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(a) A tail of a lizard (b) Oliva porphyria (c) A horn of a Big-Horn Sheep

Figure 1: Modeling a variety of logarithmic-spiral structures in fauna. Real images of the objects are shown on the top left.

Abstract
Logarithmic spirals are ubiquitous in nature. This paper presents a novel mathematical definition of a 3D loga-
rithmic spiral, which provides a proper description of objects found in nature. To motivate our work, we scanned
spiral-shaped objects and studied their geometric properties. We consider the extent to which the existing 3D def-
initions capture these properties. We identify a property that is shared by the objects we investigated and is not
satisfied by the existing 3D definitions. This leads us to present our definition in which both the radius of curva-
ture and the radius of torsion change linearly along the curve. We prove that our spiral satisfies several desirable
properties, including invariance to similarity transformations, smoothness, symmetry, extensibility, and roundness.
Finally, we demonstrate the utility of our curves in the modeling of several animal structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Nature is rich in spirals [Coo03, Coo79]. They exist in ani-
mal and human anatomy – in horns, seashells, muscles, and
bones, as well as in botany – in the formation of leaves, flow-
ers (sunflower heads), fruit (pineapples, pine cones), and tree
trunks. Hurricanes are shaped as spirals. Some bays, such
as the Half-Moon Bay in California, are spirals. Cook also
points to the relation between the incidence of spirals in na-
ture and their appearance in art and architecture.

It is thus not surprising that spirals have attracted the
attention of mathematicians as well as biologists, zoolo-
gists, paleontologists, artists, and psychologists. In computer
graphics, despite the aspiration to produce natural-looking
models, relatively few attempts have been made to model

spirals. This paper focuses on logarithmic spirals – the ones
believed to characterize many of the natural phenomena de-
scribed above [Mos38, d’A42, Hun70].

The 2D logarithmic spiral is defined in four different man-
ners [d’A42,Hun70]. A few extensions of the 2D logarithmic
spiral to 3D were introduced for modeling seashells [Cor89,
Pic89, FMP92]. They were demonstrated to produce some
beautiful seashells. However, we provide evidence that some
of these extensions are too restrictive to describe the richness
of spirals in nature, and prove that the other extensions do
not hold any 3D definition.

These observations led us to present a different mathemat-
ical extension. It requires that both the radius of the curvature
and the radius of the torsion change linearly along the curve.
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(a) Equiangular spiral (b) Geometrical spiral (c) Proportional spiral (d) Logarithmic spiral

Figure 2: Different definitions of 2D logarithmic spirals

To support this definition we show, based on a study of nat-
ural objects, that this property indeed characterizes spirals-
like objects in nature. In addition, we prove that our spiral
satisfies other desirable properties including invariance to
similarity transformations, smoothness, symmetry, extensi-
bility (i.e. refinability), and roundness (i.e., if the boundary
conditions lie on a circle, the curve is a circle).

We demonstrate the utility of our logarithmic spiral for
modeling spiral-shaped animal structures, such as seashells,
horns, and tails, as illustrated in Figure 1.

The contribution of this paper is hence threefold. First, we
analyze, both theoretically and empirically, some properties
of the 3D logarithmic spirals in the literature. We also study
characteristics of natural spiral-shaped objects. We show that
the two do not conform (Section 3). Second, motivated by
the above observation, the paper presents a new extension to
3D of the logarithmic spiral and proves its properties (Sec-
tion 4). Finally, we demonstrate the utility of our spirals
in modeling a variety of natural structures in wildlife (Sec-
tion 5). We show that the obtained models suit the corre-
sponding natural objects. Altogether, our spirals are evalu-
ated theoretically, empirically, and visually.

2. Background

A variety of spirals have been investigated in computer
graphics, including the 3D Helispirals [GS99], Euler spi-
rals [Lev08, HT10], and Logarithmic spirals. This paper fo-
cuses on the latter.

2D logarithmic spirals: The planar logarithmic spiral was
discovered several times by different mathematicians. The
first to discover the spiral was Descartes, who in 1638 named
it the equiangular spiral after one of its characteristics. Tor-
ricelli named it the geometrical spiral after another property
of the curve – its radius increases exponentially as a function
of the angle. Later, Halley named it the proportional spiral
after its third characteristic. About fifty years later, in 1711,
Jacob Bernoulli was the first to describe the curve without
using a polar equation. Bernoulli gave the curve its fourth
name – the logarithmic spiral. He was so fascinated by its
mathematical beauty that he also named it spira mirabilis

(the marvelous spiral) and asked that this curve be engraved
on his tombstone. (However, by error, an Archimedean spiral
was placed there instead.)

Being discovered by four different mathematicians, each
focusing on a different characteristic, the curve can be de-
fined in four different, yet equivalent, ways (see Figure 2):

2D Definition 1 – Equiangular spiral: A spiral whose ra-
dius vector cuts the curve at a constant angle (Figure 2(a)).

