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Figure 1: Completing a broken artefact using four points of user input. The hole spans part of the ear and parts of the curls. As the curls
differ from each other, the hole cannot be completed by copying another part of the head. Our completion (f) uses the user’s four points (c), to
complete the original object (a,b). For problems such as this, involving large holes whose reconstruction requires consideration of semantics and
context, our user-guided process compares favorably to (d) recent, automated context-based approaches [HTG14], (e) even if they are extended
in a straightforward manner to respect user constraints.

Abstract
We present a user-guided, semi-automatic approach to completing large holes in a mesh. The reconstruction of
the missing features in such holes is usually ambiguous. Thus, unsupervised methods may produce unsatisfac-
tory results. To overcome this problem, we let the user indicate constraints by providing merely four points per
important feature curve on the mesh. Our algorithm regards this input as an indication of an important broken
feature curve. Our completion is formulated as a global energy minimization problem, with user-defined spatial-
coherence constraints, allows for completion that adheres to the existing features. We demonstrate the method on
example problems that are not handled satisfactorily by fully automatic methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Archaeological artefact illustrators use pen-and-ink as well
as 2d illustration software, to record the appearance of found
objects. Tina Ross, a contemporary illustrator, writes

Drawing of archaeological material... helps to bring to
life aspects of the objects now lost through time and
destruction. Decoration, shape, manufacture details, and
reconstruction possibilities can be highlighted and allow
further study by specialists. [Ros]

An important task of archaeological illustrators is interpre-
tation and reconstruction illustration [Bar77], a process that
seeks to depict archaeological finds in a manner that estab-
lishes context and completes a broken visual aesthetic (see
Fig. 2); this helps specialists to focus on cultural understand-
ing, and helps the broader public to decypher and appreciate
ancient artefacts.

While present day illustrators have been mainly
trained in 2d drawing, what if we could provide
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effective tools to aid such illustrators in recon-
structing the 3d geometry of a broken artefact?

Figure 2: Broken vessel, in-
terpreted, reconstructed. Il-
lustrator: Tina Ross.

Given geometry with
large, missing pieces,
we set out to develop a
tool that aids artists in
developing a meaningful
completion of the shape.

While our specific
problem is less studied,
the broader question of
hole filling has been more
comprehensively explored by the geometry processing
community. When 3d models are acquired by scanning
tangible objects, the resulting geometry often contains
many small holes, due to occlusion, noise, and other
factors. Early work filled these holes with a smooth comple-
tion [DMGL02, Lie03]. Later approaches employed context
to reconstruct missing fine details and texture, by reusing
pieces from other parts of the same [SACO04, HTG14] or
similar objects [KS05, PMG∗05].

Many of these pioneering approaches have the benefit of
being autonomous. In the case of archeological reconstruc-
tion, we take the view that expert user guidance is beneficial.
Archaeological illustrators imbue their works with context,
history, and semantics extending beyond the reach of cur-
rent computational approaches. In Fig. 1, our process com-
pletes the ear and its surroundings in a natural manner that is
challenging to achieve with fully automated methods; e.g.,
context based completion attaches the ear to the hair (d-e).

Contributions: Our approach seeks to minimize, stream-
line, and make intuitive the interaction and input requested
of the user. To achieve this goal we propose the following:

Simple, efficient user input: Our algorithm follows the
user’s guidelines and generates aesthetic meshes. We present
a high level modeling tool that lets the user influence the out-
come by simply indicating the prominent missing fine fea-
ture curves. To streamline user input, we ask the user to pro-
vide only four points per feature curve that crosses the hole,
as seen in Fig. 1(c). These points are then used to construct
an Euler spiral, which was shown to suit human perception
of missing curves [GXH01, HT12].

Context-based completion respecting user constraints:
We introduce a completion algorithm that respects the ex-
isting feature curves. The completion is formulated as a
global energy minimization problem that takes into account
the user’s constraints (§3). This is done by building triangle
strips (a sub-mesh) along each spiral, which avoid twists and
connect smoothly to the hole’s surroundings (§4). Each such
sub-mesh divides the hole into smaller sub-holes. These are
completed smoothly and then the entire completed region
(i.e., both the triangle strips and the completed sub-holes) is

modified so as to minimize the energy, while taking special
care of the spirals’ surroundings (§5).

