
Piecewise 3D Euler spirals

David Ben-Haim
∗

Technion
Gur Harary

†

Technion
Ayellet Tal

‡

Technion

ABSTRACT
3D Euler spirals are visually pleasing, due to their property
of having their curvature and their torsion change linearly
with arc-length. This paper presents a novel algorithm for
fitting piecewise 3D Euler spirals to 3D curves with G2 conti-
nuity and torsion continuity. The algorithm can also handle
sharp corners. Our piecewise representation is invariant to
similarity transformations and it is close to the input curves
up to an error tolerance.

1. INTRODUCTION
3D curves convey important information about the shape

of objects. They are used as shape features, as strokes for
sketch-based interaction, in non-photo realistic rendering,
and in a variety of mesh analysis algorithms [2, 4, 10].

Traditionally, complex curves are represented in a piece-
wise manner. Usually, the primitives utilized are paramet-
ric polynomials defined using a set of geometric constraints,
such as Bezier curves or NURBS [6]. These curves exhibit
many attractive properties for curve design. However, unless
imposed during the curve creation, fairness, which is often
identified with how smoothly the curve bends [9], might not
be maintained.

A planar Euler spiral is characterized by a linearly-evolving
curvature along the curve [8, 15]. Several papers have ad-
dressed piecewise 2D Euler spirals. 2D Euler-spiral seg-
ments are fitted to geometric points and curvature con-
straints in [17, 18, 19]. They are also used for constructing
splines [15, 20]. McCrae and Singh [14, 13] present meth-
ods for fitting a piecewise Euler spiral to a sketch. Their
method is suitable for conceptual design applications, where
aesthetic fairness is important. Baran et al. [1] present a
different method, which better fits the input curve.

3D Euler spirals received less attention. They were re-

∗davidbh@tx.technion.ac.il
†gur@tx.technion.ac.il
‡ayellet@ee.technion.ac.il

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Figure 1: A piecewise 3D Euler spiral representation
(40 segments). Each petal leaf is represented simi-
larly, since Euler spirals are invariant to similarity
transformations.

cently introduced in [7] as the curves that have both a linearly-
varying curvature and a linearly-varying torsion w.r.t the
arc-length. Similarly to their 2D counterparts, these curves
satisfy some desirable properties, including invariance to
similarity transformations, symmetry, extensibility (i.e., the
curve is refinable), smoothness, and roundness (i.e., if the
boundary conditions lie on a circle, then the curve is a cir-
cle).

This paper addresses the problem of fitting piecewise 3D
Euler spirals to general 3D curves, as illustrated in Figure 1.
This representation isG2-continuous, torsion-continuous, and
manages to smooth noisy curves. It can thus be an appealing
alternative to splines for certain applications.

Given a 3D curve, our algorithm approximates it by a
small number of curves, each having a linearly-varying cur-
vature and a linearly-varying torsion. This is performed by
utilizing a dynamic programming approach that fits a con-
nected set of line segments to the curvature values and to
the torsion values of the input curve.

The rest of the paper is structured as follows. Section 2
describes our algorithm for constructing a piecewise 3D Eu-
ler spiral for representing a given 3D curve. Section 3 shows
some results. We conclude in Section 4.

2. THE CONSTRUCTION ALGORITHM
The 3D Euler spiral is defined as the curve having both

its curvature κ and its torsion τ evolve linearly along the
curve [7]. That is to say, there exist constants κ0, τ0, γ, δ ∈ R

(a) Input (b) Step 1: Corner detection (red) (c) Step 3(1): Curvature linear fitting

(d) Step 3(2): Torsion linear fitting (e) Step 4: Euler-spiral construction (f) Step 5: Applying rigid transformation

Figure 2: Algorithm outline

for which κ(s) = κ0 + γs and τ(s) = τ0 + δs, for 0≤s≤L (L
is the curve length). The definition is in the form of a set
of differential equations, which requires the following initial
conditions: a point x0 on the curve, a tangent ~T0 at x0,
and a normal ~N0. This section describes the construction
algorithm of piecewise 3D Euler spirals.

Given a 3D curve, our goal is to find a sequence of 3D
Euler spirals that best fit the input curve. We require that

1. The number of spirals will be small.
2. The deviation of the resulting piecewise curve from the

input curve will be small.
3. The representation will be robust to noise in the input

curve, which is typical of curves detected by algorithms
for edge detection on surfaces.