2D Definition 2 – Geometrical spiral: A spiral whose ra-
dius increases in geometrical progression as its polar an-
gle increases in arithmetical progression: θ = t,r = r0ξ

t

(Figure 2(b)).
2D Definition 3 – Proportional spiral: A spiral in which

the lengths of the segments of the curve cut by a fixed
radial ray are in continued proportion (Figure 2(c)). In
other words, the segments are scaled versions of each
other, where the scaling ratios between successive pairs
are equal.

2D Definition 4 – Logarithmic spiral: A spiral having a
linear radius of curvature (i.e., a linear inverse of the cur-
vature): κ(s) = 1

r0+∆rs (Figure 2(d)).

3D logarithmic spirals: Extensions of 2D logarithmic spi-
rals to 3D were discussed mostly in the context of modeling
seashells. Three different extensions were proposed, all re-
quiring that the projection of the curve onto the xy plane will
give a 2D logarithmic spiral.

The first extension requires that θ = t, r = r0ξ
t , z = z0ξ

t ,
where r0,z0 and ξ are constants [Wun67, Cor89, Pic89].
These spirals are known to be paths of one-parameter groups
of similarity transformations [Wun67, HOP∗05]. In Carte-
sian coordinates, the spiral is defined as:

S1(t) = [x(t),y(t),z(t)] =
[
r0ξ

tcos(t),r0ξ
tsin(t),z0ξ

t] . (1)

The second extension is proposed by Pickover [Pic89].
For constants r0,α,ξ, it is defined as:

S2(t) = [x(t),y(t),z(t)] = [r0ξ
tcos(t),r0ξ

tsin(t),αt]. (2)

The third extension is presented in [FMP92]. For con-
stants r0,z0,ξr and ξz, the curve is defined as:

S3(t) = [x(t),y(t),z(t)] = [r0ξ
t
rcos(t),r0ξ

t
rsin(t),z0ξ

t
z]. (3)
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(a) Equitangential spiral (b) Geometrical spiral (c) Proportional spiral (d) Logarithmic spiral

Figure 3: Different definitions of 3D logarithmic spirals

(a) Scanned object (b) Ratio curvature / torsion (c) Linear fit to 1/κ (d) Linear fit to 1/τ

Figure 4: Two models out of the eleven natural objects we scanned. The ratios between their radii of torsion and their radii of
curvature were measured (b). It can be seen that these quantities are not related by scale. The graphs in (c-d) illustrate that the
radii of the curvature & torsion, each grows approximately linearly. See additional results in the supplementary material.

Though this extension generalizes the first extension, in
practice, most of the results shown in [FMP92] use a con-
strained set of parameters (ξr = ξz = ξ), resulting in curves
that coincide with those of the first extension.

In the next section we discuss the reasons for the insuffi-
ciency of these extensions for modeling some natural loga-
rithmic spiral-shaped objects. In light of this discussion we
present in Section 4 a novel definition.

3. Do previous extensions suffice?

We start by giving four definitions of 3D logarithmic spirals,
each extends one of the 2D definitions. We then describe
our empirical study in which we examine some properties
of natural spiral-shaped objects. We consider how well the
existing 3D extensions comply with the 3D definitions and
whether they suit the properties captured in the study. Fi-
nally, we identify a property that is shared by the objects we
investigated and is not satisfied by the known extensions.

3D Definition 1 – Equitangential spiral: A spiral for

which any plane adjacent to the spiral’s major axis cuts it
at a constant tangent (Figure 3(a)).

3D Definition 2 – Geometrical spiral: A spiral for which
the length of the radius R increases in geometrical pro-
gression as its polar angle θ increases in arithmetical pro-
gression, where R =

√
x2 + y2 + z2 and θ = arctan(y/x)

(Figure 3(b)).
3D Definition 3 – Proportional spiral: A spiral for which

the lengths of the segments of the curve, cut by a plane
through the spiral’s major axis, are in continued propor-
tion (Figure 3(c)).

3D Definition 4 – Logarithmic spiral: A spiral having a
linear radius of curvature and a linear radius of torsion
(Figure 3(d)).

In our study, we scanned eleven seashells, horns, and fruit.
Figure 4(a) shows a couple of the scanned objects. We then
computed the change in the radius of the curvature ( 1

κ
) and

that of the radius of the torsion ( 1
τ
) for curves on the ob-

jects’ surfaces. These curves are the smoothed valleys and
ridges of the surface. The curvature and the torsion were

c© 2010 The Author(s)
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computed using the independent coordinates method pro-
posed by [LGLC05], which is shown to be robust to noise.

The beauty of the first 3D extension (S1, Equation (1)) is
that it satisfies all four 3D definitions. However, we prove in
Appendix A (Proposition A.1) that in this spiral the radius of
curvature and the radius of torsion are equal up to a constant
(i.e. it is a curve of constant slope). But, our study shows that
this is not the case in nature – the radii are not related by any
constant; see Figure 4(b). Like any other general 3D curve,
the curvature and the torsion are independent. Hence, spi-
rals that relate them are too restrictive and cannot accurately
describe the variety of natural spiral objects.