We demonstrate our process on several challenging cases,
evaluating the approach both qualitatively and quantitatively.

2. Related work

Smooth surface completion: The earlier work on surface
completion may be classified as volumetric methods, which
convert the mesh into a signed distance function over
a grid [DMGL02, VCBS03, Ju04, BPK05, GLWZ06],
or methods that operate directly on the given
mesh [Lie03, CDD∗04, PMV06, ZGL07]. Next, post-
processing can be used to recover sharp features [CC08].
For a comprehensive survey, see [Ju09]. These methods
typically suffice for small holes, which do not contain fine
geometric features.

Context-based surface completion: The context-based
approach manages to restore the fine geometric fea-
tures to the extent that the exemplars serve as pri-
ors. These priors are either patches from the input
mesh [SACO04, BSK05, HTG14], patches from other
meshes [GSH∗07], or an entire region from other
meshes [KS05, PMG∗05]. These methods are intended for
objects with sufficient exemplars as priors and for not-too-
large holes.

User-guided surface completion: When the above require-
ments do not hold, user input can be beneficial. Kraevoy and
Sheffer [KS05] let the user mark several points on the model
and on a template, in order to assist the alignment. Takayama
et al. [TSS∗11] present GeoBrush, which allows the user to
copy-and-paste 3D surface geometry. Both methods rely on
the presence of another region on the template that fits the
missing region, an assumption we do not make. Bendels et
al. [BGK06] let the user model the missing geometry on top
of an initial smooth completion. This region is then refined
by copying patches from other parts of the object. Like other
modeling methods, it might require expertise and user effort.
Wang et al. [WLL∗12] introduce a method for CAD models,
which first completes feature curves that cross the hole and
then completes smoothly the remaining holes.

Our method is inspired by that of Sun et al. [SYJS05]
for image completion. There, the user marks the important
missing structure information by sketching lines through the
hole. Then, the image along the curves is reconstructed, fol-
lowed by the completion of the remaining unknown regions.

We also wish the user to indicate the meaningful feature
lines through the hole. However, since our curves are three
dimensional, the user cannot draw them in practice. There-
fore, we let the user mark only the end-points of the curves
and our algorithm constructs suitable curves, before com-
pleting the hole.
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(a) input (b) feature curve (c) smooth comp. (d) final result
& surroundings comp.

Figure 3: Algorithm outline. Given an object with a large hole (a), the user marks four points on a missing ridge and the curve and its
surroundings are constructed (b). Then, the remaining holes are smoothly completed (c). This smooth completion is modified to get the final
result (d).

3. Algorithm outline

Our goal is to complete a surface while being respectful
of the features marked by the user. Algorithm 1 outlines
our feature-aware completion method (Fig. 3). Given four
points marked by the user, which lie on a broken feature
curve (a ridge or a valley) that crosses the hole, the al-
gorithm first completes the curve that fits these points and
then constructs two triangle strips along it (Fig. 3(b)) (§4).
As a result, the hole is split into several smaller holes.
Next, these holes are smoothly completed (Fig. 3(c)). This
can be done using a variety of methods for smooth com-
pletions [Lie03, CDD∗04, PMV06]. We use the advancing-
front method of Zhao et al. [ZGL07]. Then, each patch
on the smooth completion or on the triangle strips, termed
target patch, is replaced by a more suitable source patch,
by minimizing the global error (1) in an iterative manner
(Fig. 3(d)) (§5). The iterative refinement is accelerated by
a coarse-to-fine approach, where larger neighborhoods are
first used to reduce the low frequency error, and smaller
neighborhoods then reduce the high frequency error.

Algorithm 1 Our user-guided surface completion algorithm
1: For each set of the user’s four points:

Construct the feature curve and the triangle strips
along it (§4)

2: Smoothly complete the rest of the hole
3: For different object resolutions (from coarse to fine):
4: Iteratively, for each target patch

Replace it by a source patch, minimizing the global
error (1) (§5)

5: Project the target of the fine object to the coarse object

We formulate our problem as a global energy minimiza-
tion problem, as follows. Let S denote the source, the input
surface, and T denote the target, the unknown surface that
completes the hole. Let Ti and S j be patches in T and S, re-
spectively. We can distinguish between patches that lie along
the feature curves (TF ) and other patches on T . It is vital that
along the curve the completion would use spatially coher-
ent source patches, which will maintain the continuity of the

curve. Therefore, we define our minimization problem using
two distinct dissimilarity metrics between patches, one for
TF (D2) and the other for the rest of the target (D1):

ε(T,S) =
1

NT −NTF
∑

Ti∈T\TF

min
S j∈S
D1(Ti,S j)

+
1

NTF
∑

Ti∈TF

min
S j∈S
D2(Ti,S j) , (1)

where NT is the number of patches in T and NTF is the num-
ber of patches in TF . We elaborate on the definitions of D1
and D2 in §5.3.

