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Abstract

Is it possible to determine the visible subset of points
directly from a given point cloud? Interestingly, in [7] it
was shown that this is indeed the case—despite the fact
that points cannot occlude each other, this task can be per-
formed without surface reconstruction or normal estima-
tion. The operator is very simple—it first transforms the
points to a new domain and then constructs the convex
hull in that domain. Points that lie on the convex hull of
the transformed set of points are the images of the visible
points. This operator found numerous applications in com-
puter vision, including face reconstruction, keypoint detec-
tion, finding the best viewpoints, reduction of points, and
many more. The current paper addresses a fundamental
question: What properties should a transformation func-
tion satisfy, in order to be utilized in this operator? We
show that three such properties are sufficient—the sign of
the function, monotonicity, and a condition regarding the
function’s parameter. The correctness of an algorithm that
satisfies these three properties is proved. Finally, we show
an interesting application of the operator—assignment of
visibility-confidence score. This feature is missing from pre-
vious approaches, where a binary yes/no visibility is deter-
mined. This score can be utilized in various applications;
we illustrate its use in view-dependent curvature estimation.

1. Introduction
The last decade has witnessed a vast increase in the use

of range imaging and 3D scanning devices. A point cloud,
sampled from a surface, is the standard output of these de-
vices. This paper explores an operator that determines the
visibility of a point cloud, given a viewpoint.

As points cannot occlude each other (unless they acci-
dentally fall on the same line from the viewpoint), the tra-
ditional way to solve the problem is to reconstruct the sur-
face [1, 8] and determine visibility on the reconstructed sur-
face. In [7] an elegant operator is proposed to determine the
sought-after subset directly from the point set, without sur-

(a) Input (b) Output
Figure 1. Given points sampled from a surface and a viewpoint
(a), only the points that would be visible if the surface were known,
are extracted (b).

face reconstruction or normal estimation, as demonstrated
in Figure 1. This operator, termed the HPR (Hidden Point
Removal) operator, is supported by theoretical guarantees.

This operator has found numerous applications, both
within computer vision and computer graphics, and in other
domains. Some of these applications are surface reconstruc-
tion [3, 12], 3D face reconstruction [9], 3D keypoint de-
tectors [17], finding the best views of 3D shapes [14, 16],
finding silhouettes [15], orienting point sets [2], flock ani-
mation [10], 3D pose estimation [4], object relighting [18],
determining meaningful points [6], and even wireless com-
munication [11, 13].

Given a point cloud P and a viewpoint C, the operator
consists of two steps:

1. Point transformation: A function maps every point
pi ∈ P to an inverted domain. Assuming, without loss
of generality, that the viewpoint is at the origin, the
flipping transformation function is defined as

p̂i = F (pi) = pi + 2(R− ||pi||)
pi
||pi||

, (1)

where the parameter R > 0 is the radius of a sphere.
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2. Convex hull construction: The convex hull of the
transformed points and the viewpoint is calculated.

The main result of [7] is that the points that reside on the
convex hull of Step 2 are the images of the visible points.

Our goal in this paper is to generalize the HPR operator
by identifying the properties that should be satisfied by any
function used in Step 1. The main contribution of this paper
is establishing three such properties: the sign of the func-
tion, monotonicity, and a condition regarding the function’s
parameter (Section 2). This is not only interesting theoreti-
cally, but may also be practical, as various applications can
benefit from different functions that suit their needs.

We analyze the generalized HPR operator (GHPR) that
satisfies these requirements (Section 3). We also prove its
correctness in the limit and provide guarantees for the more
practical case of finite sampling (Section 4).

An additional contribution is demonstrating the useful-
ness of the operator for a new type of applications, which
require a score reflecting the confidence in the visibility,
rather than a binary visibility decision (Section 5). We
present an example of such application: view-dependent
curvature estimation.

2. Properties of the transformation function
Figure 2 describes the pseudo code of the generalized

HPR operator (GHPR) for visibility detection. This section
focuses on the first step of the operator. Our goal is to iden-
tify the properties of the transformation function of Step 1,
which are essential for the correctness of the visibility op-
erator.

