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Abstract
Given a point cloud, which is assumed to be a sampling of a continuous surface, and a viewpoint, which points are visible from
that viewpoint? Since points do not occlude each other, the real question is which points would be visible if the surface they
were sampled from were known. While an existing approximation method addresses this problem, it is unsuitable for use in
optimization processes or learning models due to its lack of differentiability. To overcome this limitation, the paper introduces
a novel differentiable approximation method. It is based on identifying the extreme points of a point set in a differentiable
manner. This approach can be effectively integrated into optimization algorithms or used as a layer in neural networks, allowing
for the computation and utilization of visible points in various tasks, such as optimal viewpoint selection. The paper also
provides theoretical proofs of the operator’s correctness in the limit, further validating its effectiveness. The code is available
at https://github.com/sagikatz/HPRO

1. Introduction

A point cloud, which is a sampling of a continuous surface, is a set
of 3D positions. It is a simple, efficient, and versatile representa-
tion of 3D data, which benefits numerous applications. This paper
addresses the following task: Given a viewpoint and a point cloud,
determine the subset of points that are visible from the viewpoint.
In essence, the task is to identify the points that would be visible if
the underlying surface, from which the points were sampled, actu-
ally existed.

The determination of visibility poses a challenge due to the lack
of connectivity between points [AK04, ABCO∗03, BW03, KTB07,
KT15,MTSM10]. After all, due to sampling there is no inherent oc-
clusion between points unless they coincidentally align along the
same ray from the viewpoint. This scenario is illustrated in Fig-
ure 1(a), where both the front (e.g., the nose, mouth, scar) and the
back (the hairdo) of Igea are visible, as the points do not occlude
each other. Consequently, determining whether Igea is facing for-
ward or backward relative to the viewpoint becomes impossible.
While precise visibility can be determined on a reconstructed sur-
face, surface reconstruction itself is a complex problem that often
requires additional information such as normals and dense input.
This leads to a crucial question: Can visibility be directly deter-
mined from a point cloud, bypassing the need for reconstruction?

The question of direct visibility was answered affirmatively in
prior works [KT15, KTB07] with the introduction of an elegant
and theoretically-supported operator called HPR (Hidden Point Re-
moval). HPR consists of two phases: point transformation and com-
putation of the convex hull of the transformed points. It was theoret-
ically proven that the points on the resulting convex hull correspond
to the images of the visible points.

(a) Input (b) Visible points

Figure 1: Point visibility. (a) When considering a point set sampled
from a continuous surface, all points, both fore and hind, are vis-
ible. (b) Our HPRO operator determines the true visible points—
those that would be visible on the continuous surface. Thus, the
scar is visible, while the hairdo is not.

This operator has found uses in a wide range of applica-
tions in computer graphics [BTS∗17, MeSEMO14, SLT13], vi-
sion [HKD21, KKT18, RMS17], robotics [VCBL18], geographic
information [SHMZ21], communication [HLQ20] and transporta-
tion [HCC∗17, RS18]. Specifically, it benefits shadow estima-
tion [KTB07], normal approximation [KT15], document enhance-
ment [KKT18], path planning [SLT13], localization [HKD21], ac-
tion recognition [RMS17], and more. However, due to its non-
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differentiability, the HPR operator is not suitable for direct inte-
gration into optimization or deep learning pipelines. It is typically
used in classical methods or for offline pre-processing in learn-
ing, including training networks using HPR-computed visibility as
ground truth [ZH22].

We introduce HPRO, a novel operator that approximates the vis-
ible subset in a differentiable manner. Since the first step of the
original HPR operator is already differentiable, HPRO needs only
approximate the convex hull using a differential procedure. Our key
idea is to leverage the basic definition of a convex hull as a se-
quence of extreme points, which are farthest in some direction. We
show how to approximate their determination. This approach par-
ticularly suits point clouds with a near-spherical structure, which is
our case after point transformation (the first step). This relaxes the
need for an accurate non-differentiable convex hull construction al-
gorithms like Quickhull [BDH96].

Our operator’s practicality is demonstrated through its applica-
tion in optimizing a viewpoint for a given point cloud. The oper-
ator’s differentiability allows for visibility optimization, whether
minimizing or maximizing visibility. This stands in contrast to pre-
vious view-selection algorithms that rely on pre-selected candidate
viewpoints, generating views, and then comparing their quality.

Hence the major contributions of this work are:

1. It introduces a differential, efficient, and theoretically-supported
operator to determine the visible points of a point cloud.