4. The piecewise curve will be G2-continuous and torsion-
continuous.

The key idea of the algorithm is to utilize the characteriz-
ing property of 3D Euler spirals – having a linear curvature
and a linear torsion. Thus, the sequence of spirals is deter-
mined by fitting linear segments to the curvature and to the
torsion values along the curve. Our algorithm is inspired by
the work in 2D of McCrae et al. [14] and extends it to 3D,
improving the robustness to noisy data. In particular, in the
algorithm described below Steps 1,2,4 and the optimization
in Step 3, are inherently different.

Our algorithm is outlined in Algorithm 1, illustrated in
Figure 2, and explained thereafter. We assume that the
curve is given as an ordered set of points, which is typical
of most applications. If it is given analytically, we sample
it. The algorithm consists of five steps. First, the curve
is decomposed into sub-curves at the sharp corners. This
is done in order to prevent biases at these points in subse-
quent steps. Next, the curvature and the torsion of each sub-
curve are estimated. Having computed these values, we fit
them to linear segments, such that the number of segments
is minimized, while keeping the deviation small. These lin-
ear segments are constrained to connect at their end-points
in order to yield G2-continuity and torsion-continuity of the

final piecewise curve. The fourth step utilizes the segments
found previously to construct a piecewise 3D Euler spiral
curve. Finally, a rigid transformation is applied to the re-
sulting piecewise curve to improve the fitting, if needed.

Algorithm 1 Curve fitting algorithm

1: Corner detection
2: Curvature & torsion estimation
3: Line-segment fitting to the curvature & torsion using a

dynamic programming algorithm
4: Piecewise 3D Euler spiral construction
5: Improvement by applying a rigid transformation

1. Corner detection: Sharp corners are points of disconti-
nuity of the tangents, thus these are the points for which the
curvature and the torsion are undefined. In practice, given
a set of points, the curvature and the torsion can always be
estimated, however, at corners their absolute values are very
high relatively to the values of their neighborhoods. They
appear as large spikes in curvature or torsion space. For
instance, in Figure 2(b) the values of the curvature at the
corners are as high as 340, while the values of the curvature
at the other points range between 0 to 1.1 (Figure 2(c)). If
the corners are not detected, our curvature-fitting algorithm
will fit two linear segments around the pick, instead of a
single point of discontinuity. This might result in erroneous
spiral fitting, since most of the error would be contributed to
representing the picks, while the rest of the curve would be
represented by only a few spirals. Corner detection allows us
to process each sub-curves adjacent to a corner separately.

Our corner detection algorithm aims at finding large devi-
ations between the tangents of subsequent points. The input
is the tangents at all the sample points on the curve and the
output is a list of corner points. A simple thresholding on
the angle between the tangents will yield insufficient results,
since noise looks like corners. Instead, we find the angles
between adjacent tangents, after smoothing the tangents in
the spirit of bilateral filtering [21]. Recall that bilateral fil-
tering aims at edge-preserving noise smoothing. Similarly,

we aim at corner-preserving smoothing.
Our algorithm consists of three steps: First, to assure ro-

bustness to noise we smooth the tangents extracted from the
curve in a corner-preserving fashion. Then, we calculate the
angle between every pair of subsequent tangents. Finally, we
threshold the angles to determine which points are corners.
We elaborate below.

In the first step each tangent is replaced by a weighted

average of its neighbors. Formally, the smoothed tangent
~̂
Tj

at the jth point is a weighted average of the tangents of its
neighbors (in practice, we consider n = 15 neighbors):

~̂
Tj =

Pi=j+n
i=j−n ωij · ~TijPi=j+n
i=j−n ωij

.

The tangents are then normalized.
The question is how to set the weights, such that they

would reflect two aspects: The first is the proximity of the
neighbor to the given point – closer neighbors should get
larger weights. The second is the similarity of the neighbor’s
tangent to the given point’s tangent – neighbors with similar
tangents should get larger weights.

We consider ωij as the product of the two weights de-
scribed below:

ωij = αij · βij .

Let sj and ~Tj be the arc-length and the tangent of the jth

point, and sij and ~Tij be the arc-length and the tangent of
its ith neighbor. Then,

αij = exp

„
− (sij − sj)2

2σd

«
, βij = max(~Tij · ~Tj , 0).