We now turn to examine S2 and S3 (Equations (2)–(3)).
We prove in Appendix A (Propositions A.2–5) that these spi-
rals do not satisfy any of the above 3D definitions. Hence,
while they produce pretty results, theoretically they are not
proper extensions. Moreover, we later demonstrate in Fig-
ure 6 that these spirals are indeed less accurate for describing
natural objects than our spiral.

Finally, our study also shows that linear radii of the cur-
vature and torsion approximately characterize the curves, in
accordance with 3D Definition 4; see Figures 4(c-d). This
calls for a different mathematical extension of a logarithmic
spiral – one that satisfies this definition. This is the rationale
behind our definition, which is discussed next.

4. Our 3D logarithmic spiral

The results of the studies presented in Section 3 led us to de-
fine a different 3D logarithmic spiral, which generalizes the
extension of [Wun67,Cor89,Pic89], yet is able to represent a
wider variety of natural objects. This section defines the 3D
logarithmic spiral as the curve that satisfies the fourth 3D
definition, as illustrated in Figure 5. Obviously, this curve
conforms with the definition of the 2D logarithmic spiral.
We also prove the curve’s existence and uniqueness up to a
rigid transformation and some additional properties. Finally,
we show that our spiral is more accurate than other logarith-
mic spirals for approximating real data.

Figure 5: Our 3D logarithmic spiral

4.1. Definition & existence

We seek a spiral that has both a linear radius of curvature and
a linear radius of torsion in the arc-length parametrization s:

κ(s) =
1

(r0 +∆rs)
, τ(s) =

1
(σ0 +∆σs)

, (4)

where r0,σ0,∆r,∆σ are constants. Note that curves that sat-
isfy Equation (4) are a special case of the Log-aesthetic
curves of [YFS09].

We define the curve that satisfies Equation (4) by a set of
differential equations. Assume that we are given the follow-
ing initial conditions: a point x0 on the curve, a tangent ~T0
and a normal ~N0 at x0.

Definition 4.1 The 3D logarithmic spiral is the curve that
satisfies the initial conditions for s = 0 and the following:

1.
d~T (s)

ds
=

(
1

r0 +∆rs

)
~N(s),

2.
d~N(s)

ds
=−

(
1

r0 +∆rs

)
~T (s)+

(
1

σ0 +∆σs

)
~B(s),

3.
d~B(s)

ds
=−

(
1

σ0 +∆σs

)
~N(s),

4. |r0 +∆rs|> 0 and |σ0 +∆σs|> 0.

To understand this definition, observe that 1–3 are the
Frenet-Serret Equations [dC76] with our condition for the
curvature and the torsion. ~B is the cross product of ~T and ~N.

By the definition of the tangent, the spiral C(s) is:

C(s) =
∫ s

0
~T (v)dv+x0 =

∫ s

0

[∫ t

0

d~T (u)
du

du+~T0

]
dt +x0.(5)

The following proposition proves the existence of this
curve and its uniqueness up to a rigid transformation.

Proposition 4.1 Given constants r0,σ0,∆r,∆σ,L ∈ R for
which |r0 +∆rs| > 0 and |σ0 +∆σs| > 0 ∀s, 0≤s≤L, there
exists a 3D logarithmic spiral having linear radii of curvature
κ(s) = 1

(r0+∆rs) and torsion τ(s) = 1
(σ0+∆σs) . Moreover, this

curve is unique up to a rigid transformation.

Proof By the definition of the curvature of curves in R3,
κ(s) =

∣∣∣ d2~C
ds2 (s)

∣∣∣ ≥ 0. According to the fundamental theo-
rem of local theory of curves, for every differential function
with κ(s) > 0 and τ(s), there exists a regular parameterized
curve, where κ(s) is the curvature, τ(s) is the torsion, and s is
the arc-length parametrization [dC76]. Moreover, any other
curve satisfying the same conditions differs by a rigid mo-
tion. Note that in our definition κ(s) may be negative, and
when this happens we consider |κ(s)|. �

4.2. Properties of the spiral
This section proves that our spiral holds some attractive
properties. In [MS92] it is claimed that a curve’s fairness is
closely related to how little and how smoothly its curvature
and its torsion change. Other important properties mentioned
in the literature are invariance to similarity transformations,
smoothness, symmetry, extensibility, roundness, and being
locally constructed [Ull76, Knu79, HT10].
Before, we discussed the smooth change of the curve’s cur-
vature and torsion. This section proves that our 3D logarith-
mic curve also holds the following properties.

c© 2010 The Author(s)
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1. Invariance to similarity transformations – translation, ro-
tation, and scale. For the latter, we show that scaling of
the end-points scales the curve by the same scaling factor.