2. It presents a simple and differentiable method for approximat-
ing the convex hull. Since convex hulls play a crucial role in
various applications in computer graphics, computer vision, and
robotics [MOMM08], our approximation is expected to have
broad utility beyond visibility.

3. The utility of our method is demonstrated in optimizing view-
point selection in three dimensions. Furthermore, the method
can be applied to numerous other applications.

2. Related work

Point cloud visibility. Visibility determination is a fundamental
problem in computer graphics [FVDF∗94]. Visibility of point sets
is often addressed within rendering [GBP04,RL00,WS05,WK04].
These papers typically assume that the points adhere to certain sam-
pling criteria, such as the Nyquist condition, and are accompanied
by normals. This paper builds upon previous research that aims to
address the problem of point set visibility determination indepen-
dently of rendering, without relying on prior assumptions or sur-
face reconstruction [KT15, KTB07,MTSM10]. Although these ap-
proaches demonstrated excellent performance, they lack differen-
tiability, preventing seamless integration into optimization or deep
learning pipelines. The present paper focuses on resolving this lim-
itation.

Convex hull approximation. The convex hull, defined as the
smallest convex set encompassing a set of points in RD, is highly
significant not only in geometry but also in various disciplines such
as computer vision, computer graphics, datasets, signal processing,
robotics, and communication [MOMM08]. The explosion of com-
plexity in higher dimensions led to the development of approxi-
mations in high dimensions [KRF13, SV16]. While the objective

(a) transformation & CH (b) back projection

Figure 2: 2D HPR operator illustration. (a) Given a 2D point set
(depicted as the black buffalo) and a viewpoint (represented by the
red point), the points are transformed into the thin green shape
(Step 1), and the convex hull (CH) is constructed (Step 2), shown
as a dashed magenta line that partially overlaps with the green
shape. (b) The red points, which correspond to the images of the
green points lying on the convex hull (CH), are the visible points
from the viewpoint. The operator can be applied in any dimension.

is to avoid dimension dependence, the complexity remains con-
siderably high, making it suitable for genuinely high dimensions.
In [KKZ06] the focus is on 2D, with subsequent extension to 3D
by [MeSEMO14]. We propose an efficient differentiable method
that can be applied in any dimension, including R3 (our primary fo-
cus). Our proposed approximation is particularly suitable for point
clouds that exhibit a near-spherical structure, which is the case fol-
lowing point transformation (Step 1 of the operator).

3. Background

We are given a point set P ⊂ RD, sampled from a continuous sur-
face, and a viewpoint C. The goal is to approximate the visibility
of the points in P from C. The HPR operator of [KT15, KTB07]
performs this approximation in two steps, as shown in Fig. 2:

Step 1—Point transformation: The point set undergoes a trans-
formation into a dual space, where: (1) Points that were initially
closer to the viewpoint are moved farther away. (2) Mildly concave
regions are changed into convex regions. Let f be a 1-dimensional
continuous kernel function f : R+ → R+ that takes the distance
of pi from C and generates an updated distance after applying f ,
∀pi ∈ P. It is assumed that f is invertible and has a parameter γ. We
define Ff : RD→ RD as a radial transformation:

Ff (pi,C) =

{
C+ pi−C

∥pi−C∥ fγ(∥pi−C∥) pi ̸=C
0 pi =C

. (1)

There are various options for the kernel f , which are discussed
in [KT15], along with the three properties that f should satisfy.
Briefly, f (l) should be monotonically decreasing, the orientation
of the points relative to the viewpoint should be maintained, and
the ratio of the application of f to two distances should be bounded
between 1 and 1− ϵ for any small ϵ.

Step 2—convex hull (CH): A CH algorithm is applied to the trans-
formed points and C, {Ff (pi,C)|∀pi ∈ P} ∪C. In [KT15], it is
proven that if the above properties of f are satisfied, then for a
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(a) Input (b) Ground Truth (c) HPR (d) HPRO (e) HPR errors (f) HPRO errors

Figure 3: Results & errors. Both [KTB07] and HPRO may exhibit errors, particularly around the silhouettes. HPRO guarantees differen-
tiability at the expense of a slightly higher error rate. In both cases, the value of γ that minimized the error was used (γ = 5×10−4).

point pi to be visible, its image Ff (pi,C) must lie on the convex
hull of the set of transformed points. This is intuitively depicted in
Fig. 2, where each black point undergoes transformation along the
ray from the viewpoint (Step 1), and the convex hull is constructed
in the transformed domain (Step 2) to identify the visible points.

