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Abstract

This paper proposes a method for refining existing mesh segmentations, employing a novel extension of the active
contour approach to meshes. Given a segmentation, producedeither by an automatic segmentation method or
interactively, our algorithm propagates the segment boundaries to more appropriate locations. In addition, unlike
most segmentation algorithms, our method allows the boundaries to pass through the mesh faces, resulting in
smoother curves, particularly visible on coarse meshes. The method is also capable of changing the number of
segments, by enabling splitting and merging of boundary curves during the process. Finally, by changing the
propagation rules, it is possible to segment the mesh by a variety of criteria, for instance geometric-meaningful
segmentations, texture-based segmentations, or constriction-based segmentations.

1. Introduction

Mesh segmentation is an important problem in computer
graphics, with applications as diverse as modeling, anima-
tion, retrieval, texture mapping, and more [AKM ∗06,Sha08].
While many algorithms show appealing results, some result
in segment boundary curves that pass in undesirable loca-
tions. Moreover, these curves are often jagged, being con-
strained to pass through the vertices. Some algorithms apply
additional post-processing, such as minimal graph-cuts, in
an attempt to refine the segmentation curves. However, the
curve positions often remain subpar and the effect of con-
straining the curve to the edges cannot be overcome.

This paper proposes an algorithm for advancing and de-
forming segment boundaries directly – aiming at shorter,
smoother, and better feature-aligned curves – while respect-
ing the underlying mesh geometry. It is able to overcome the
above mentioned drawbacks, by attracting the curves to rel-
evant mesh features, such as local concavity, while allowing
them to cut through the mesh edges. This refinement is most
evident on coarse or irregular meshes, in which the mesh tri-
angulation inherently introduces curve jaggedness.

Our approach is based on theactive contourmodel, aka
snakes. An active contour is a dynamic curve that deforms
by minimizing an energy functional, relevant to the object’s
features and to the application. For instance, in “meaningful”
segmentation, concavity and boundary length are considered
important features (Figure1(a)), while in color-based mesh

(a) Refining [LLS∗05] (b) Segmentation-by-color

Figure 1: Refining segmentations by different criteria (the
initial curves are in red and the resulting curves are in blue).
Left: meaningful segmentation of the geometry; note how the
neck/head boundary is advanced to a better location. Right:
segmentation by color of a non-orientable Klein bottle.

segmentation, only the assigned color at each vertex should
influence the boundary position (Figure1(b)).

Some previous active contour schemes for mesh segmen-
tation areparameterization-dependent, i.e., they associate
the mesh with a planar parameterization, and apply the al-
gorithms on this plane [LL02,LLS∗05]. This flattening pro-
cess can introduce deformations. In contrast, our method is
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parameterization-free, avoiding this problem by advancing
the curve directly on the mesh. As such, it provides a general
framework for deforming mesh curves directly, in a manner
that is respectful of the underlying mesh geometry.

The contribution of this paper is hence threefold. First,
instead of a new segmentation algorithm, we propose a
method of refining an existing segmentation (Section4).
This method simultaneously propagates the segment bound-
aries to better locations, creating smoother, shorter bound-
aries regardless of the underlying triangulation. The method
also handles segment merging and splitting automatically.

Second, this paper provides a general approach for com-
puting level-set flows on meshes. To this end, it presents al-
gorithms for performing gradient and divergence operators
on the mesh vertices (Section5). These operators can find
uses in many other applications.

Last but not least, the method’s utility is demonstrated in
other segmentation tasks – interactive segmentation, texture-
based segmentation, and constriction detection (Section7).

2. Related work

Many algorithms have been recently suggested for shape-
based mesh segmentation [AKM ∗06,Sha08]. These include
clustering techniques [KT03,LZ04,ZH04,KLT05] and vari-
ants thereof [GF08], random walks [LHMR09], skeleton-
based methods [MPS∗04], and snake-based methods [LL02,
LLS∗05,MBV97,JK04], to name a few.

Most of these algorithms, particularly clustering algo-
rithms, define the segment boundaries implicitly, by the seg-
ments themselves. The active contours based methods, on
the other hand, extract the boundaries first, and define the
segments implicitly. This work focuses on the latter.

A few attempts have been made to use active contours for
segmentation of meshes. In [LL02, LLS∗05] a parameter-
ization-dependentcurve deformation is performed on an un-
derlying parameterization plane. This plane is determined
at each step as a 2D projection of the mesh surface. Al-
though their results are appealing, the projection deforma-
tions might introduce inaccuracies.

In [SK07], the parameterization plane is given and the
flow calculation is accurate. In real applications, however,
the input mesh typically lacks such a parameterization. Fur-
thermore, since closed 2-manifold surfaces are not homeo-
morphic to a disk, the parameterization typically requiresthe
"tailoring" of (at least) two patches, a non-trivial task.