4. Completion of the feature curves and their
surroundings

For each feature curve, the user defines its endpoints on the
boundary of the hole. Our algorithm first produces a suitable
curve that connects these end-points (§4.1). Next, the curve’s
surroundings are constructed along it in a way that preserves
smoothness at the hole’s boundary and avoids twists along
the curve (§4.2).

4.1. Curve construction

Given boundary conditions, the most common way to con-
struct a curve is to use splines [Far93]. Splines are fast and
easy to compute, but they are not always the curves preferred
by the human visual system [HT12]. We seek a curve that
can be specified as easily, and yet is more appealing.

Ullman [Ull76] and Knuth [Knu79] showed that there
are several properties that are important for the appeal of a
curve. These include invariance to similarity transformation,
symmetry, extensibility, smoothness, and roundness. We use
the 3D Euler Spiral [GXH01, HT12], which satisfies these
properties. This curve is defined as a curve for which the cur-
vature κ and the torsion τ change linearly along the curve:

κ(s) = κ0 +∆κ · s, τ(s) = τ0 +∆τ · s,

where s is the arc-length parametrization and κ0,∆κ,τ0 and
∆τ are constants.

c© 2014 The Author(s)
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Figure 4: Curve comple-
tion. Given the user’s end
points (yellow), our algo-
rithm computes a 3D Euler
Spiral.

Fig. 4 illustrates our in-
terface: the user marks only
four points on a broken fea-
ture line. Two of the points
marked by the user are the
end points, x0 and x f . The
other two points help the sys-
tem to determine the tan-
gents, t0 and t f , at the end
points. This interface is very
intuitive and easy to use. In
practice, we use Euler spirals
to complete ridges and val-
leys [OBS04] that cross the hole.

Given the boundary conditions, the Euler curve γ(s) that
starts at x0 with tangent t0 and minimizes both the difference
between the curve’s position at s = L (L being the length of
the curve) and x f , and the difference between the curve’s
tangent at s = L and t f , is sought:

e = ‖γ(L)−x f ‖2 +‖t(L)− t f ‖2.

We follow the gradient-descent method of [HT12], which
minimizes e, by finding the parameters, κ0,∆κ,τ0,∆τ and L,
of the desired curve.

4.2. From a feature curve to triangle strips along it

Given a 3D Euler Spiral, our goal is to construct a sub-mesh,
which consists of two triangle strips, along it (one on each
side of the curve). The question is how to define the locations
of the additional vertices. We define a frame, a coordinate
system, that traverses along the spiral, in which the newly-
introduced vertices reside. On this frame, we enforce two
constraints. First, the strips should connect smoothly to the
hole’s boundaries. Second, the strips should have minimal
twist. Once the frame is set, we define the positions of the
new vertices at this frame in the proximity of the spiral and
build strips between consecutive vertices.

The standard approach to define a set of frames along a
given curve is to use the Frenet frame [dC76]. The prob-
lem here is that twists might result, which could cause
self intersections. Another option is to use the Bishop
frame [Bis75, WJZL08]. This frame avoids twists, but the
strips might not connect smoothly to both sides of the hole.
We propose a variation on the Bishop frame, which avoids
this pitfall, as explained below.