GHPR(P ,C,γ)
Pre-processing: Move the points in P s.t. C is the origin
Step 1: Apply the transformation in Equation 2 ∀pi ∈ P , using γ;
Step 2: Apply a convex hull algorithm to the set of transformed

points
Output: Return the set of points whose images reside on the convex

hull
Figure 2. Pseudo-code of the GHPR operator

We are given a point set P ⊂ RD sampled from a con-
tinuous surface, a point pi ∈ P and a viewpoint C. Let f be
a 1-dimensional continuous kernel function f : R+ → R+

that, given the distance of pi from C, outputs an updated
distance after applying f . We assume that f is invertible.
We define Ff : RD → RD to be a radial transformation, as
follows:

Ff (pi, C) =

{
C + pi−C

‖pi−C‖f(‖pi − C‖) pi 6= C

pi, pi = C
.

If we define, without loss of generality, a coordinate system
where C is at the origin, we get:

Ff (pi) =

{ pi
‖pi‖f(‖pi‖), pi 6= 0

0 pi = 0
. (2)

Claim 2.1 The inverse transformation of Ff is:

F−1
f (p̃i) =

{
p̃i
‖p̃i‖f

−1(‖p̃i‖), p̃i 6= 0

0 p̃i = 0
, (3)

where f−1 is the inverse kernel, such that f−1(f(d)) = d.

We identify the following sufficient properties, which
should hold in order for a kernel, f , to be used for visibil-
ity determination (i.e., they will be used in the subsequent
sections):

1. f ′(d) < 0, or in other words, f(d) is monotonically
decreasing, s.t. f(‖pi‖) < f(‖pj‖) iff ‖pi‖ > ‖pj‖.
This means that points that are closer to the viewpoint
become farther away after being transformed.

2. f(d) > 0. This condition assures that the orientation
of the points is maintained relative to the viewpoint
after the transformation.

3. For a γ-controlled kernel fγ , it is required that for any
d1, d2 ∈ R+, s.t. d1 > d2 and for any 0 < ε < 1, there
exists a value of γ = Γ, s.t.

1 >
fΓ(d1)

fΓ(d2)
> 1− ε. (4)

It should be noted that the left-hand side of the equa-
tion results directly from the monotonicity of f and
therefore, it is correct for any value of γ. The ad-
ditional requirement on the right-hand side will be
shown useful for proving, in Section 4, the correctness
in the limit of GHPR, as well as for providing guaran-
tees when P is a sample of the surface.

Exemplary kernels: It can be easily verified that the fol-
lowing kernels satisfy the required properties.

1. Mirror/Linear Kernel: This kernel, which was used
in [7], can be written as fmirror(d) = γ − d, γ ≥
maxpi∈P (‖pi‖). It describes flipping around an imag-
inary spherical mirror, centered at C, with a user spec-
ified radius R = 1

2γ.

2. Exponential Inversion Kernel: This kernel is defined
as fexponential(d) = dγ , where γ < 0 is a parameter.

3. Natural Exponential Kernel: This kernel is defined
as fnatural(d) = e−γd, γ > 0.



Figure 3. The curve Λ is transformed to the line Λ̂ by Ff . The
empty region associated with Λ is in purple.

We note that in [6] a related operator is introduced:
the Target-Point Occlusion (TPO) operator. TPO finds the
points that would occlude a given point from outside ob-
servers. This operator can be generalized very similarly to
what is proposed in this paper, with modifications only to
properties 1 and 3 above (the function should be monotoni-
cally increasing, rather than decreasing).

3. Empty regions & The visibility condition
According to the visibility condition, for a point pi to be

visible, its image Ff (pi) should lie on the convex hull of the
set of transformed points. This means that the curve that is
the source of an edge of that convex hull, should be empty
of points of P . This is illustrated by the purple region in
Figure 3. Intuitively, if the empty region between pi ∈ P
and the viewpoint is large, our confidence in the visibility
should be large as well. Therefore, if we could determine
the empty region associated point pi, we could threshold its
size.

This section explores this curve. It begins by defining a
family of curves, Λ-curves, which are transformed to lines
by the GHPR operator in R2 (Section 3.1). Then, we discuss
the empty region induced by a Λ-curve (Section 3.2). We
prove the relationship between the size of the empty region
and the angle between the x-axis and the line to which the
Λ-curve is transformed. Finally, we use this relationship to
define a mathematical condition for visibility, which can be
efficiently computed (Section 3.3). This section generalize
the proofs that were given in [7] for a specific function, to
the family of functions that satisfy the conditions presented
in Section 2.

3.1. Boundaries of empty regions – Λ-curves

We are given a kernel f , a point cloud P , a viewpoint C,
and a point pi ∈ P .

Definition 3.1 Λ-curve: Given pi, Λ(α) = (rΛ(α), α) is a
parametric curve that is the pre-image under Ff of a line
passing through a transformed point Ff (pi).