2. Smoothness: The tangent is defined at every point, i.e.,
∂C
∂s is finite. (In fact, our curve is C∞-smooth.)

3. Symmetry: The curve leaving the point x0 with tangent
~T0 and reaching the point x f with tangent ~Tf , coincides
with the curve leaving the point x f with tangent−~Tf and
reaching the point x0 with tangent −~T0.

4. Extensibility: For every point xm ∈ C between the end-
points x0 and x f , the curves C1 (between x0 and xm) and
C2 (between xm and x f ) coincide with C.

5. Roundness: If C interpolates two point-tangent pairs ly-
ing on a circle, then C is a circle.

Proposition 4.2 A 3D logarithmic spiral is invariant to sim-
ilarity transformations.

Proof Invariance to rotation and translation results from
Proposition 4.1. We next prove scale invariance. We are
given a logarithmic spiral C of length L, which interpo-
lates x0 = C(0) and x f = C(L), and whose parameters are
r0,σ0,∆r,∆σ. We should show that the spiral Cλ, which
interpolates λx0 and λx f for λ > 0, is equal to λC, i.e.,
∀s,0≤ s≤ L Cλ(s) = λC(s). Thus, we need to find the con-
stants r̃0, σ̃0, ∆̃r, ∆̃σ, L̃ that define the logarithmic spiral Cλ,
for which Cλ(0) = λx0 and Cλ(λL) = λx f , with tangents ~T0

and ~Tf respectively. Then, we should show that every point
on this curve coincides with λC.
It easy to show that the 3D logarithmic spiral having param-
eters r̃0 = λr0, σ̃0 = λσ0, ∆̃r = ∆r, ∆̃σ = ∆σ, L̃ = λL is the
sought-after curve.
This is done by substituting these parameters in Defini-
tion 4.1(1–3) and defining a new parameter v= s/λ (⇒ dv=
ds/λ). We get that d~T

ds = d~T
dv

dv
ds =

1
λ

d~T
dv . Similarly, d~N

ds = 1
λ

d~N
dv

and d~B
ds = 1

λ

d~B
dv . Hence, this curve satisfies Definition 4.1

with parameter v.
We can now calculate the 3D logarithmic spiral as follows:

~Tλ(s) =
∫ λs

0

d~T
du

du+~T0

v=u/λ
=

∫ s

0

1
λ

d~T
dv

λdv+~T0 = ~T (s),

Cλ(s) =
∫ λs

0

[∫ t

0

d~T
du

du+ ~T0

]
dt +λx0

v=u/λ
=

∫ λs

0

[∫ t/λ

0

1
λ

d~T
dv

λdv+ ~T0

]
dt +λx0

t̂=t/λ
=

∫ s

0

[∫ t̂

0

d~T
dv

dv+ ~T0

]
λdt̂ +λx0 = λC(s).

This holds for every 0≤s≤L. As a special case, we get the
boundary conditions Cλ(0) = λC(0) = λx0, ~Tλ(0) = ~T (0) =
~T0 and Cλ(λL) = λC(L) = λx f , ~Tλ(λL) = ~T (L) = ~Tf . �

Proposition 4.3 A 3D logarithmic spiral is smooth.

Proof According to Proposition 4.1, there exists a solution
for the Frenet-Serret equations. Therefore, ∂C

∂s = ~T (s) is de-
fined for every 0≤s≤L. �

Proposition 4.4 A 3D logarithmic spiral is symmetric.

Proposition 4.5 A 3D logarithmic spiral is extensible.

The proofs of propositions 4.4–4.5 are given in appendix B.

Proposition 4.6 A 3D logarithmic spiral is round.

Proof For given two point-tangent pairs lying on a circle,
the circle defined by r0 6= 0,σ0 →∞,∆r = 0,∆σ = 0 is a
solution of the Frenet-Serret Equations.�

4.3. Results
To verify the suitability of our spiral for describing natu-
ral objects, we compared it, as well as the other proposed
spirals (S1,S2,S3), to the spirals obtained from our scanned
objects (Figure 4). This is done as follows. Given a scanned
object, its main axis is found [HOP∗05] (this step is needed
only for S2 and S3). Then, depending on the spiral defini-
tion, the values of the free parameter (arc-length s for our
spiral and angle t for the other spirals) at sampled points, are
found. Next, the alignment between the curves is calculated
using [MHTG05]. Finally, the mean-square error (MSE)
between the spiral of the scanned object and that of the
analytically-computed spiral is computed using a Gradient-
Descent algorithm that minimizes this error.
Figure 6 displays some of the results for the normalized ob-
jects. It can be seen that our spiral better fits the data than
the other spirals and that our error is smaller. We perform
comparisons to two out of three previous logarithmic spirals
since S3 includes S1 as a special case. Thus, in essence, we
compared our results to all previous spirals.