4. Visibility determination by HPRO

4.1. The HPRO operator

Let P = {pi ∈ RD}, i ∈ [1,n], be a point cloud with n points. As
in [KTB07, KT15], our HPRO comprises of two steps: point trans-
formation and convex hull computation. The main distinction lies
in the differentiable method employed for the second step. We elab-
orate on these steps below.

Step 1—Point Transformation. The point cloud undergoes a ra-
dial flip around C using the function Ff , as defined in Eq. 1. While
multiple kernels f are available, we employ the Exponential In-
version Kernel, defined below for a scalar l, which represents the
distance from a point to the viewpoint, and a parameter γ < 0:

fγ(l) = lγ. (2)

Step 2—Differentiable convex set computation. While the pre-
vious step is naturally differentiable for any pi ̸= C, convex hull
computation does not share this property. Hence, rather than com-
puting the precise CH, we resort to an approximation. It is worth
noting that the original HPR is already an approximation. Hence,
if our CH approximation is reasonably accurate, the resulting visi-
ble set will exhibit minimal differences compared to the output of
HPR, as shown in Fig. 3.

Our proposed approximation is particularly suitable for point
clouds that exhibit a near-spherical structure, which is the case fol-
lowing point transformation (Step 1). Note that in the limit (γ = 0),
the transformed point set resides on a perfect sphere, and the trans-
formed points depend solely on the angle, unaffected by the dis-
tance or viewpoint. With smaller γ values, the visible points tend
to be transformed to a spherical-like shape (Fig. 2). This holds true
for any point set and any viewpoint that is not part of the set. It
is a direct consequence of one of the sufficient properties of HPR
kernels, as described in [KT15]. This property states that for a γ-
controlled kernel fγ, it is required that for any dist1,dist2 ∈ R+

(disti represents the distance of point pi from the viewpoint), such
that dist1 > dist2, and for any 0 < ϵ < 1, there exists a value of
γ = Γ such that

1 >
fΓ(dist1)
fΓ(dist2)

> 1− ϵ.

Thus, particularly in the case of the exponential kernel, the trans-
formed point set can approximate a sphere as closely as desired,
provided the γ value is sufficiently close to 0.

To obtain an approximate CH, recall that the CH comprises
points that are extreme in some direction. Therefore, we propose
examining a condition for each point to determine if it is an ex-
treme point. We will show that this test satisfies two conditions:
(1) It is differentiable; (2) The errors are bounded, hence making
the approximation useful.

For every point pi, we calculate a visibility indicator, Vi. The
transformed point Ff (pi,C) is considered an extreme point if it

maximizes the projection on the direction di =
Ff (pi,C)−C

||Ff (pi,C)−C|| . This
direction connects the transformed point with the viewpoint. We
prove below that the visible points indeed maximize the projection
in the limit and illustrate its practical validity. This computation is
performed as follows, where Ri j is the projection of point p j on
direction di:

Ri j = ⟨Ff (p j,C)−C,di⟩, (3)

Vi =

{
max j(Ri j)−Rii = 0 if pi is an extreme point
max j(Ri j)−Rii > 0 otherwise.

(4)

The resulting vector of the values Vi for i ∈ [1,n] will be used in the
subsequent practical computation (Eq. 5).

This algorithm is differentiable (except when the inputs to the
max function are equal) and it allows gradients to flow through,
as we only employ simple differentiable operations. As expected,
most of the differences between HPR and HPRO are around the
silhouettes (Fig. 3), since the condition of Eq. 4 does not hold there
and the extreme points might be maxima in different directions.
Intuitively, these points are "almost visible", as explained in Fig. 4.

In Section 4.2, we prove that our operator is a good approxi-
mation in the sense that, in the limit as the density of the points
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Figure 4: Convex hull approximation: HPR computes the convex
hull of the transformed points and C. Since all the points, except for
the red points, fall on the convex hull, their images will be marked
as visible. Differently, HPRO tests for each point the emptiness of
the half-space defined by the point and its direction from the view-
point. (The boundaries of the half-spaces associated with P1−3 are
L1−3, respectively.) It will thus correctly mark as visible the green
points and as invisible the red points. However, P3 will be marked
invisible by HPRO, since P2 maximizes the projection on the vector
connecting P3 with C. Such cases are rare, as we will show both
theoretically and experimentally.

approaches 0: (1) For every γ, the operator does not miss visible
points. (2) There exists a value of γ for which the operator is accu-
rate.