The following lemma can be easily proved.

Lemma 3.1 A Λ-curve passes through the viewpoint C =
(0, 0).

From Definition 3.1, it is clear that this curve is important
for understanding the empty region associated with pi. This
is so, since after computing the convex hull during the sec-
ond stage of the GHPR operator, pi is visible if p̂i is on the
convex hull, that is to say, all the transformed points reside
to one side of a straight line (half-space). We are therefore
interested in determining the shape of Λ.

Without loss of generality, attach a polar coordinates sys-
tem (R,α), such that its origin is at the viewpoint C, and
the x-axis (α = 0) lies on the line connecting C with pi
(Figure 3). The line Λ̂ = {q̂ = Ff (q)|q ∈ Λ} represents
the straight line to which the curve Λ is transformed by Ff .
This line creates an angle β with the x-axis. Any point on
the Λ-curve, having a polar angle α, is transformed to a
point on the line Λ̂ with distance f(rΛ(α)) from C.

Using the Law of Sines we get: f(ri)
sin(π−α−β) = f(rΛ(α))

sin β .

Therefore, for pi 6= C, we define the parametric equation of
Λ(α) with respect to this polar coordinate system as:

Λ(α) = (rΛ(α), α) =

(
f−1(

f(ri) sinβ

sin(α+ β)
), α

)
. (5)

Since the inverse function f−1 is assumed to exist, Λ al-
ways exists. Figure 4 shows the Λ-curve profiles for our
exemplary kernels.

3.2. Empty regions induced by the Λ-curves

We are interested in finding the largest empty region,
which indicates our confidence in the visibility result. We
start by defining the region associated with a Λ-curve. Then,
in Lemma 3.2 we show a way to measure the relative sizes
of such regions. The result of this lemma lets us charac-
terize in Lemma 3.3 the largest empty region, formally de-
fine it (Definitions 3.3, 3.4) and prove that the definition is
correct, i.e.,that the region is indeed empty of points (Lem-
mas 3.4, 3.5).

Definition 3.2 ΩΛ-region: Let ΩΛ be the region bounded
by the x-axis and the curve Λ(α) = (rΛ(α), α), 0 ≤ α < π,
s.t. pq = (rq, θ) ∈ ΩΛ iff 0 < rq < rΛ(θ).

The next lemma proves the relation between the size of
ΩΛ and the angle β between the line Λ̂ and the line connect-
ing the viewpoint to point pi. In particular, it proves that as
the first increases, the latter decreases.

Lemma 3.2 Let ΩΛ1 and ΩΛ2 be two regions associated
with a point pi ∈ P and defined by Λ1 and Λ2, where the
lines Λ̂1 and Λ̂2 create angles β1 and β2 with the x-axis,
respectively. Then, ΩΛ1

⊆ ΩΛ2
⇐⇒ β1 > β2.



(a) fmirror, γ = 20 (b) fexponential, γ = −0.5 (c) fnatural, γ = 0.1

(d) fmirror, γ = 40 (e) fexponential, γ = −1 (f) fnatural, γ = 0.01
Figure 4. Λ-curve profiles for different kernels and parameter values for a single point, pi = (10, 0) and C = (0, 0). Each graph contains
several curves, each corresponds to a different value of β. It can bee seen that the size of the region captured between the x-axis and the
curve above the x-axis increases as β gets smaller.

Proof: We prove one direction of the lemma; the other di-
rection is similar. Assume that β1 > β2; we want to prove
that ΩΛ1

⊆ ΩΛ2
. This is done by showing that the bound-

ary, Λ1, of the region associated with β1, is closer to the ori-
gin compared to Λ2, for every possible angle 0 < α < π.
This means that for a region boundary Λ = (rΛ(α), α),
rΛ(α) increases when β decreases. Therefore, we need to
show that ∂rΛ∂β < 0.

Applying the derivation by β to rΛ = f−1
(
f(ri) sin β
sin(α+β)

)
from Equation (5), results with

∂rΛ

∂β
= (6)

= f(ri)
cosβsin(α+ β)− sinβcos(α+ β)

sin2(α+ β)
f−1′

(
f(ri)sinβ

sin(α+ β)

)

= f(ri)
sin(α)

sin2(α+ β)
f−1′

(
f(ri)sinβ

sin(α+ β)

)
.