αij considers spatial proximity, whereas βij considers prox-
imity of the values. Hence, the more different the directions
and the farther the points, the lower the weight.

In the second step of our algorithm the angle between
every pair of subsequent smoothed tangents is calculated

as: θ = arccos
“
~̂
Tj−1 · ~̂Tj

”
.

The final step of the algorithm is thresholding θ. A point j
having a large θ is marked as a corner (in practice θ > 45◦).

2. Curvature & torsion estimation: There exist various
methods that estimate both the curvature and the torsion
of spatial curves [3, 11, 12]. In this work we follow the inde-
pendent coordinates method proposed by Lewiner et al. [12],
which is shown to be robust to noise. Briefly, a cubic para-
metric curve is fitted to the coordinates of each sample point.
For example, for the x coordinate we get:

x̂(s) = x0 + x′0 · s+
1

2
x′′0 · s2 +

1

6
x′′′0 · s3,

where x0 is the position of the sample point, x′0, x
′′
0 , x
′′′
0 are

the 1st, 2nd, and 3rd derivatives respectively, and s is the
arc-length. A similar procedure is performed for the y and
z coordinates.

The parameters x′0, x
′′
0 , x
′′′
0 are found by minimizing a weighted

square error for each sample point:

Ex(x′0, x
′′
0 , x
′′′
0) =

i=nX
i=−n

wi(xi − (x′0 · s+
1

2
x′′0 · s2 +

1

6
x′′′0 · s3))2,

where xi is the position of a neighboring sample point w.r.t
x0 and wi is its weight. In our implementation wi = 1, ∀i.

Given these derivatives, the curvature and the torsion
are computed according to their definition [5] (where r =
(x, y, z)):

κ(s) =
|r′ × r′′|
‖r′‖3 , τ(s) = − (r′ × r′′) · r′′′

‖r′ × r′′‖2 .

3. Line-segment fitting to the curvature & torsion:
The goal of this step is to fit a small number of line segments
to the curve of the curvature (torsion). We will first discuss
the basic algorithm and then show how to enhance it so
as to guarantee G2-continuity and torsion-continuity. Since
our algorithm is performed similarly for the curvature and
for the torsion, we will present it only for the curvature.

The basic algorithm follows the approach proposed by [14],
which utilizes dynamic programming in order to minimize
both the number of line segments and the fitting error.

Given two points on the curve p0 and pN , we denote by
M(p0, pN) the cost of the configuration of the set of con-
nected line segments from p0 to pN . We aim at minimizing
the cost of the line-segment configuration:

M(p0, pN) = min
pi

(M(p0, pi)+M(pi, pN), E(p0, pN)+Ecost).

In this equation, M(p0, pi) (similarly, M(pi, pN)) is the cost
of the line-segment configuration from p0 to some point pi
residing between p0 to pN on the input curve. Ecost is
a penalty term for adding a new line segment, hence re-
stricting the number of segments used in the approximation.
E(p0, pN) denotes the error of fitting the line segments to
the curvature values of the original curve. Recalling the
sought-after linear curvature, we define this error as:

E(p0, pN) = min
κ0,γ

NX
i=0

(κ0 + γ ∗ s(pi)− κ(pi))
2

!
.

Here, s(pi) and κ(pi) are the arc-length and the curvature
at point pi on the input curve. κ0 and γ are found by com-
paring the deviation of E(p0, pN) w.r.t. κ0 and γ to zero:

∂E(p0, pN)

∂κ0
= 0 ,

∂E(p0, pN)

∂γ
= 0.

The algorithm proceeds in a bottom up fashion, where
the solutions to large subproblems build on the solutions to
smaller subproblems. It starts by calculating M for each
pair of subsequent points. Then, for larger segments pi is
chosen so as to minimize M(p0, pN).

Note that the term Ecost is of substantial importance,
since it has a strong influence on the number of segments.
Its value is adjusted to the input curve, as follows. First, the
curve’s curvature is segmented at the curve’s local minima
and maxima. Second, the value of the error E(p0, pN) that
suits this segmentation is calculated. Finally, Ecost is set to
ε ·E(p0, pN). ε is a user-defined parameter that lets the user
control the error tolerance. In all the examples we present
in this paper (except for Figure 7) ε = 0.1.