Bishop frame-based triangle strips: Our frame’s axes
should coincide both with the spiral’s tangents and with the
normals to the surface at the two end-points of the curve, v0
and vL. This is done by defining two Bishop-frames and in-
terpolating between them, as follows. Let us denote a Bishop
framed curve as {γ; t,m1,m2}, where γ indicates the curve
along which the axes “move”, t(s) is the tangent of γ(s),
and m1(s) and m2(s) are perpendicular to t(s) and to each

Figure 5: Bishop frames along the curve. A Bishop frame that
is assigned at s = 0 (black) might be twisted relatively to a Bishop
frame that is assigned at s = L (red). The existing vertices on the
hole’s boundary are marked in blue. The newly defined vertices us

and ws (orange) are defined using our interpolated frame (orange)
at vs (red).

other. In our solution, the first frame, ΓB1 = {γ; t,m1,m2},
coincides with the curve’s tangent and normal to the sur-
face at v0. The second frame, ΓB2 = {γ; t,n1,n2}, coincides
with the curve’s tangent and normal at vL. Note that the two
frames share one axis—the t axis.

To interpolate between the two frames, ΓB1 and ΓB2, we
compute the angle θ about t between the two frames at s=L
(see Fig. 5). We then define the interpolated frame as

ΓBs = R(θs)ΓB1,

where R is a rotation matrix about t&θs = αsθ, 0≤ αs ≤ 1.

This frame twists around γ(s) only as needed to bridge the
gap (θ) between the frames ΓB1 and ΓB2 at s=L. Moreover,
the definition of θs assures that if the arc-length s is sam-
pled uniformly, then θs changes uniformly; thus, the twist
is spread uniformly along the curve. It should be noted that
this solution is equivalent to the discrete parallel transport
presented by Bergou et al. [BWR∗08], which minimizes the
elasticity along a rod.

Let u0 and w0 be v0’s two adjacent vertices on the bound-
ary of the hole (Fig. 5) and uL and wL be vL’s adjacent ver-
tices. Having defined a frame with a minimal twist along
γ(s), we should build a strip with a smooth connection to
the hole’s boundary. To do so, using a bilinear interpolation,
we set the positions of the newly introduced vertices us (ws)
next to each vertex vs on γ(s) as:

us · t(s) = (1−αs)(u0 · t(0))+αs(uL · t(L))
us ·R(θs)m1(s) = (1−αs)(u0 ·m1(0))+αs(uL ·n1(L))

us ·R(θs)m2(s) = (1−αs)(u0 ·m2(0))+αs(uL ·n2(L)).

Finally, we build two triangle strips between consecutive
vertices, one on each side of the curve.

5. From two triangle strips to hole filling

Given a curve and two triangle strips along it, our goal is
to complete the remaining holes so as to minimizes (1). An

c© 2014 The Author(s)
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initial smooth completion is constructed for each hole using
the advancing-front method of Zhao et al. [ZGL07]. Then,
for each patch on this initial completion Ti, a more suitable
patch from the remaining of the object is found and replaces
that patch. We found that simply selecting the "best" patch
might lead to erroneous completion. Instead, we first find
several candidate patches and then select the best one (§5.1).
Patches in the vicinity of the completed curve (TF ) get spe-
cial care (§5.2). Finally, the positions of the vertices on the
completion are modified, so as to decrease (1) (§5.3).

5.1. Candidate selection of similar patches

Our goal is to replace each initial target patch with a better
one. Since the initial completion is smooth and inaccurate,
local information cannot be trusted. Even more global de-
scriptors, such as the Global Point Signature (GPS) [Rus07]
or the Heat Kernel Signature (HKS) [SOG09], do not suffice.
This is so since, as will be discussed in §5.2, patches that lie
on the user’s curve should maintain spatial coherence, and
this information is not necessarily captured by the descrip-
tor. Therefore, rather than selecting a patch whose descriptor
is the most similar, we view the good matches as “hints” re-
garding the locations where the best patch may be found. In
what follows, we briefly describe the patch descriptor and
the dissimilarity measure we use.

Patch descriptor: The HKS descriptor [SOG09] depicts the
diffusion of heat across the surface over time. The heat val-
ues over different times provide an effective multi-scale sig-
nature for shape matching. We utilize the HKS-based patch
descriptor of [HTG14], described hereafter. We define a
patch around vertex v to be the connected neighborhood that
falls within a ball of radius R centered at v. Its descriptor
consists of two parts. The first is the average of the HKS val-
ues of the patch’s vertices. Averaging is performed for each
time t, resulting in a vector of averages (HKSµ). The second
part is the variance of these values, resulting in a vector of
variances (HKSσ2 ). Given a patch Pi, its descriptor is hence

HKS(Pi) = {HKSµ(Pi)[0,1],HKSσ2(Pi)[0,1]},

where the notation [0,1] indicates that each part is normal-
ized separately to [0,1], by setting the L∞-norm to 1.