In order to find the sign of ∂rΛ
∂β , we note that: (1)

f(ri) > 0 by definition. (2) sin(α) > 0 for 0 < α < π and
therefore, sin(α)

sin2(α+β) > 0. (3) Since f ′(f−1(x)) 6= 0 (since

f is strictly monotonically decreasing) then f−1′(x) =
1

f ′(f−1(x)) , and by the derivative of inverse function rule,
we get

f−1′
(
f(ri)sinβ

sin(α+ β)

)
=

1

f ′(f−1( f(ri)sinβ
sin(α+β) ))

.

For Λ we required that f ′(d) < 0, so f−1′( f(ri)sinβ
sin(α+β) ) < 0.

Therefore, the term ∂rΛ
∂β is always negative.�

Lemma 3.3 For a given point pi ∈ P , the Λmax-curve,
which passes through pi and defines the largest empty re-
gion ΩΛmax , passes through at least one additional point
pj ∈ P .

Proof: Suppose, by way of contradiction, that Λmax does
not pass through an additional point. Then, Λ̂max does not
pass through an additional transformed point and we can
define a line Λ̂, with a smaller β angle, which would still
create an empty half space. According to Lemma 3.2, this
half space originates from a larger region, which contradicts
the assumption.�

Combining the above lemmas suggests that in order to
find the largest empty region for a point pi, one needs to find
another point in the transformed domain, for which the line
connecting the two transformed points, creates the smallest
possible angle β. We therefore define a region associated
with a pair of points:



(a) pi is considered visible (b) pi is considered invisible
Figure 5. Visibility condition. If the angle βij + βik between the lines (to which the Λ-curves are transformed) is greater than π, then the
point is invisible; otherwise it is visible.

Definition 3.3 A region Ωi,j associated with two points
pi and pj: Ωi,j is the region associated with a Λ-curve
transformed by Ff to the line segment connecting pi with
pj .

Until now we considered only points in the upper half-
plane. We now extend our definitions to the whole set P .
We divide P into two subsets: P+ and P−, where P+ con-
tains all the points above the x-axis and P− contains the
points below it. The region associated with a point pi is
defined as follows:

Definition 3.4 A region Ωi associated with a point pi is

Ωi = (
⋂

pm∈P−,m 6=i

Ωi,m)
⋃

(
⋂

pn∈P+,n6=i

Ωi,n).

Lemma 3.4 Let pj ∈ P+ and pk ∈ P− be the points that
minimize the sizes of Ωi,j and Ωi,k correspondingly. The
region Ωi can be calculated by Ωi = Ωi,j ∪ Ωi,k.

Proof: We choose a point pk ∈ P− below the bisecting
line, such that Ωi,k is minimized. This means that βik is
maximized among all the points that are above the bisecting
line. Using the result of Lemma 3.2, Ωi,k is contained in all
Ωi,m for pm ∈ P−. Therefore, Ωi,k =

⋂
pm∈P− Ωi,m and

similarly, Ωi,j =
⋂
pn∈P+

Ωi,n.�

Lemma 3.5 Ωi is empty of points from P .

Proof: In order to show that Ωi is empty, it is enough
to show that Ωi,j and Ωi,k, as defined in Lemma 3.4, are
empty. Assume, by way of contradiction, that Ωi,j is not
empty. Then, it contains a point pq for which the line Λ̂i,q
creates an angle βiq with the x-axis, such that βiq > βij .
This contradicts the fact that Ωi,j is minimized and max-
imizes βij. Similarly, it is possible to show that Ωi,k is
empty.�

3.3. Condition on visibility

To determine visibility, we should threshold the points
according to the size of their associated empty region. Intu-
itively, points associated with large regions are visible. Us-
ing Lemma 3.2, we can threshold the values of β instead
of directly thresholding the size of the empty region. We
formulate our condition for visibility as:

βi,j + βi,k ≤ threshold, (7)

where j and k are the indices of neighboring points as de-
fined in Lemma 3.4.

One way to apply the condition is to find, for each point
pi ∈ P , two other points pj ∈ P+ and pk ∈ P− that min-
imize the β angles, as shown in Figure 5. However, this
method is inefficient.

Instead, setting threshold = π gives rise to an efficient
method (e.g., O(n log n) in 2D and 3D), the generalized-
HPR (GHPR) operator. This is so since βi,j + βi,k ≤ π

means that p̂i is on the convex hull of P̂ , where P is trans-
formed to P̂ , as illustrated in Figure 5:

GHPR(P ) ≡ (P∩{C})∪{p|p̂ ∈ convexhull(P̂∪{C})}.