S2 S3 Our spiral MSE
S2: 5.7E-3

S3: 1.4E-3

Ours: 0.85E-3

S2: 0.77E-3

S3: 1.6E-3

Ours: 0.21E-3

Figure 6: Fitting the different spirals (red) to the spirals of
the real data (blue) in Figure 4(a). Top: seashell, bottom:
pine cone. Right: the error obtained by fitting the spirals.
See additional results in the supplementary material.

5. Application: Modeling spiral-like structures in fauna
This section presents our results for modeling seashells,
horns, and other animal structures – all believed to comply
with the logarithmic structure.

Modeling seashells: The beauty of seashells has attracted
the attention of many researchers. Moseley [Mos38] was

c© 2010 The Author(s)
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the first to characterize seashells with logarithmic spi-
rals. His characteristic was supported experimentally by
d’Arcy [d’A42]. Raup [Rau61, Rau62] proposed to model
the morphology of a shell. In computer graphics, enhanced
appearance of shell models was suggested by [Kaw82,
Opp86, PS86]. Increased attention to details was presented
in [Ill87, Cor89]. Fowler et al. [FMP92] extended the mor-
phological model of [Cor89] and added a pigmentation pat-
tern to the model, which together resulted in pretty seashells.
Our modeling algorithm follows [FMP92]. Therefore, we
present it only briefly, for the sake of completeness of the
description. The main difference between the algorithms is
the use of our spiral to model the seashells instead of S3. We
also address the issue of shell opening, which has not been
handled previously.
The algorithm, illustrated in Figure 7, has four steps: First,
a 3D logarithmic spiral is constructed. Then, the shell’s sur-
face is constructed. Third, the shell’s opening is formed, and
finally the shell’s pattern is generated.

(a) Spiral (b) Surface (c) Opening (d) Pigmentation

Figure 7: Algorithm outline

1. 3D LOGARITHMIC SPIRAL CONSTRUCTION: A 3D log-
arithmic spiral Clog is constructed. This is done by simply
choosing the curve’s parameters r0,σ0,∆r,∆σ and L, and ap-
proximating Clog numerically using the Runge-Kutta 5 (4)
method [DP80]. This is an adaptive one-step solver, in which
the computation of the point x(tn+1) needs only the solution
at the immediately preceding time point x(tn). It is designed
to produce an estimate of the local truncation error of a sin-
gle Runge-Kutta step, and as result, allows to control the
error with an adaptive step-size. That is done by having two
Runge-Kutta methods, one with order 5 and one with order
4. This is to say, the total accumulated error has order h5

(respectively, h4), where h is a basic, non-adaptive step-size
of t. In practice, we used 250 sample points for the curves
in our models. We examined the MSE between these curves
and denser curves with 10000 sample points. The average
MSE is 1.6E-4.

2. SHELL SURFACE CONSTRUCTION: The surface is built as
a general sweep surface, where Clog is the route. In practice,
Clog is sampled and a closed curve – the generating curve
– traverses only the sampled points. The generating curve is
scaled along the route linearly w.r.t. the arc-length of the spi-
ral. The resulting surface is represented by a mesh, where a

(a) Real seashell (b) [FMP92] (c) Our result

Figure 8: Turrirella nivea. Our result is similar to the nat-
ural Turrirella nivea in width, in the number of revolutions,
in the height of each revolution, and in the opening.

(a) Real seashell (b) [FMP92] (c) Our result

Figure 9: Papery rapa. Our model captures the general
shape as well as the upper tip of the shell and the opening.

triangle strip is built between every pair of consecutive gen-
erating curves.

3. FORMING THE SHELL OPENING: The sweeping of a
uniformly growing generating curve along the logarithmic
spiral produces a strictly self-similar surface that can be
mapped onto itself by scale and rotation around the shell
axis [d’A42]. In real shells, the lips at the shell opening often
display a departure from self-similarity.
We model the opening using a closed curve Copen that de-
scribes the shape of the opening. Instead of sweeping the
generating curve along the entire logarithmic spiral as done
in [FMP92], we sweep it only when the parameter s is
in the range [s0,L− ∆L]. For the rest of the spiral, when
s ∈ [L− ∆L,L], we use a linear interpolation between the
generating curve and Copen.

4. PIGMENTATION PATTERN GENERATION: Pigmentation
patterns in shells show an enormous amount of diversity. We
simulate them using a class of reaction-diffusion models de-
veloped by [MK87a, MK87b] and used in [FMP92]. For a
given biological model, described by reaction-diffusion dif-
ferential equations, the solution results in an image, which is
mapped to the mesh.

RESULTS: Figures 8–11 illustrate some results obtained by
our algorithm. These examples were chosen since they were
modeled by [FMP92], and thus they allow us to provide a

c© 2010 The Author(s)
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(a) Real seashell (b) [FMP92] (c) Our result

Figure 10: Conus marmoreus. Our spiral yields better mod-
eling of the top and bottom tips, as well as a better opening.