Our operator covers the two possible cases, when the viewpoint
is located "outside" the point cloud and when it is "within" the
point cloud. The case where the viewpoint is within the cloud is
naturally handled, as it does not alter the input to the convex hull
construction. The case in which the viewpoint is outside the cloud
has to be treated especially in [KT15], by including C in the con-
vex hull computation. Nevertheless, no special handling is needed
in our method, since the extreme point computation already consid-
ers C. For instance, in Fig. 4, if C is not included in the convex hull
computation, P4 will be on the convex hull and will be considered
visible by HPR. But, the HPRO condition does not consider P4 as
visible since there are farther points in the direction of P4 from C.

Furthermore, our HPRO inherits some of the desirable proper-
ties of HPR: First, it is able to handle varying sampling rates. This
is attributed to the empty regions associated with each point, which
depend on the point’s neighborhood. This is evident in Fig. 5, where
the hair of the statue has a much higher density than the body. Sec-
ond, it has only a handful of parameters; in particular, it has 1-4
parameters: γ from Equation 2, which is mandatory, and α ,δ & k,
which are optional and may be used in the implementation, as dis-
cussed in Section 7. Third, it is independent of any dataset for train-
ing. Fourth, HPRO works equally well with the viewpoint inside or
outside, as it does not distinguish between the two. When the view-
point is inside the object, the transformed points span all directions
around the viewpoint. If the viewpoint is outside, the transformed
points cover only a smaller portion of the directions. In both cases,
visibility is determined by examining each point’s direction relative
to the viewpoint. By contrast, HPR requires including the viewpoint
in the convex hull computation to ensure the convex hull does not
incorrectly enclose the transformed points.

(a) Input (b) HPR (c) HPRO

Figure 5: Handling varying sampling rates. Given a point cloud
(a), the visible points are determined by the HPR (b) and our HPRO
operators. Both perform well across different sampling rates, as
demonstrated by their performance on the (dense) hair and the
(sparse) leg.

4.2. Correctness in the limit

The classical HPR operator [KT15,KTB07] is proved to be correct
in the limit, when the density of the points is 0. If the density is not
0, the operator approximates the set of visible points. Our proposed
HPRO adds an approximation of the convex hull. This section ver-
ifies that the theoretical guarantees in the limit still hold. Section 5
shows that this additional approximation does not compromise the
accuracy too much. To prove the theoretical guarantees, we follow
the definition for sample density:

Definition 4.1 A sample P ⊆ S is a ρ-sample from surface S if
∀q ∈ S ∃p ∈ P s.t. |q− p|< ρ.

The following two lemmas formally show that in the limit,
HPRO provides the same guarantees as HPR. These lemmas as-
sume that ρ = 0, implying that P is the surface S from which
P was sampled. Intuitively, these lemmas hold true as the trans-
formed point set gradually resembles a sphere when γ approaches
0, thereby improving the accuracy of the convex hull approxima-
tion.

Let V ⊆ S be the set of true visible points from C, HPRO(P) be
the set of points marked visible by HPRO, and HPR(P) be the set
of points marked visible by HPR.

Lemma 4.1 HPRO(P) ⊆ V , i.e. every point determined as visible
by the algorithm is indeed visible.

Proof It suffices to prove that HPRO(P) ⊆ HPR(P). Since it was
proved in [KT15] that HPR(P) ⊆ V , the lemma will follow. Let
pi ∈ HPRO(P), that is to say the transformed point of pi is found to
be extreme in its direction by computation. As such, it must lie on
the convex hull of the transformed set of points and will therefore
be found visible by the HPR operator, i.e. pi ∈ HPR(P).

Lemma 4.2 There exists a value of Γ for which
limγ→Γ HPRO(P) =V .

Proof One side of the equality was proved in Lemma 4.1. To prove
the other side, we show below that if pi is visible (i.e. pi ∈ V ),
then pi ∈ limγ→Γ HPRO(P). Recall that the HPRO condition for
pi to be considered visible, according to Eq. 4, is that the vector to
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the transformed point maximizes the dot product with its direction.
Recall that the length of a dot product between given vectors is the
product of the vector lengths and the cosine of the angle between
them. Therefore, the condition can be expressed as:

f (||pi||)≥ sup{ f (||p j||)cosαi j, p j ̸=i ∈ P},

where αi j is the angle between the vectors pi and p j. For the Ex-
ponential Inversion kernel (Eq. 2) this boils down to

||pi||γ ≥ sup{||p j||γ cosαi j, p j ̸=i ∈ P}.