Note that using the convex hull construction is more than
just accelerating the computation. A theoretical beauty of
this approach is that it essentially provides a reduction of
the problem of visibility detection to that of convex hull
construction—linking two seemingly different problems.

Figure 6 shows examples of applying the GHPR oper-
ator. In these drawings, blue points on the boundary of
the gray regions are visible, while the green points are oc-
cluded.

4. Correctness & Properties
In this section, we first prove the correctness of the

GHPR operator in the limit, where the distance between



(a) γ = −0.05, (b) γ = −0.01, (c) γ = −0.05, (d) γ = −0.01,
C is inside P C is inside P C is external to P C is external to P

Figure 6. The visible region, marked in gray, as viewed from a given point in red, calculated using the exponential inversion kernel. Blue
points on the boundary of the gray region are visible, whereas green points, which are not on the boundary of the gray region, are occluded.
It can be seen that the size of the region detected as visible increases as γ gets closer to 0.

the points approaches 0. Then, we provide theoretical guar-
antees for the case where P is a finite sample of S. The
proofs generalize those of the HPR operator [7], which as-
sume the special case of a mirror kernel. They rely on the
three properties introduced in Section 2 and are given in the
supplementary.

The next three lemmas assume that the input consists of
the set of all the points of the surface S and a viewpoint
C. Let V ⊆ S be the set of visible points from C and
GHPR(P ) ⊆ S be the set detected as visible by the GHPR
operator, using a kernel fγ with parameter γ.

Lemma 4.1 GHPR(P ) ⊆ V , i.e., every point detected
visible by the GHPR operator is indeed visible from C.

Lemma 4.2 For every valid kernel, fγ , there exists a value
Γ s.t. limγ→ΓGHPR(P ) = V , assuming T = inf{‖p −
C‖ |p ∈ S} > 0.

In other words, Lemma 4.2 guarantees that when γ → Γ,
the set of points detected by the GHPR operator is equal to
the set of visible points—an accurate solution is obtained.
If the condition for the value of γ does not hold, we can fur-
ther analyze which points are detected visible by the GHPR
operator, by considering the influence of the curvature on
the results, as follows.

Lemma 4.3 Let S be an infinitesimal surface patch around
p. Then, p ∈ GHPR(P ) if and only if p is visible and the
curvature κ at p is below a threshold κΛ:

κΛ =
(sin(β)3 − sin(β))(fb(d)f(d)d + fa(d)d − 2f2

a(d)) − fa(d)d sin(β) + d2 sin(β)3

(fa(d)2 + (d2 − fa(d)2)sin(β)2)
3
2

,

(8)

where fa(d) = f(d) · (f−1)′(f(d)), fb(d) = f(d) · (f−1)′′(f(d)).

In conclusion, given a kernel f with a specific parameter,
the GHPR algorithm correctly detects the visible points if

1. Locally, the surface is either convex or concave with
sufficiently low curvature.

2. The surface is close enough to the viewpoint C (i.e.,
d = ||p|| is sufficiently small).

3. The angle between the surface normal and the line of
sight is sufficiently small.

This means that misclassification errors are expected to
occur around regions whose tangent plane is parallel to the
line of sight or with large surface perturbations. Further-
more, these errors become worse for far-away points.

Now assume that P is a ρ-sample of S, with ρ > 0, i.e.,
for every sample p ∈ P , there exists another point q ∈ P
whose distance to p is smaller than ρ. We consider a point to
be ε− visible, if moving it by ε will make it visible. Using
these definitions, we extend the correctness lemmas to the
more practical case of sampled data.

Formally, let Vε ⊆ P be the set of ε-visible points from
C. We assume that the distance of S to C is at least T > 0
and that the sample is sufficiently dense.

Theorem 4.4 For every valid γ, there exists ε > 0 such that
every point detected visible is ε−visible.

Theorem 4.5 For sufficiently large ε > 0, there exists a
value of γ s.t. a point is detected visible only if it is
ε−visible.

In summary, we proved that assuming that the sam-
ple is sufficiently dense, for every γ, there exists an ε,
such that every point marked visible by the operator is
ε−visible. Moreover, for sufficiently large ε, there exists
γ, such that every point marked visible by the operator is
indeed ε−visible.



5. Application: Assigning Visibility Scores

As mentioned before, point visibility is a fundamental
component in many applications, both within computer vi-
sion and in other communities [3, 9, 12, 14, 15, 16, 17, 18].
Traditionally, in these applications, a binary decision is uti-
lized, i.e., for each point, it is determined whether it is visi-
ble or not.