The question is which time domain to use, as different
time domains reflect on the range in which the two patches
match. We use four time domains, which were found empir-
ically to be beneficial for normalized objects: the entire time
domain and its three quartiles. Thus, for each patch we have
four descriptors, each is compared only to descriptors that
have the same time domain.

Dissimilarity measure: We define the dissimilarity measure
between Ti and S j as

||HKSµ(Ti)−HKSµ(S j)||2 + ||HKSσ2(Ti)−HKSσ2(S j)||2.

Candidates selection: Given a target patch Ti ∈ T , for each

of its four descriptors, we search for the k most similar
source patches S j ∈ S , j = 1, ...,k (we use k = 0.1% of to-
tal source vertices). This set of candidate patches is denoted
as S(Ti). We discuss the selection of the best patch among
these candidates in §5.3.

5.2. Matching feature curves

Our aim is to reconstruct a broken feature curve and its sur-
roundings, by using a similar curve from the source. For
that, we first find for each feature curve and its neighboring
patches a matching curve with its neighboring patches from
the source as we elaborate below. Next, using the matched
patches, the feature curve is modified together with the en-
tire completed region (§5.3).

One way to find a matching curve from the source would
be to apply some curve detection algorithm on surfaces and
use the most similar curve. This approach was not found
to be beneficial, as these algorithms usually produce short
jagged curves. Moreover, this solution ignores the shape
of the surroundings of the curves. Instead, we consider the
patches in the vicinity of the spiral.

We are given the 3D Euler Spiral γT and suppose that we
are also given a candidate matching source curve γS on the
object (we will discuss later how to construct γS). We mea-
sure the dissimilarity between the two curves, γT and γS, by
considering the alignment error not only between them, but
also between patches in their vicinity.

Specifically, let Ti ∈ TF be a target patch whose center lies
on the given curve γT and S j ∈ S(Ti) be its matching source
patch. In addition, let D(γi,γ j) be a scalar-valued dissimi-
larity metric between two curves and D(Ti,S j) be a scalar-
valued dissimilarity metric between two patches. We define
our similarity error to be

E(γT ,γS) =D(γT ,γS)+
1

NTF
∑

Ti∈TF

min
S j∈SF

D(Ti,S j). (2)

The dissimilarity between two curves is defined as fol-
lows. Let (R, t) be the rigid transformation that aligns the
two curves, vi ∈ γT be the sample points on γT , lT be the
number of sample points on γT , and v j ∈ γS be the sample
points on γS. D(γT ,γS) is defined as

D(γT ,γS) =
1
lT

∑
vi∈γT

min
v j∈γS

||(Rv j + t)−vi||2.

The dissimilarity between the curves’ surroundings is de-
fined using the patches whose centers lie on the curves. Let
vTi

k be a vertex of Ti, vS j
k be its corresponding point on S j un-

der (R, t) that aligns γS with γT , and Ni be the number of ver-
tices in Ti. The dissimilarity between the patches, D(Ti,S j),
is defined as:

D(Ti,S j) = min
R∗

1
Ni

Ni

∑
k=1
||(R∗ vS j

k + t∗)−vTi
k ||

2,

c© 2014 The Author(s)
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where t∗ is the translation vector from the center of S j to
the center of Ti. Here, the closest source patch S j is the one
whose center has the smallest L2-norm to the transformed
center of Ti under (R, t).

What is this γS? Recall that in §5.1, we already found for
each target patch Ti ∈ T several candidate source patches
S(Ti). Algorithm 2 uses this set to find a matching source
curve that minimizes (2). This procedure iterates over four
steps, decreasing (2) at each iteration: First, we find for each
Ti the set of transformations that aligns its center to the cen-
ters of its matching S(Ti). Next, using these transforma-
tions, we define the candidate matching curves. Then, among
these, we select the curve that minimizes (2). Finally, we up-
date the set of candidate patches. We elaborate below.