Suppose that j = k is the index that maximizes the right hand of
this equation, then

||pi||γ ≥ ||pk||γ cosαik.

If |αik| ≥ π/2 or ||pi|| ≥ ||pk||, then the equation holds for any
value of γ. For |αik|< π/2 and ||pi||< ||pk||:

Γi log ||pi||= Γ log ||pk||+ log(cosαik),

Γi = log(cos(αik))/log(||pi||/||pk||).

We can then choose Γ that maximizes all Γi.

4.3. Practical computation and visibility scores

In the limit, as γ→ 0−, the transformed points converge to a sphere,
and invisible points may receive Vi values (Eq. 4) that are nearly 0.
Due to computation inaccuracies inherent in floating-point arith-
metic, checking for Vi = 0 becomes impractical. To address this is-
sue, we compute the maximum in Eq. 4 by using the top-k function.
This choice is driven by the ease of using the ordering of the Ri j val-
ues for given i, j ∈ [1,n] rather than determining a small constant
threshold to determine that Vi is close enough to 0. Thus, we de-
fine a visibility score by normalizing the Ri j values using the k top
values. It’s worth noting that although top-k is generally not differ-
entiable, we make use of a differentiable approximation [XDC∗20].

Formally, for a transformed point F(pi,C), let Ri,max =

max j(Ri j) and let Ri,k be the kth value. The score, wi, for the visi-
bility of pi is then defined as follows:

wi = elu(
Rii−Ri,k

Ri,max−Ri,k
), (5)

where elu is the Exponential Linear Unit [CUH15]. From this
equation, we observe that if Rii is one of the top k values, then
0 ≤ wi ≤ 1; otherwise, −1 < wi < 0. Note that if a point pi max-
imizes the projection in its direction, then wi = 1. If Rii does not
rank among the top k values, its score becomes negative and it is
considered invisible. In our experiments, we used k = 10.

Pseudo code. In the following, the pseudo-code of our method is
given. Note the simplicity of our code: in just a few lines of code,
our method can generate excellent visibility results. This is yet an-
other benefit of our method.

5. Experimental & ablation results

Qualitative results. Figs. 5, 6 demonstrate our results. In the in-
put, points that should be invisible are visible, since points cannot
occlude each other. For instance, in Fig. 6 the top or bottom of the

Algorithm 1 HPRO
Input: A point set {pi, i ∈ [1,N]}, a viewpoint C
Output: A visibility vector {wi, i ∈ [1,N]}

1: % Compute the transformed point set :
2: { p̂i, i ∈ [1,N]}← {Ff (pi,C), i ∈ [1,N]}
3: for i = 1,2, . . .N do
4: % Compute the projections for all points
5: for j = 1,2, . . .N do
6: Ri, j← ⟨ p̂ j−C, p̂i−C

||p̂i−C|| ⟩
7: end for
8: % Compute the kth value
9: Ri,k← topk j(Ri, j)

10: % Compute the maximum value
11: Ri,max← max j(Ri, j)
12: % Compute the score
13: wi = elu( Ri,i−Ri,k

Ri,max−Ri,k
)

14: end for

Method 10% noise 5% 2% no noise

HPR (5k pts) 77.05 80.22 84.43 93.17
HPRO (5k pts) 77.28 80.29 84.06 88.48

HPR (1k pts) 76.56 79.67 83.55 89.66
HPRO (1k pts) 76.87 79.63 82.76 85.08

Table 1: Accuracy on noisy models. HPRO is more robust to noise
compared to HPR. The results are based on an average across 100
models, randomly selected from ModelNet40, each resampled to 1k
(5k) points.

column is visible through the column itself, as is the rear upper leg
of the dinosaur through the front leg, the back of the Buddha’s head
through its face, and the rear leg of the chair through the seat. Af-
ter applying our operator, only the genuinely visible points remain
visible. The results closely resemble those produced by HPR.

Quantitative results. Table 1 reports mean accuracy results, com-
puted on 100 normalized and uniformly-sampled models, randomly
selected from ModelNet40 [CFG∗15]. For each model, the visible
points are computed from 5 random views. As expected, HPR’s
accuracy surpasses that of HPRO for clean point sets, as it is an
approximation (since the convex hull is approximated). The differ-
ences, however, are minimal and tolerable. Interestingly, as noise
levels increase, HPR’s accuracy declines more rapidly than that of
HPRO. At high noise levels, HPRO’s accuracy is slightly higher.
The ground truth results are obtained by casting rays from the view-
point to the sampled points and checking for collisions with the
surface itself. Our noise model follows that of [MTSM10], where
every point is perturbed within a ball with a pre-defined radius.