(a) Real seashell (b) [FMP92] (c) Our result

Figure 11: Oliva porphyria. Note the tips and opening.

fair comparison to the results presented in their paper as well
as to the original images given there. Since the seashells
of [FMP92] were produced by a constrained spiral model
(S1 is a special case of S3), these comparisons can be viewed
also as comparisons to S1.
Our models are more similar to the natural seashells in sev-
eral manners. First, as our spiral is less restrictive, we are
able to produce seashells whose general structure better re-
sembles the natural shells than its competitors (Figures 8–9).
Second, the upper and the lower tips of our shells look more
natural (Figures 9–10). Finally, since we added opening for-
mation, we are able to control it and produce narrower or
wider openings, as required (Figures 10–11). The last two
steps of the algorithm – opening formation and pigmenta-
tion – were applied only to the models in Figures 10–11.

Modeling horns: Animal horns are structured as logarith-
mic spirals [d’A42]. Yet, there exist only a few studies that
model horns. In [Kaw82, Stȩ09] a horn is created by assem-
bling given modules along a path. In [Kaw82] every branch
of the horn is a 2D spiral, whereas in [Stȩ09] the path is S3.
We propose to model the geometry of horns in two steps.
First, the 3D logarithmic spiral is constructed. Then, a
surface that supports 3D texture (i.e. fluctuations) is con-
structed, in compliance with the fact that horns have visible
3D textures. We propose to create this structure by adding
small fluctuations to the size of the generating curve when
traversed along the route Clog. The fluctuations can be re-

(a) Image of an Ibex (b) Our model

Figure 12: Horn of an Ibex. Note the outer fluctuations.

(a) Image of an Impala (b) Our model

Figure 13: Horn of an Impala. Note the bending of the horn.

(a) Image of a Kudu (b) [Stȩ09] (c) Our model

Figure 14: Horn of a Kudu. Note the twisting.

stricted to only part of the generating curve, as illustrated in
Figures 1(c),12,14, where only the “outer” part of the horns
has fluctuations.
The provided results demonstrate not only the 3D fluctua-
tion, but also the ability of our algorithm to support bending
(curvature), as demonstrated in Figure 12, and twisting (tor-
sion), shown in Figures 1(c) and 14. Figure 14 also shows
the modeling of the Kudu’s horn in [Stȩ09]. (The paper does
not provide the image this model is inspired by.)

Modeling other animal structures: A variety of other or-
gans of animals are shaped as logarithmic spirals. Figure 15
shows our model of a cochlea, which is the auditory portion
of the inner ear. It is a spiralled, hollow, conical chamber of
bone. Figures 1(a) and 16 show our models of spiral-shaped
tails – that of a lizard and that of a sea horse. In all these
examples, our models resemble the spirals in the images. In
Figure 1(a), the mesh was textured using standard texture
mapping.

c© 2010 The Author(s)
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(a) Image of a cochlea (b) Our model

Figure 15: Cochlea

(a) Image of a sea horse (b) Our tail model

Figure 16: Sea horse tail

Running time and user interaction: The algorithm was
implemented in Matlab and ran on a 2Ghz Intel Core 2 Due-
processor machine with 2Gb of memory. The running time
is about 5 seconds for a 100,000-vertex model.
We built a GUI that allows the user to control the parame-
ters. The user’s interaction is similar to that of the previous
approaches – requiring to choose a similar number of pa-
rameters. Table 1 lists the parameters used for generating
the models presented in this paper.

Figure r0 ∆r σ0 ∆σ L
1(a),11 1 0.2 10 1 57

1(b) 5E-4 0.03 0.1 0.85 0.4
1(c) 0.6 0.1 2 15 5.2

8 0.002 0.025 0.1 0.02 2.6
9 0.008 0.1 10 10 11

10 0.005 0.03 0.2 1.25 5
12 1 0.2 1 1 8
13 0.1 0.5 0.1 1.2 3.5
14 0.01 0.01 3 5 0.12
15 0.005 0.115 0.4 0.4 2.3
16 1.75E-3 0.19 0.2 0.2 0.12

Table 1: Parameters of the models presented in the paper

Limitations: Our modeling technique cannot model large
spikes and extrusions, which exist in some seashells,
e.g., Figure 4 (top). In addition, it cannot handle distortions

in the model, such as the one shown at the bottom tip of the
shell in Figure 9(a).

6. Conclusion
Logarithmic spirals characterize many natural structures.
This paper addressed the challenge of extending the well-
known 2D logarithmic spiral to 3D. Our mathematical def-
inition was motivated by studying previous extensions and
showing that they may be too restrictive for representing the
variety of spiral-shaped objects.
We provide three types of analysis of our spirals as well as of
previously proposed spirals: theoretical, empirical, and vi-
sual. Theoretically, we prove some desirable properties of
the spiral. Empirically, we scanned objects and tested the fit
between the mathematical definitions and actual spirals in
nature. Visually, we produced models that demonstrate the
use of the various spirals for modeling structures that appear
in the wildlife. Our spirals outperform the other spirals in all
these aspects.
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Appendix A: S1,S2, S3 and the 3D definitions
This section discusses the properties of the existing 3D spiral
extensions S1,S2,S3 (Equations (1)–(3)).