Algorithm 2 Our feature curve matching algorithm
1: While E(γT ,γS) decreases
2: Find several rigid xforms using (Ti,S(Ti)) matches
3: Define candidate curves, γS’s, using the above xforms
4: Select the γS, among the candidates, which min. E
5: Update S(Ti)

Transformation selection: We use the centers of S(Ti),
vS(Ti)

c as “guesses” for the positions of points on possi-
ble source curves. These are reasonable guesses, since the
patches in S(Ti) were found to match portions of the query
curve and its surroundings. Yet, these guesses might not nec-
essarily be spatially coherent, thus might not form a curve.

To find a set of spatially coherent vertices, we search
for a transformation that suits several “guesses.” For each
“guess,” we randomly select three neighboring guesses (in
a ball with radius 5|eavg|, where |eavg| is the averaged edge
length), along with their matching target vertices (the center
of each Ti). Therefore, we have four source vertices (cen-
ters of patches in S(Ti)’s) and four matching target vertices.
We find the rigid transformation that aligns these four pairs
of vertices, by minimizing the MSE between the positions
of the transformed target vertices and the positions of their
matching source vertices. We regard this transformation as
the one that transforms γT to the curve γS that will be de-
scribed next.

Candidate selection of source features: Given the curve
γT and the found transformation, the matching source curve
γS is defined to be the set of ridge (valley) vertices that are
closest to the vertices of the transformed γT .

Best curve selection & update to the set of candidates:
Among the candidate curves, we choose the one that mini-
mizes (2). Once this curve is selected, the set of candidates
S(Ti) is updated. This is done by finding, for each trans-
formed target patch, its k nearest source patches (we use
k = 0.1% of total source vertices). These are the ones whose
centers are ridges (valleys) and have the smallest L2-norm
to the transformed center of Ti under the transformation that
aligns γT with the selected γS.

Evaluation: Fig. 6 compares our resulting matching curve
to the best matching patches found by our descriptor (§5.1).
As can be seen, the matches are highly improved and indeed
are spatially coherent.

(a) vTi
c (b) naïve vS(Ti)

c (c) our vS(Ti)
c

Figure 6: Our curve (& surroundings) matching algorithm pro-
duces spatially-coherent matches. (a) Input. (b) Using our patch
descriptor, some of the matches are wrong. (c) Spatial coherence
improves the results considerably.

5.3. Error minimization

Given the set of candidate similar patches for each Ti ∈ T ,
we should select among them the best one. We then use it
to decrease (1), by moving the vertices to new positions that
better fit the selected matched patches.

After applying §5.1-5.2, (1) becomes

ε(T,S) =
1

NT −NTF
∑

Ti∈T\TF

min
S j∈S(Ti)

D1(Ti,S j)

+
1

NTF
∑

Ti∈TF

min
S j∈S(Ti)

D2(Ti,S j). (3)

We next define the dissimilarity metrics D1 and D2, which
are used to find the rigid transformation that best aligns the
patches. D2 is used for patches whose centers lie on the
curve, thus it should comply with some global rigid trans-
formation, whereas D1 is used for all the other patches.

To define D1, we use the HKS descriptor, which was al-
ready calculated in §5.1, to find for each vertex in Ti (vTi

k ) its

corresponding vertex in S j ∈ S(Ti) (vS j
k ). Using these pairs,

we calculate the rigid transformation between Ti and S j by
solving the following least-squares minimization problem:

D1(Ti,S j) = min
R

Ni

∑
k=1
||(RvS j

k + t)−vTi
k ||

2, (4)

where t is the translation vector from the center of S j to the
center of Ti.

For D2 we use the transformation of the curve found in
§5.2, which returns for each vertex of Ti (vTi

k ) its correspond-

ing vertex in S j (vS j
k ) (Ni is the number of vertices in Ti):

D2(Ti,S j) = NiD(Ti,S j), (5)
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Having definedD1 andD2, Algorithm 3 is utilized to min-
imize (3). The algorithm iterates on two steps, while decreas-
ing (3): First, for each target patch Ti, its most similar source
patch S j ∈ S(Ti), the one that minimizes either D1 or D2,
is found. Second, the positions of the vertices are refined to
reduce (3), as explained below.