Complexity and computation time. HPR’s complexity is that of
the CH construction. Utilizing QHull, it is O(n logn) on average
and O(n2) in the worst case. On the other hand, HPRO’s complexity
is O(n2) due to independent visibility computation for each point.
Note that the independent computation allows easy utilization of
GPU parallelism, while the standard CH algorithm used by HPR is
computed on a CPU and is challenging to parallelize for the GPU.
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Figure 6: Results. Given a point cloud (a), the visible points are determined by the HPR (b) and our HPRO (c) operators. While the rear
parts of the objects are visible through the front in (a), our operator correctly detects the front visible points. This is evident when looking
at the top/bottom of the column, the upper leg of the dinosaur, the face of Buddha, and the rear leg of the chair. Qualitatively, the results are
indistinguishable from those obtained using HPR.

Concerning computation time: HPRO computation time is inde-
pendent of the specific input and γ, whereas HPR’s time depends
on the structure of the input. The worst case occurs when the trans-
formed point set is perfectly spherical and γ→ 0. Table 2 presents
the runtime measurements, with HPRO running on an RTX 4090
GPU and HPR on an i9-13900K CPU. A notable advantage of
HPRO is its ability to utilize the GPU, a feature not available for
HPR. Importantly, the asymptotic complexity affects larger point
sets. However, the advantage on smaller point clouds is significant,
as most point-based networks, e.g. [CSKG17], typically work with
small point clouds (1K).

γ selection. Fig. 7 illustrates the accuracy as a function of γ. As ex-
pected, the optimal γ for HPRO is closer to 0 (higher − log(−γ))
compared to HPR. This difference arises because, inherently, for
the same γ value, HPRO creates a subset of the visible points
marked by HPR, resulting in a larger false negative count. Con-
sequently, to optimize its accuracy, one should use a γ value closer
to 0, as it better balances between false negatives and false posi-
tives. This behavior is consistent across kernels. We refer readers

#points HPRO HPR (worst) (HPR average)

1K 0.3 2.1 1.7
5K 3.0 9.8 5.1
10K 11.0 19.8 8.8

Table 2: Running times (in ms). HPRO is faster than HPR on
small data points due to its ability to run on the GPU. This is partic-
ularly significant because point-based models, such as [CSKG17],
typically operate on small point clouds (1K in this case).

to [KTB07] for a discussion on the factors to consider when se-
lecting γ (including density, distance to points, and curvature, with
density being the most critical), as well as on automatic γ selection.

Kernel selection. Table 3 compares the effect of changing the ker-
nel from Exponential Inversion with γ < 0 to Linear: f (l) = γ− l,
with γ ≥ maxpi∈P ||pi−C||, exhibiting a slight decrease in accu-
racy.
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(a) 5K points (b) 1K points

Figure 7: Accuracy as a function of γ. The results are computed
for 5 views per model, for 100 models, where HPRO is in orange
and HPR is in blue. γ should be set slightly closer to 0 to account
for the increase in false negatives.

#pts Exponential (Eq. 2) Linear f (l) = γ− l

1k 85.08 84.52
5k 88.48 87.90

Table 3: The impact of the kernels on accuracy. The exponential
kernel is slightly better than the linear kernel.

6. Application: Optimal viewpoint selection

Viewpoint selection is crucial for effectively visualizing 3D objects
to enhance understanding and recognition. The fundamental ques-
tion is what constitutes a good view. Some studies have focused
on saliency [KTL∗17, LST16, SLT13, SZZL22], while others have
considered aesthetics [ZFY20]. In all cases, the optimal view is
determined from a set of pre-selected candidate views. For a com-
prehensive overview, please refer to [BFS∗18].

Our objective is to demonstrate that, due to the differentiability
of our operator, it can be used for optimization. Specifically, by
maximizing the sum of visibility scores, we can obtain a viewpoint
that captures as much of the object as possible. Unlike previous
approaches, which select possible viewpoints (e.g., randomly) and
then evaluate their quality, our differentiable method enables opti-
mization to determine the optimal viewpoint. As demonstrated in
Fig. 8, as well as in Appendix A, HPRO yields slightly better re-
sults than a state-of-the-art approach. This is because the optimal
view does not need to be one of the pre-selected views.