Proposition A.1 S1 is a curve of constant slope.

Proof: The curvature and the torsion of the spiral S1 are cal-
culated as [dC76]:

κ(t) =
|S′1(t)×S′′1 (t)|
|S′1(t)|3

=
r0
√

1+ ln2(ξ)

ξt [(r2
0 + z2

0)ln
2(ξ)+ r2

0]
,

τ(t) =
(S′1(t)×S′′1 (t))·S′′′1 (t)
|S′1(t)×S′′1 (t)|2

=
z0ln(ξ)

ξt [(r2
0 + z2

0)ln
2(ξ)+ r2

0]
.

Thus, the spiral has a constant slope:

τ(t)
κ(t)

=

(
z0ln(ξ)

r0
√

1+ ln2(ξ)

)
. �

Hereafter we prove that S2,S3 (Equations (2)–(3)) do not sat-
isfy any of the four 3D Definitions. We first prove that 3D
Definition 1 is violated in the general case. Then we prove,
by providing counter examples, that 3D Definitions 2-4 are
violated. In these examples, the parameters used are r0 =
1,α = 3,ξ = 1.1 for S2 and r0 = 1,z0 = 3,ξr = 1.1,ξz = 1.5
for S3.

Proposition A.2 S2 and S3 are not equitangential spirals.

Proof: According to 3D Definition 1, the tangents to the
curve at points having polar angles tn = t0 + 2πn (n ∈ N)
should be equal, thus they should not depend on n.
But, in S2 the tangent is:

T2(tn) = [r0ξ
tn(ln(ξ)cos(t0)− sin(t0)),

r0ξ
tn(ln(ξ)sin(t0)+ cos(t0)),α]/‖T2‖,

where ‖T2‖ =
√

r2
0ξ2tn(1+ ln2(ξ))+α2, whereas in S3 the

tangent is:

T3(tn) = [r0ξ
tn
r (ln(ξr)cos(t0)− sin(t0)),

r0ξ
tn
r (ln(ξr)sin(t0)+ cos(t0)),z0ln(ξz)ξ

tn
z ]/‖T3‖,

where ‖T3‖=
√

r2
0ξ

2tn
r (1+ ln2(ξr))+ z2

0ξ
2tn
z ln2(ξz).

Hence, in both cases the tangents depend on n. �

Proposition A.3 S2 and S3 are not geometrical spirals.

Proof: According to 3D Definition 2, the length of the ra-
dius should depend exponentially on the polar angle, thus
the graph of log(R) w.r.t the polar angle should be linear.
Figure 17 demonstrates that for the above counter-examples,
the graphs of these spirals are not linear. �

(a) S2 [Pic89] (b) S3 [FMP92]

Figure 17: log(R) vs. t for the parameters specified above

Proposition A.4 S2 and S3 are not proportional spirals.

Proof: According to 3D Definition 3, the ratio between the
length of the radii at the polar angles t1 = t0 and t2 =
t0 +2πn for t0 ∈ [0,2π] and n ∈ N should be constant, hence

R(t0)
R(t0+2πn) = const, ∀t0 ∈ [0,2π].

Figure 18 shows a counter example for t0 =
0,π/8,π/4,3π/8,π/2 and n = 1. It shows that in both
cases the 3D definition does not hold. �

Proposition A.5 S2 and S3 are not logarithmic spirals.

Proof: Figure 19 presents the radius of the curvature and the
radius of the torsion for S2 and S3 for the counter example

c© 2010 The Author(s)
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(a) S2 [Pic89] (b) S3 [FMP92]

Figure 18: R(t0)
R(t0+2π)

vs. t0

(a) S2 [Pic89] (b) S3 [FMP92]

Figure 19: Radii of the curvature and torsion as a function
of s.

whose parameters are specified above. As can be seen, both
do not satisfy 3D Definition 4. �

Appendix B: Proofs of properties of our spiral
Proposition 4.4 A 3D logarithmic spiral is symmetric.

Proof: Given a 3D logarithmic spiral C that interpolates
the point-tangent pairs (x0,~T0) and (x f ,~Tf ), we need to
show that the 3D logarithmic spiral Csym that interpolates
(x f ,−~Tf ) and (x0,−~T0) coincides with C.
Suppose that the parameters of C are r0,σ0,∆r,∆σ,L. We
show below that the 3D logarithmic spiral Csym whose pa-
rameters are r̃0 = r0 + ∆rL, σ̃0 = σ0 + ∆σL, ∆̃r = −∆r,
∆̃σ = −∆σ, L̃ = L, coincides with C and that their tangents
are opposite. According to Definition 4.1 we get:

d~TCsym (s)
ds =

(
1

r0+∆rL−∆rs

)
~NCsym(s),

d~NCsym (s)
ds = −

(
1

r0+∆rL−∆rs

)
~TCsym(s)

+
(

1
σ0+∆σL−∆σs

)
~BCsym(s),

d~BCsym (s)
ds = −

(
1

σ0+∆σL−∆σs

)
~NCsym(s).