We propose an alternative—rather than producing a bi-
nary visibility decision, we will generate the degree of con-
fidence in the visibility results. In many situations, this ad-
ditional information is beneficial. For instance, in regis-
tration of point clouds generated by range cameras, points
having high visibility scores may get high weights, hence
influencing the registration more than points for which the
scanner is likely to err. In the sequel, however, we discuss a
different use— view-dependent curvature estimation.

Our goal is to attach to each point, which was detected
visible, a Visibility Score (VS). The key idea is to assign
large visibility scores to points associated with large empty
regions. Therefore, we wish to efficiently measure the size
of the empty region.

To do that, recall that the size of the empty region is large
when the sum of the β angles is small. For points on the
convex hull that are detected as visible, these angles can
be directly calculated from the convex hull. Hence, for a
visible point pi ∈ P in 2D, we define V S as the angle be-
tween the edges on the convex hull that are adjacent to p̂i.
Similarly, in 3D we define the visibility score as the sum
of angles between the edges of the triangles on the convex
hull, which are adjacent to p̂i.

Figure 7(left) shows results of our method, using the ex-
ponential inversion kernel, where dark blue indicates high
values of V S and red marks lower values. The middle col-
umn shows the same results from another angle, to demon-
strate that invisible points get the value 0.

As shown in Equation (8), V S is affected by the local
curvature, the angle between the normal and the line of
sight, and the distance of the surface to the viewpoint. For
example, the creases in the hand model (Figure 7(a)) have
a low value of V S due to deep concavities. In the Bimba
model (Figure 7(b)), it can be seen that regions whose tan-
gents create almost-perpendicular angles with the line of
sight receive low scores.

View-dependent curvature estimation: Judd et al. [5] pre-
sented a method for extracting apparent ridges of surfaces
(represented as meshes), which are the maxima of the view-
dependent curvature. As shown below, V S behaves like
a view-dependent curvature and can, therefore, be used for
direct drawing the apparent ridges of point sets, without sur-
face reconstruction.

The right column in Figure 7 shows the results of the
commonly-used estimation of the curvature of P , subtract-

ing the sum of angles from 2π. This estimation is performed
on the reconstructed polygonal models.

Our curvature is estimated similarly, as the sum of the
angles adjacent to the point, but this is done on the convex
hull of the transformed set P̂ . The results show that our es-
timation indeed finds the features with high curvatures, and
it is less sensitive to noise. Intuitively, this can be explained
by the fact that the calculated visibility is a global measure
and is therefore more resistant to small noise, compared to
the conventional calculation of the curvature.

6. Conclusion
This paper has addressed the detection of visible points

from a viewpoint. It generalizes the HPR operator, by an-
swering the fundamental question of which properties a
transformation function should satisfy in order to be appli-
cable to visibility calculation. The paper enumerates three
such properties and uses them to analyze the operator. It
proves the operator’s correctness in the limit and provides
guarantees for the real-life case of finite sampling.

The operator is very simple, fast, and easy to implement.
Moreover, it can be applied to points in any dimension,
though we have focused in the paper on the practical cases
of point sets in two dimensions and in three dimensions.

Last but not least, we present an additional benefit of
this operator—its ability to compute a continuous visibil-
ity score of points, rather than a binary score, as commonly
done. We show one concrete use of this score to directly
compute the view-dependent curvature of a point set, skip-
ping reconstruction. We demonstrate that, surprisingly, our
results are good even though we are not using the recon-
structed surfaces. With the growing popularity of scanning
devices and 3D point sets, we believe that many applica-
tions will follow.

Future direction: An interesting question that this paper
has not discussed is what a good kernel is. We expect it
to be application-specific. Moreover, we believe that for
applications where the shape of the empty region is known
(e.g. cellular communication), it may be possible to design
specific kernels.

Further analysis in terms of the value of γ and in terms
of noise could also be performed.

Last but not least, sufficient conditions were identified
in this work. But what are the necessary conditions? This
question is open and is highly intriguing.
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Visibility score (V S) V S from a different angle Curvature

(a) Hand

(b) Bimba

(c) Michelangelo’s David

(d) Rocking horse
Figure 7. Results of calculating the point visibility score V S. The left column shows V S as colors over a surface, where dark blue
indicates highly-visible regions and red regions are invisible (V S = 0). The middle column shows the same results from another angle,
without re-calculating V S. The right column shows estimation for the curvature; it can be compared to our results in the left column.
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