Algorithm 3 Our error minimization algorithm
1: While ε(T,S) decreases
2: For each target patch Ti:
3: Find the most similar patch in S(Ti)
4: Update the positions of the vertices in the filled hole

Surface update: Given a corresponding source patch for
each target patch, our goal is to move each of the target ver-
tices to a new position, which decreases (3). Let v ∈ Ti be a
vertex in the filled hole, T v be the set of patches that contain
v, and Sv be the set of their most similar source patches. For
each patch Sk ∈ Sv, we identify an anchor point uk that best
fits v when Sk is aligned to Tk ∈ T v. Note that uk is a point
lying on the surface, but not necessarily a vertex. Let ũk be
the anchor point after applying the rigid transformation of
(4) or (5) (depending whether the patch is on the curve or
not) that aligns Sk to Tk.

The contribution of v to (3) is derived from its contribu-
tion to (4) or (5) for all Tk ∈ T v:

εv =
1

NT

K

∑
k=1

(v− ũk)
2.

Minimizing this equation yields the locally optimal position

vd =
1
K

K

∑
k=1

ũk. (6)

This solution, however, is overly smooth. To solve this pit-
fall, we replace the average in (6) with a weighted average:

vd =
1

∑
K
k=1 ωk

K

∑
k=1

ωkũk +δv. (7)

Here, the more similar Sk and Tk are, the larger ωk is. δv
enforces smoothness on the boundary of the hole.

6. Results and implementation

Qualitative evaluation: Figs. 1, 7-13 present our results
on several challenging cases, which have irregular 3D tex-
tures. In Fig. 1(f) we complete a broken ear of a head model.
This case is difficult, as the ear should not be connected to
the near-by hair. Moreover, as the curls differ, the neigh-
borhood of the broken ear should not be copied from the
neighborhood of the other ear. We compare our result to that
of [HTG14] and to our modification to [HTG14], where a
user’s curve is used to get a better initialization. Our result is
evidently better than these two.

(a) hole & strips (b) our completion

Figure 7: Completing an asymmetric amphora

(a) hole & strips (b) our completion

Figure 8: Completing a hole on a CAD model

Fig. 7 displays our result on an asymmetric, very noisy,
amphora. Despite the asymmetry, our completion manages
to nicely complete the broken handle. Fig. 8 shows our com-
pletion on a CAD model, where the curved hole was nicely
maintained thanks to the curves defined by the user. Fig. 9
illustrates a case of an irregular pattern, where there is no re-
gion on the model to copy from. The user’s input guides the
reconstruction of the hairdo and its salient features. Fig. 10
shows another example of an asymmetric model with irreg-
ular patterns, for which our algorithm manages to complete
the hole in an appealing manner.

Figs. 9-10 also provide comparisons of our results to those
of [HTG14] and our modification to it (a better initializa-
tion that considers the input curves). Our completions out-
perform the others, as they look more similar to the original
object.

Figs. 11-12 present our completions of real scanned ar-
chaeological artefacts. These models are challenging not
only because they are asymmetric (they are hand-made), and
thus the valleys differ from each other and the circles are not
exactly circular, but also because they are noisy. Neverthe-
less, our algorithm produces compelling completions, which
nicely capture the shape of the missing region.

Quantitative evaluation: When coming to evaluate a com-
pletion quantitatively, one should recall that there is no “cor-
rect” completion, only one that looks appealing (as the in-
formation is indeed missing). How can one provide evalua-
tion to “visually good”? One option is to simply compare the
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(a) original (b) zoom-in (c) hole & strips (d) context-based (e) context-based (f) our completion
object of original without assistance with assistance

Figure 9: Completing an irregular 3D pattern. Our algorithm completes the hairdo while maintaining the feature lines (f). It is also compared
to the completions of [HTG14] (d-e).

(a) original (b) zoom-in (c) hole & strips (d) context-based (e) context-based (f) our completion
object of original without assistance with assistance

Figure 10: Completing a hole on the armadillo model. Our completion of the missing pattern does not smooth the features.

(a) original (b) zoom-in (c) hole & strips (d) context-based (e) context-based (f) our completion
object of original without assistance with assistance

Figure 11: Completing manually-broken Hellenistic oil lamps. Our algorithm captures the structure of the missing regions.

results to the original object (e.g., using the Hausdorff dis-
tance). However, such comparisons provide results that are
counter-intuitive, i.e., smooth completions get better num-
bers than those that maintain the feature lines.