Our method is inherently simple and operates in an unsupervised
manner. Given a point cloud, the method functions as follows: It
first normalizes the points to fit within a unit sphere and sets an
initial viewpoint at a distance of 4 from the origin. Starting from
this initial viewpoint, it employs optimization (Adam), where the
viewpoint serves as the learnable parameter, leveraging the differ-
entiability of HPRO to determine the final viewpoint. In practice,
we keep the distance from the center of the object constant and op-
timize only the angles. The optimization process aims to maximize
the following loss:

Loss =−
n

∑
i=1

wi, (6)

where wi is Vi from Eq. 4 or wi from Eq. 5, which is derived from
a more refined computation that takes into account practical issues.
In order for the gradients to flow to non-visible points, we set k =

(a) [LST16] results (b) Our results

Figure 8: Viewpoint comparison. Thanks to the optimization pro-
cess, our viewpoints are slightly better than those of [LST16], re-
vealing more of the rear handle and seat of the motorcycle, the rear
arm of the dinosaur, and the back cloth of the statue.

10, so that wi represents a notion of closeness to visibility and even
points that are not visible affect the gradients.

The loss in Eq. 6 can be minimized instead of maximized. By
minimizing the sum of visibility scores, we anticipate obtaining a
viewpoint that could be regarded as ’accidental.’ Fig. 9 illustrates
our results, showing both the maximization and minimization of
Eq. 6. For instance, while the initial view of the airplane in Fig. 9
seems satisfactory, our maximal view reveals the double wings and
displays both them and the plane’s body, providing a more com-
prehensive perspective. Conversely, the minimal view shows very
little of the airplane’s surface. Similarly, while the bunny’s input
view is adequate, our optimal view displays more of the ear and the
far front leg. The minimal view shows the bunny from underneath,
exposing very few details of its features.

7. Additional improvements

Handling noise The original HPR operator did not account for
noise [MTSM10]. If noise causes a point to be incorrectly detected
as invisible, then moving it closer to the camera should likely make
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Figure 9: Viewpoint optimization. Given an initial view (a), our method optimizes it, producing either a minimal (accidental) view (b) or
a maximal view (c). Specifically, the minimal view of the human is from the bottom, whereas the maximal view is a 3/4 angle, considered
excellent for humans. The minimal view of the bunny is from the bottom, making it challenging to recognize the object, whereas the maximal
view resembles the input but reveals more of the rear ear and the far front leg. The minimal view of the plant is from the top, not showing
the pot, whereas the maximal view displays the entire object. The maximal view of the airplane reveals a double set of wings while showing
much of the airplane, whereas the minimal view shows very few surfaces.

it visible again. Therefore, we modify Rii in Eq. 5 as follows. Re-
call that Rii = ||Ff (pi,C)−C|| = fγ(||pi−C||) (Eqs. 1,3). To ef-
fectively move pi closer to C by a distance δ, we adjust Rii to be-
come Rδ

ii := fγ(||pi−C||−δ). An essential assumption here is that
||pi−C||>> δ, which is typically valid since the viewpoint should
be sufficiently distant from any specific point. For the Exponential
Inversion Kernel, Rδ

ii = (||pi−C||−δ)γ. Thus, Eq. 5 becomes:

wδ
i = elu(

Rδ
ii−Ri,k

Ri,max−Ri,k
). (7)

Note that we only move the tested transformed point along its di-
rection from the viewpoint, while keeping the other transformed
points unchanged. Intuitively, when noise is present, slightly ad-
justing the tested point towards the viewpoint improves detection
chances, a mechanism HPR cannot be efficiently applied since it
computes the CH for all points together. Effectively handling noisy
point clouds is crucial, as many real-world models contain noise.

Fig. 10 illustrates the effect of choosing different δ values on
accuracy for various added noise levels. Intuitively, for a higher
noise level, it is expected that the optimal δ value will be higher.
Interestingly, as shown in the figure, for a given noise radius ∆,

the optimal value is δ = ∆+ 1%. This implies that even when no
noise is added, a small value of δ is desirable. The rationale behind
this is that the operator tends to generate false negatives around
silhouettes, and slightly moving a tested point toward the viewpoint
improves its chance of being detected.

Improving the convex set approximation. As shown in Fig. 3, the
majority of HPRO approximation errors are concentrated around
silhouette regions. This is expected, considering that transformed
points originating from silhouette regions tend to deviate signifi-
cantly from a sphere, especially when γ is far from its limit Γ. This
implies that relying on a single direction to test the extremity may
not always be sufficient for silhouette points. To enhance accuracy,
exploring extra directions may be beneficial. This approach is justi-
fied by the fact that a point can be considered extreme if it exhibits
extremity in at least one direction.

