
′ ∈ Bj ⊂

MB,P ((v′, u′)) > 0} (where P ((v′, u′)) > 0 indi-
cates that u′ matches v′).

That is to say, we wish to calculate the correspon-
dence probability of the pair (v, u), given the corre-
spondences and the locations of the corresponding
vertices of all the salient vertices of MA. By loca-
tions we refer to the segments on which the corre-
sponding vertices reside, and not their exact loca-
tion within the segment. For now we assume that
v and u, each resides in a single segment.

In essence, it suffices to consider only the corre-
spondences of the vertices that lie in Ai. There-
fore, given the state of correspondences LAi

=
{(v′, u′, Bj)|v′ ∈ Ai, u

′ ∈ Bj ,P ((v′, u′)) > 0}, our
goal is to calculate

Pnew((v, u)) = P ((v, u) | LAi) ,

which is the correspondence probability of the pair
(v ∈ Ai, u), given the locations of the correspon-
dences of all the salient vertices of Ai.

By Bayes’ rule:

P ((v, u) | LAi) =
P (LAi | (v, u))P ((v, u))

P (LAi)
. (3)

Since P ((v, u)) is given, all we need to calculate are
P (LAi

| (v, u)) and P (LAi
). We next explain how

they are computed.
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By the law of total probability,

P (LAi) = P (LAi | (v, u))P ((v, u))

+P
“
LAi | (v, u)

”
(1− P ((v, u))).

So, to compute P (LAi
), we need to compute

P (LAi
| (v, u)) and P

(
LAi
| (v, u)

)
. Below, we

elaborate on the calculation of the first term; the
second one is computed analogically.

By construction, for segment Ai,∑
Bj∈MB

P (AiBj) = 1. Therefore, using the
law of total probability:

P (LAi | (v, u)) =
X

Bj∈MB

P (LAi | (v, u) , AiBj) ·

P (AiBj | (v, u)) . (4)

In order to break the cycle of dependencies be-
tween the vertex similarity and the segment simi-
larity, we set

P (AiBj | (v, u)) = P (AiBj) . (5)

Moreover, we assume that the correspondences of
the salient vertices of Ai are independent (and they
were computed this way). Hence,

P (LAi | (v, u) , AiBj) =
Y

v′∈Ai

P (Lv′ | (v, u) , AiBj) ,

(6)

where Lv′ is the state of correspondence of a salient
vertex v′ ∈ Ai (i.e., its corresponding vertex u′ and
the segment in MB in which u′ resides).

Thus, we need to compute P (Lv′ | (v, u) , AiBj).
It is done by considering the correspondence of v′ ∈
Ai as a random variable and distinguishing between
two cases. If the correspondence of (v′, u′) is correct
(with probability P ((v′, u′))), it must reside in Bj

since v′ ∈ Ai and this correspondence should suit
that of (v, u). If the correspondence is incorrect, u′
could lie anywhere, and thus the segment on which
it lies is chosen randomly among the segments of
MB. In this case, the probability that u′ resides in
a segment is set to the relative area of this segment
and is denoted as β′. Formally,

P (Lv′ | (v, u) , AiBj) = 1{u′∈Bj} · P ((v′, u′))

+(1− P ((v′, u′))) · β′, (7)

where 1{u′∈Bj} is the indicator function, defined
as:

1{u′∈Bj} =

{
1, u′ ∈ Bj

0, u′ /∈ Bj

.

Putting it all together, Equation (4) becomes:

P (LAi | (v, u)) =X
Bj∈MB

P (AiBj)
Y

v′∈Ai

h
1{u′∈Bj} · P

``
v′, u′

´´
+

(1− P ((v′, u′))) · β′] .

Up till now we assumed that a vertex v ∈ MA
belongs to a single segment. If v belongs to multiple
segments Equation (4) can be rewritten as:X

Ai∈Seg(v)

P (LAi | (v, u) , v ∈ Ai)P (v ∈ Ai) =

X
Ai∈Seg(v)

X
Bj∈MB

P (AiBj)P (v ∈ Ai) ·

Y
v′∈Ai

P (Lv′ | (v, u) , v ∈ Ai, AiBj) . (8)

Finally, after calculating the correspondence
probabilities for every pair (v, u) separately, we nor-
malize the probabilities of all the matches of v.

Examining Equation (8), it can be seen that as
required, the similarity probability of a pair of ver-
tices depends on the correspondence probability of
the segment(s) on which the vertices reside, on the
probabilities of the neighboring vertices, and on the
initial correspondence probability of the pair.

Results: Figure 7 demonstrates a result of our
algorithm. We wish to match the sub-surface in
Figure 7(a) to that in Figure 7(b). We focus on
the salient vertex marked in red. The matching
segments are colored in corresponding colors. The
initial correspondences of the red vertex are dis-
played in Figure 7(c) in different colors and their
initial correspondence probabilities are: pred =
0.05; pgreen = 0.28; pblue = 0.48; pmagenta =
0.19. After applying our algorithm, the final prob-
abilities are: pred = 0.91; pgreen = 0; pblue =
0.09; pmagenta = 0. Evidently, the correct match-
ing probability increased to 0.91, whereas the other
correspondences were significantly decreased. For
comparison, we also applied the scheme using
the naive approach. Here, the correct matching
probability (after normalization) increased to 0.48,
whereas the incorrect matching to the blue point re-
ceived an even higher value and increased to 0.52.
Hence, the uncertainty remained, with a slight pref-
erence to the incorrect matching.