Instead, we suggest to evaluate the “characteristics” of the
patterns, i.e., determine whether the completed pattern is ac-
ceptable in terms of the patterns that can be found elsewhere
on the object. To do so, we calculate the mean distances be-
tween the maximum curvature directions of the two closest
points on the original (unbroken) object and its completion.

Table 1 compares our results to those of Harary et
al. [HTG14], with and without using the user’s input. Our
results are consistently better, except for Fig. 11 (bottom).

However, visual inspection indicates that the completions
are competitive in this case.

Implementation details: Our error minimization algorithm
is accelerated by a coarse-to-fine approach, where larger
neighborhoods are first used to reduce the low frequency
error, and smaller neighborhoods then reduce the high fre-
quency error. Our implementation employs two scales. This
is done by simplifying the object to 1

50 of its size [GH97] and
completing the hole, as explained in §5. Then, the result for
the coarse object is mapped to the fine object and is regarded
as the initialization. The algorithm of §5 is then reapplied.

An important consideration is the size of the patches.
Large patches are essential for capturing the low frequen-
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Table 1: Our completion is compared to others in terms of match-
ing the “characteristics” of the patterns. This table compares the
mean distances between the maximum curvature directions for the
objects shown in this paper. The blue cell indicates the best result.

cies of the object, whereas small patches are important for
capturing the high frequencies. Moreover, since all the com-
putations in §5 depend on the size of the patch, larger
patches result in a slower computation. For the coarse ob-
ject, we use patches whose size is 1% of the object’s sur-
face area. For the fine object, the radius of a patch is set to
R =

(
1

|eavg|·µ +1
)
· |eavg|, where µ is the average curvature

of the patterns.

Running times: The algorithm was implemented in
C/C++ and ran on a 2.67Ghz Intel i7-processor laptop with
4Gb of memory. The interaction time takes a few seconds,
involving only the selection of 4 points per curve. The run-
ning time of the fine feature completion (§4) takes 1-2 sec-
onds. The whole completion algorithm takes several min-
utes. For instance, on the head from Fig. 1, which consists
of 106500 vertices, the algorithm runs for 9 minutes.

Limitations: Our method relies on the fact that the user can
extract proper end conditions for the 3D Euler spiral. In ad-
dition, for very large holes, several feature curves may be
necessary, which involves more interaction and thus might
take longer. This is illustrated in Fig. 12 (top), which can be
compared also to Fig. 11 (bottom), for which one curve suf-
fices, as the hole is smaller. Moreover, there are cases where
the 3D Euler spiral does not suit the model in hand (Fig. 13
(top)). In such cases, we let the user utilize a scaled Hermite
spline (Fig. 13 (bottom)) instead. Finally, similarly to most
earlier algorithms, ours does not guarantee the avoidance of
self-intersection. However, in practice, we did not encounter
intersections in the cases that we checked.

7. Conclusion

This paper presents a novel algorithm for the completion of
large holes, which requires a little assistance from the user.
Given four points for each curve the user specifies, our al-
gorithm computes a curve that fits them—a 3D Euler spi-
ral. This curve is then augmented by two triangle strips,
which not only connect smoothly to the hole boundaries,
but also do not twist. These strips are considered constraints
to the completion algorithm that minimizes our global error.
This minimization is performed by iteratively replacing each

(a) hole & strips (b) our completion

Figure 12: Limitation (1). When the hole is very large, several
curves should be specified.

(a) hole & strips (b) our completion

Figure 13: Limitation (2). The missing region might not be de-
scribed well by a 3D Euler Spiral (top). In this case, we let the user
specify a scaled Hermite spline instead (bottom).

patch in an initial smooth completion, by a more suitable
patch. An algorithm for choosing the “right” patch, which
considers both similarity and spatial coherence, is described.

The quality of our completion is demonstrated via chal-
lenging cases, where the input models are asymmetric and
contain irregular 3D patterns. These examples include both
general objects and archaeological objects. The latter are es-
pecially interesting not only because of their importance,
but also because archaeological objects are usually highly
eroded, noisy, and contain large holes. We also provide quan-
titative comparison of our results to those of state-of-the-art
algorithms. Both our qualitative evaluation and our quanti-
tative one demonstrate that our algorithm manages to com-
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plete holes that are very large, which previous algorithms
could not handle in a satisfactory manner.
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