For instance, in Fig. 4 P3 was not detected as visible due to P2
maximizing the projection on the vector from C to P3. To rectify
this situation, a slight rotation of this vector, or equivalently, ro-
tation of the line L3, could be applied. To achieve this, we could
include a second direction to the transformed P3 originating from
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(a) No noise (b) 2% noise

(c) 5% noise (d) 10% noise

Figure 10: Accuracy as a function of δ for different noise levels.
A small added value of δ improves the overall accuracy.

a slightly closer position to the point set. Effectively, this operation
would rotate L3 and potentially address the visibility issue, provid-
ing a more accurate assessment of extremity for P3.

To incorporate an additional direction, we propose the follow-
ing procedure: Let M = 1

n ∑i Ff (pi,C) be the center of mass of the
transformed point set and let C⋆ = αM +(1−α)C be a point on
the line between C and M, where α ∈ [0,1] is a parameter. For each
point pi, compute d⋆

i = pi−C⋆

||pi−C⋆|| , which provides a second direc-
tion to examine. Similar to Eq. 3, we calculate R⋆

i j as follows:

R⋆
i j = ⟨Ff (p j,C)−C⋆,d⋆

i ⟩ (8)

and V ⋆
i = max j(R⋆

i j)−R⋆
ii = 0, for extreme points and larger oth-

erwise. Note that while C is changed to C⋆ in this equation, the
transformed points are still computed using C. Next, we proceed to
compute w⋆

i as in Eq. 5. Finally, a point is determined as an extreme
point if it is maximal in either of the two directions. Consequently,
the final visibility score for the point is given by max(wi,w⋆

i ).

Fig. 11 shows the impact of different α values, which control
the second direction, on accuracy. For denser point sets, more ag-
gressive γ values are needed (closer to 0), causing the transformed
points to be closer to lying on a sphere. Consequently, the source
point of the second direction should be computed using a lower α

value and be closer to the viewpoint. In the limit, the source point
of the second direction and the viewpoint coincide, making α = 0
the optimal choice.

The introduction of a second direction led to an overall accuracy
improvement of around 1%. This is also evident in Fig. 11, as using
one direction is equivalent to setting α = 0.

Limitations. The main limitation of this operator is its nature of ap-
proximating the HPR operator, which itself provides an approxima-
tion of visibility. Consequently, it inherits the same limitations: re-
duced accuracy around silhouettes and deep concavities for a given
γ value, as shown in Fig. 3 and Fig. 12. It is worth noting that accu-
racy tends to improve with denser point sets.

(a) 5K points (b) 1K points

Figure 11: Accuracy as a function of α. The more points, the
smaller α should be. In the extreme case of infinitesimal density
and the optimal γ approaches zero, points transform into a sphere,
eliminating the need for an additional direction.

(a) Input (b) HPR [KTB07] (c) Our result

Figure 12: Limitations. Both operators exhibit reduced accuracy
around silhouettes and deep concavities.

8. Conclusion

This paper explores the determination of a visible subset of a point
cloud from a given viewpoint. It introduces a novel operator called
HPRO, which, unlike previous operators, is differentiable. The dif-
ferentiability enables the use of the operator within optimization
processes and learning models. The operator is based on approx-
imating the extreme points of a set in a differentiable manner,
thereby eliminating the necessity to compute the exact convex hull.
Theoretical proofs establish the operator correctness in the limit.

An additional contribution of this work is demonstrating the use
of our visibility operator to compute an optimal 3D viewpoint. This
optimal viewpoint can maximize visibility, making it suitable for
presenting 3D data, or minimize visibility, making it advisable to
avoid such viewpoints.

The primary focus of the paper is on the HPRO operator itself.
The viewpoint selection application demonstrates the benefits of
HPRO. We hope that, similar to HPR, which found numerous uses
after its publication, this will also be the case here.
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Appendix A: Additional viewpoints comparisons

Figure 13 presents additional examples and compares our results
with those of [SLT13]. HPRO often produces slightly better results
than [SLT13], as demonstrated by the increased visibility of the
gargoyle’s rear wing and the camel’s rear legs. This improvement
is attributed to the fact that the optimal view is not constrained to
the pre-selected views. In cases where the pre-selected views are
already effective, the results are comparable, as illustrated by the
examples of the star and the rocker.
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(a) Initial viewpoint (b) [SLT13]’s results (c) Our results

Figure 13: Additional viewpoint comparisons.
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