Figure 8 compares our final result to the one that
would be obtained if the naive approach were uti-
lized, given a dancer as a query. It can be seen that

8



(a) MA (b) matched segments (c) initial correspondences

Figure 7: The probability of the red vertex in (c) increased from 0.05 to 0.91, whereas the probability of the blue vertex
decreased from 0.48 to 0.09.

(a) Our result (b) The result of the naive approach

Figure 8: Comparison of the final results of our matching and the naive approach

while our result retrieved a single dancer, the naive
approach distributed the matched vertices between
the three dancers.

6. Results: Partial similarity in Archaeology

Archaeological artifacts are inherently noisy and
eroded, not only due to the scanning process,
but also because of their very nature, found af-
ter spending thousands of years underground. This
makes the difficult problem of comparing objects
even harder. Our results demonstrate not only
the ability of the algorithm to detect non-identical
sub-meshes, but also the algorithm’s robustness to
noise.

Figure 1 shows two examples. In Figure 1(a)
a dancer from a fragment of a vase is matched
to the dancers on a significantly-noisy Amphora.
(The dancers were embedded on the amphora syn-
thetically by [25].) In Figure 1(b) a cupid from a
Hellenistic oil lamp is the query. Our algorithm
matches this query to the cupids on a different
oil lamp. The poses as well as the shapes of the
matched cupids differ, i.e., the query cupid has hair
while the matched cupids do not, the matched cu-
pids have wings while the query does not, etc.

In Figure 9 the input queries are Greek letters
(Υ, M A) extracted from Hellenistic stamps (either
from the same stamp (a) or from different stamps
(b)). In the latter case, not only the letters may
differ in shape, but also the scale ratio is unknown.
Our algorithm manages to detect the letters, even
though it can be seen that the M on the stamp is
immersed in the stamp’s background.

In Figure 10, given an instance of a pattern
(blue), the other instances are detected (magenta).
This can be viewed as the extraction of 3D textures.

Finally, Figure 11 shows several coins. This is a
very interesting example, since these coins are con-
sidered a major discovery, which brings up many
questions. Were similar coins found elsewhere?
Were they stamped using the same die? The query
is a goblet extracted from a coin dated to the first
century CE (blue). This goblet is matched by our
algorithm to reliefs of goblets on four other coins
(magenta). These coins are not identical – they dif-
fer in the shape of the goblet, in its location within
the coin, in the level of noise, in the state of the
burnout, and in the location of the cracks. In one of
them, the goblet is reflected. Our algorithm copes
with these conditions well.
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(a) Detecting different Υ’s

(b) Detecting letters extracted from different stamps

Figure 9: Typography of Hellenistic stamps

Figure 10: Detecting repeating patterns on a variety of Hellenistic artifacts. The shapes of the similar reliefs are not identical.
Nevertheless, our algorithm finds them.

Comparison to previous work: We are not
aware of related work in the domain or archaeology.
We therefore compare our results to those presented
in [17] for general, noiseless objects. Though [17] is
the closest work to ours, it addresses a different
problem, where the parts to be matched are not
predefined. This problem is important for appli-
cations such as alignment and registration, but it
is less suitable for archaeology, since the archaeolo-
gists usually have a clear idea regarding the “char-
acteristic” parts of the objects they wish to match.

In Figure 12(a), we mark one flower on the Bud-
dha (1M faces) and the other flowers are detected.
The query time in our Matlab implementation is
20-25% faster than [17]’s on similar PC configura-
tions. In Figure 12(b), given a single star, all the
stars on the knot are detected, although their sizes
and shapes differ across the model. This result can

be compared to the result of [17] in which stars
were placed on the plane. It can be seen that our
matching is more precise. The major benefit of our
method, however, is its ability to handle noise.

Implementation: We ran the algorithm on an In-
tel Core i7 machine with 3GB of memory. On a
model of 275K faces (the coin in Figure 11), the
online query takes only 1.2 seconds. The prepro-
cessing takes 2.9 minutes, out of which the salient
vertex processing takes 2.2 minutes and the seg-
ment processing takes 42 seconds. Most of this time
(1.9 minutes) is devoted to curvature estimation.

Limitations: If the relief is extremely eroded and
the segmentation algorithm fails to segment it, our
algorithm might fail. This is illustrated in Fig-
ure 9(middle), where the circled M was not de-
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Figure 11: Coins from the first century CE. The coins differ in the shape of the goblet, in its location within the coin, in the
level of noise, in the state of the burnout, and in the location of the cracks. Our algorithm finds the magenta goblets given the
blue query.

Our result [17]’s result Our result [17]’s result
(a) Finding the lotus flowers of the Buddha (b) Detecting stars

Figure 12: Comparisons to [17]: Given a flower (star), the others are detected.

tected.

7. Conclusion

This paper proposed a novel algorithm for partial
matching, which is based on the observation that lo-
cal feature similarity by itself does not suffice, yet
the aggregation of neighboring locally-similar fea-
tures does. To realize this observation, our algo-
rithm consists of three steps. First, locally-similar
vertices are detected and our confidence in their
correspondence is formulated as a matching prob-
ability. Second, the meshes are segmented and
matched. Finally, vertex similarity and segment
similarity are combined, to yield a more reliable
match.

The utility of the algorithm was evaluated in a
challenging application – archaeology, in which par-
tial matching is a key task. The (fragments of) ar-

tifacts found in the excavation should be matched
to those previously found in this site or elsewhere in
the world. We showed that our technique is useful
for the type of models prevalent in this domain. It
can handle noisy and broken objects.

In the future it will be interesting to examine
this algorithm in the context of global consistency.
The use of feature points is often insufficient due to
many ambiguities. Our point/segment integration
can be viewed as a consistency criteria for filtering
out false positives.
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