Up to this point we found the best linear fit for each seg-
ment separately. This might result in G2-discontinuity at
the contact points between adjacent spirals. This is due to
curvature segments that do not intersect properly in curva-
ture space, as illustrated by the red segments in Figure 3.

The straightforward solution to this problem is to modify
the spirals, so that they meet at the curvature-line intersec-
tions (the red intersections in Figure 3). This solution is

Figure 3: Obtaining G2-continuity. The best linear
fitting (red) to the curvature (black) results in un-
desirable intersections of the red line segments. To
obtain G2-continuity, we aim at the blue fitting.

problematic because the resulting curvature will differ con-
siderably from that of the input curve.

Instead, our solution slightly modifies the parameters of
the curvature segments (the blue segments in Figure 3). The
idea is to find all the linear parameters (κ0i, γi) simultane-
ously, imposing constraints on the continuity.

This is performed by solving the following optimization
problem. Suppose that we haveK curvature segments, where
segment i starts at arc-length (of the input curve) Si−1

and ends at arc-length Si and contains Mi sample points,
1 ≤ i ≤ K. Let κ0i be the initial curvature of the ith spiral
and γi be its slope. We minimize the error Etot:

Etot =

KX
i=1

MiX
j=0

`
κ0i + γi · ds(pj)− κ(S(i−1) + ds(pj))

´2
,

where ds(pj) is the arc-length relative to the segment’s initial
point. In other words, we minimize the distance between a
point on the blue segment to its corresponding point (having
the same arc-length) on the black curve in Figure 3.

We add to this set of equations the following continuity
constraints on the curvatures:

κ0i + γiSi = κ0(i+1) + γ(i+1)Si, 1 ≤ i ≤ K − 1.

That is to say, we require that the curvatures of adjacent
spirals at their intersection point are equal. Extracting κ0i

we get:

κ0i = κ01 + γ1S1 +

i−1X
k=2

γk(Sk − Sk−1)− γiSi−1.

Therefore, parameters κ0i ∀2 ≤ i ≤ K are represented as
a function of the parameters Γ = (κ01, γ1, γ2, ..., γK)T . The
error Etot can now be re-formulated in a matrix notation as:

Etot = ‖AΓ−B‖2,

where vector B (of length equal to the number of sample
points along the input curve) holds the curvature values κ of
the input curve and the rows of matrix A are the coefficients
of the parameters in Γ.
Etot is minimized in a standard manner by the product of

the pseudo-inverse of matrix A and vector B:

Γ = (ATA)−1ATB.

4. Piecewise 3D Euler spiral construction: This step
constructs the piecewise 3D Euler spiral. After the previous
step, for each segment i we have the curvature parameters

κ0i, γi, the torsion parameters τ0i, δi, and the length Li. If
we were also given the initial point x0i, the initial tangent
~T0i, and the initial normal ~N0i, these parameters would fully
define the 3D Euler spiral, as described in [7].

The first segment is constructed using the initial condi-
tions of the input curve x0, ~T0, ~N0. Jointly with the segment
parameters κ01, γ1, τ01, δ1, L1, the first segment is defined as:

C1(s) =

Z s

0

"Z t

0

d~T1(u)

du
du+ ~T0

#
dt+ x0,

where 0 ≤ s ≤ L1 and d~T1(u)
du

is calculated according to the
Frenet-Serret equations [5].

This equation also defines the first segment’s endpoint,
xf1 = C1(L1). The other end conditions (tangent and nor-
mal) are found by the tangent’s and normal’s definitions:

~Tf1 =

Z L1

0

d~T1(u)

du
du+ ~T0 , ~Nf1 =

Z L1

0

d ~N1(u)

du
du+ ~N0.

The end conditions of the first segment are considered
the initial conditions of the second segment: x02 = xf1,
~T02 = ~Tf1, ~N02 = ~Nf1. We can therefore calculate the
second spiral. Similarly, we proceed to calculate all the sub-
sequent Euler spirals, where spiral i + 1 is computed using
the information gained after calculating spiral i. This re-
sults in the sought piecewise 3D Euler spiral representation
of the input curve.