By defining a new parameter v = L− s (⇒ dv = −ds),

we get that
d~TCsym

ds =
d~TCsym

dv
dv
ds = − d~TCsym

dv = d~TC
dv . Similarly,

d~NCsym
ds = − d~NCsym

dv and
d~BCsym

ds = − d~BCsym
dv . By the tangent

definition we get:

~TCsym(L− s) =
∫ L−s

0
d~TCsym

du du−~Tf
v=L−u
=

∫ s
L

d~TCsym
dv dv− ~Tf =

∫ L
s

d~TC
dv dv−

(∫ L
0

d~TC
dv dv+~T0

)
=−

∫ s
0

d~TC
dv dv−~T0 =−~TC(s).

We now show that the curve Csym coincides with the curve C:

Csym(L− s) = x f +
∫ L−s

0

[∫ t
0

d~TCsym
du du−~Tf

]
dt

v=L−u
= x f +

∫ L−s
0

[∫ L−t
L

d~TCsym
dv dv−~Tf

]
dt

t̂=L−t
= x f −

∫ s
L

[∫ L
t̂

d~TC
dv dv−~Tf

]
dt̂

= x0 +
∫ s

0

[∫ t̂
0

d~TC
dv dv+~T0

]
dt̂

Eq. (5)
= C(s). �

Proposition 4.5 A 3D logarithmic spiral is extensible.

Proof: Given a 3D logarithmic spiral C that interpolates the
point-tangent pairs (x0, ~T0) and (x f , ~Tf ), we will show that
for every (xm, ~Tm) on C, the curves C1 between x0 and xm
and C2 between xm and x f coincide with C.
Assume that C has parameters r0,σ0,∆r,∆σ,L. Let L1 be the
length of the sub-curve of C from x0 to xm. By the tangent
definition and by Equation (5):

~Tm =
∫ L1

0
d~T
du du+ ~T0, (6)

xm =
∫ L1

0

[∫ t
0

d~T
du du+ ~T0

]
dt +x0. (7)

By the uniqueness of the curve (Proposition 4.1), C1 with
the parameters r̂0 = r0, σ̂0 = σ0, ∆̂r = ∆r, ∆̂σ = ∆σ, L̂ = L1,
coincides with C for 0≤s≤L1.
Next, we show that C2 with the parameters r̃0 = r0 +
∆rL1, σ̃0 = σ0 + ∆σL1, ∆̃r = ∆r, ∆̃σ = ∆σ, L̃ = L− L1, co-
incides with C for L1≤s≤L. Let us denote the tangent of the
curve C at C(s) by ~TC(s) and the tangent of the curve C2
at C2(s) by ~TC2(s). We need to show that C2 that starts at
(xm, ~Tm) reaches C(s) with tangent ~TC(s), ∀s, L1≤s≤L.
Similarly to the proof of Proposition 4.4, it can be shown
that ∀s,L1 ≤ s≤ L, the tangent at C2(s−L1) is ~TC(s):

~TC2(s−L1) =
∫ s−L1

0
d~TC2

du du+ ~Tm
v=u+L1=

∫ s
L1

d~TC
dv dv+ ~Tm

=
∫ s

L1

d~TC
dv dv+

∫ L1
0

d~TC
dv dv+ ~T0 =

∫ s
0

d~TC
dv dv+ ~T0 = ~TC(s).

Next, we show that ∀s,L1 ≤ s≤ L, C2(s−L1) = C(s):

C2(s−L1) = xm +
∫ s−L1

0

[∫ t
0

d~TC2
du du+ ~Tm

]
dt

v=u+L1= xm +
∫ s−L1

0

[∫ t+L1
L1

d~TC
dv dv+~Tm

]
dt

t̂=t+L1= xm +
∫ s

L1

[∫ t̂
L1

d~TC
dv dv+~Tm

]
dt̂

= x0 +
∫ L1

0

[∫ t̂
0

d~TC
dv dv+~T0

]
dt̂ +

∫ s
L1

[∫ t̂
L1

d~TC
dv dv+~Tm

]
dt̂

Eq. (7)
= x0 +

∫ L1
0

[∫ t̂
0

d~TC
dv dv+~T0

]
dt̂ +

∫ s
L1

[∫ t̂
0

d~TC
dv dv+~T0

]
dt̂

Eq. (6)
= x0 +

∫ s
0

[∫ t̂
0

d~TC
dv dv+~T0

]
dt̂

Eq. (5)
= C(s).�
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