In case of corners (points of tangent discontinuity) using
the end-tangent (/normal) of preceding segment as the ini-
tial tangent of the following is erroneous. At these points we
set the angle between the tangents to be equal to the angle
between the tangents at the corresponding points (having
the same arc-length) on the input curve. This angle is cal-

culated using the smoothed tangents ~T s, computed using
the results obtained in Step 2:

~T s(s) =
r′

‖r′‖ ,
~Ns(s) =

r′′ − (r′′ · ~T s) · ~T s

‖r′′ − (r′′ · ~T s) · ~T s‖
.

For closed curves, the resulting approximation is closed
using the curve completion of [7].

5. Improvement by rigid transformation: The previ-
ous step created a piecewise Euler spiral curve approxima-
tion, which often suffices. However, when the initial tangent
& normal are inaccurate (due to noise) or in the existence
of corners, it can be improved. In this case, to decrease the
fitting error, we apply a rigid transformation for the entire
piecewise curve, followed by rotations of the parts of the
curve bounded by corners (Figure 2(f)).

The rigid transformation is found by solving the follow-
ing weighted least-squares minimization problem, similarly
to [16]. The input curve and the piecewise curve are sampled
uniformly into corresponding sets of n points: {(xI0, yI0 , zI0), · · · ,
(xIn−1, y

I
n−1, z

I
n−1)} and {(xP0 , yP0 , zP0), · · · , (xPn−1, y

P
n−1, z

P
n−1)},

respectively. We seek the rotation matrix R and the trans-
lation vectors T and T0 that minimize the following error:

ER =

nX
i=0

‖R(rIi + T0) + T − rPi ‖2,

where rIi = (xIi , y
I
i , z

I
i)T and rPi = (xPi , y

P
i , z

P
i)T . The local

rotation matrices are found similarly.

(a) Curve fitting (b) Curvature fitting (c) Torsion fitting

Figure 4: Fitting piecewise 3D Euler spirals (blue &
green) to a curve (black).

(a) Curve fitting (b) Curvature fitting (c) Torsion fitting

Figure 5: Fitting piecewise 3D Euler spirals (blue &
green) to a noisy curve (black).

3. RESULTS
Figure 4 demonstrates our fitting result, given synthetic

example. In this case, our piecewise representation, which
consists of seven segments, nicely approximate the input
curve using only a handful of spirals – the input (black)
curve is hardly noticeable.

Figure 5 shows an example of a noisy version of the curve
in Figure 4. White noise was added to every coordinate of
the input points. The variance of the noise is defined for the
x-coordinate (and similarly for the y and z coordinates) as:
σx = 1

4n

Pn
i=1 |xi − xi−1|. It can be seen that though the

curvature and the torsion are noisy, our piecewise represen-
tation is similar to that in Figure 4. The measured mean

squared error (MSE) has increased from 7.78e-04 to 0.029.
Figure 6 shows our approximation of a real example of

a relief of a “dancer” extracted from a Hellenistic broken
vase from the first century BCE. This curve is much noisier
than the synthetic examples, yet our algorithm manages to
represent it with only 70 3D Euler spirals.

Finally, Figure 7 shows our 3D Euler approximation of an
extremely noisy example. The given model is a seal from
the early Iron Age, 11th century BCE. As typical of such
ancient artifacts, the seal was found noisy and eroded. The
3D curves on the surface were extracted using the algorithm
of [22] (Figure 7(b)). Though from a certain viewpoint, the
curve may look almost planar, it is inherently non-planar, as
can be seen in Figure 7(e) where the curves are drawn from
different viewpoints. This can also be noticed in the noisy
graphs of the curvature and the torsion in Figures 7(c,d).
Nevertheless, our piecewise representation manages to cap-
ture the shape of the curves (Figure 7(e)). As expected, in
this case, many spirals are needed (about 200). Obviously,
the larger the error allowed, the less spirals would be used.
For instance, if we allow only 100 spirals, we would get the
image in Figure 7(f), which illustrates that our approxima-
tion still maintains the general shape.

4. CONCLUSION
This paper presented an algorithm for fitting a piecewise

3D Euler spiral to a 3D curve with G2-continuity. This rep-
resentation is capable of handling noisy curves, as well as
sharp corners. Our representation is constructed using a
dynamic programming approach that fits a connected set of
line segments to the curvature values and similarly, a con-
nected set of lines to the torsion values of the input curve.

Since our piecewise 3D Euler spiral representation is simi-
larity invariant, it may be used in the future for shape anal-
ysis applications, such as symmetry detection or retrieval.

(a) Input model (b) Curvature (c) Torsion

(d) Input curve : two views (e) Our fitting : two views

Figure 6: Fitting piecewise 3D Euler spirals (blue & green) to the curve of a dancer from a Hellenistic broken
amphora from the 1st century BCE.

(a) A seal from the Iron Age (b) Extracted curves [22] (c) Curvature (d) Torsion

(e) Approximation with 200 spirals: two views (MSE=0.0091) (f) Approximation with 100 spirals: two views (MSE=0.0293)

Figure 7: Approximating a real curve extracted from an archaeological artifact. As can be seen, the input
curve, its curvature and torsion, are inherently noisy. Yet, our approximation manages to maintain the shape
of the curve and smooth the noise.

5. REFERENCES
[1] I. Baran, J. Lehtinen, and J. Popovic. Sketching

clothoid splines using shortest paths. In Computer
Graphics Forum, 2010.

[2] M. Bokeloh, A. Berner, M. Wand, H. Seidel, and
A. Schilling. Symmetry detection using feature lines.
In Computer Graphics Forum, volume 28, pages
697–706, 2009.

[3] M. Boutin. Numerically invariant signature curves.
Int. J. of Computer Vision, 40(3):235–248, 2000.

[4] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and
A. Santella. Suggestive contours for conveying shape.
ACM Transactions on Graphics, 22(3):848–855, 2003.

[5] M. do Carmo. Differential geometry of curves and
surfaces. Prentice Hall, 1976.

[6] G. Farin. Curves and surfaces for computer aided
geometric design. Academic Press Prof. Inc., 1993.

[7] G. Harary and A. Tal. 3D Euler spirals for 3D curve
completion. In ACM Symposium on Computational
Geometry, 2010.

[8] B. Kimia, I. Frankel, and A. Popescu. Euler spiral for
shape completion. Int. J. Comp. Vision,
54(1):159–182, 2003.

[9] D. Knuth. Mathematical typography. American
Mathematical Society, 1(2):337–372, 1979.

[10] M. Kolomenkin, I. Shimshoni, and A. Tal. On edge
detection on surfaces. pages 2767–2774. CVPR, 2009.

[11] T. Langer, A. Belyaev, and H. Seidel. Asymptotic
analysis of discrete normals and curvatures of
polylines. In Spring conf. on Computer graphics, pages
229–232, 2005.

[12] T. Lewiner, J. Gomes, H. Lopes, and M. Craizer.

Curvature and torsion estimators based on parametric
curve fitting. Computers & Graphics, 29(5):641–655,
2005.

[13] J. McCrae and K. Singh. Sketch-based path design.
Graphics Interface, pages 95–102, 2009.

[14] J. McCrae and K. Singh. Sketching piecewise Clothoid
curves. Computers & Graphics, 33(4):452–461, 2009.

[15] D. Meek and D. Walton. The use of Cornu spirals in
drawing planar curves of controlled curvature. J. of
Comp. and Applied Mathematics, 25(1):69–78, 1989.

[16] M. Müller, B. Heidelberger, M. Teschner, and
M. Gross. Meshless deformations based on shape
matching. ACM Trans. on Graphics, 24(3):471–478,
2005.

[17] A. Nutbourne, P. McLellan, and R. Kensit. Curvature
profiles for plane curves. Computer-Aided Design,
4(4):176–184, 1972.

[18] T. Pal and A. Nutbourne. Two-dimensional curve
synthesis using linear curvature elements.
Computer-Aided Design, 9(2):121–134, 1977.

[19] A. Schechter. Synthesis of 2D curves by blending
piecewise linear curvature profiles. Computer-Aided
Design, 10(1):8–18, 1978.

[20] R. Schneider and L. Kobbelt. Discrete fairing of curves
and surfaces based on linear curvature distribution.
Curve and Surface Design, pages 371–380, 1999.

[21] C. Tomasi and R. Manduchi. Bilateral filtering for
gray and color images. In International Conference on
Computer Vision, pages 839–846, 1998.

[22] R. Zatzarinni, A. Tal, and A. Shamir. Relief analysis
and extraction. ACM Transactions on Graphics,
28(5):136:1–9, 2009.