In contrast, [MBV97, JK04] perform snake-based seg-
mentation utilizing aparameterization-freeapproach, which
advances the curve directly on the mesh. These attempts re-
strict the curve to reside only on the mesh edges, and update
the supporting vertices at each iteration. Since the curve ac-
curacy is limited by the mesh resolution, mesh subdivision is
required to increase the curve’s accuracy. [LMLR06] focuses

on reliefs. and allows the curve points to reside anywhere on
the mesh faces.

This paper proposes a general snake-based algorithm for
segmentation refinement, which avoids the above drawbacks
by being both parameterization-free and implicit.

3. Preliminaries

Given a meshM and its initial segmentation (produced ei-
ther interactively or automatically by a segmentation algo-
rithm), our goal is to modify this segmentation according
to a given rule. This modification may not only change the
segment boundaries, but also merge segments or split them.
Moreover, while most segmentation boundaries do not pass
through the mesh faces, we allow them to. This section de-
tails the definitions required for the algorithm’s formulation.

Commonly, mesh segmentation is defined as the union of
disjoint sets of mesh faces [KT03]. We will give a different
definition, which relies on the boundaries between segments,
and thus allows the curves to pass through the mesh faces.

Definition 3.1 Mesh curve (curve)C : A 3-dimensional
polygon whose vertices lie on the mesh edges, and whose
edges reside within the mesh faces.

Definition 3.2 Supporting edges:The set of mesh edges the
curve passes through.

Definition 3.3 Mesh segmentation:C1,C2, . . .Ck is a seg-
mentation ofM iff ∀i,1 ≤ i ≤ k,Ci is a mesh curve,∀i 6=
j ,1≤ i, j ≤ k,Ci andC j do not intersect, and the removal of
anyCi , 1≤ i ≤ k, decreases the number of disjoint segments
defined byC1,C2, . . .Ck.

A mesh curve can be represented and manipulatedexplic-
itly through its intersections with its supporting mesh edges
– snaxels[BWK05]. While intuitive, this representation re-
quires special splitting and cleaning operations to keep the
curve valid when moving snaxels across vertices. Moreover,
curve topology changes such as splitting and merging, need
to be checked for and addressed at every iteration.

To avoid these limitations, we extend thelevel-setap-
proach for images [CKS97] to meshes. In this framework the
curves are defined and advancedimplicitly, ensuring curve
validity and eliminating the need for consistency checks,
while handling splitting and merging automatically.

Definition 3.4 Level-set functionU : A scalar function de-
fined on the mesh, whose zero level-set coincides with the
mesh curves.

An update toU implicitly propagates its zero level-set
and hence the curves. This definition automatically han-
dles curve movement across vertices, splitting, and merging.
Note that this implicitly constrains allCi to be closed.

It suffices to assign values ofU at the mesh vertices,
and linearly interpolate them across the mesh. This defines
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the curves implicitly, setting their supporting edges as those
linking vertices of opposite sign inU .

Curves sometimes propagate with respect to specific ex-
ternal features on the given mesh. One way to relate these
features to the curve propagation is by defining anindicator
function gon the mesh, as follows:

Definition 3.5 Indicator function g: A scalar function in
the range [0,1], defined on the mesh, approaching 0 near the
mesh features and 1 far from the features. (As before, it suf-
fices to assign values tog at the mesh vertices.)

Evidently, the definition of the indicator function depends
on the mesh features that the application attempts to find, and
can have a profound effect on its output. For mesh segmen-
tation, it should depend on the surface curvature [Bie87].

Definition 3.6 Level-set flow: An update equation to the
level-set function∆U = time_step×F(U,g), which implic-
itly advances the current curvesC1,C2, . . .Ck.

Explicit curve flows can be uniquely (up to an isometry)
represented by the form∂Ci

∂ t = β ~N [CKS97], where ∂Ci
∂ t

is the time derivative of curveCi andβ is the propagation
speed in direction ~N , which is the unit normal to the curve
on the tangent plane of the surface at each point [Do 76].

A simple geometric derivation shows that when the
flow is given in its explicit form ∂Ci

∂ t = β ~N , the equiva-
lent level-set representation is given as∆U = time_step×
β |∇U | [CKS97]. Hence,F(U,g) = β |∇U |, with ∇U repre-
senting the gradient ofU on the surface andβ is expressed
via the level-set functionU and the indicator functiong. The
exact form ofβ depends on the application at hand.

4. Segmentation refinement algorithm

This section describes the segmentation refinement algo-
rithm, whose goal is to better adhere the segment bound-
aries to their appropriate locations on the mesh, based on the
minima rule (concavity) as well as boundary length [Sha08].
The algorithm realizes a specific flow from Definition3.6.
Outlined in Algorithm 1, its inputs are the initial segment
boundariesC1,C2, . . .Ck at timet = 0 andβ ’s formulation.

Algorithm 1 Segmentation refinement (flow) algorithm
1: Initialize the level-set functionU , so that its zero level-

set coincides with the curvesC1,C2, . . .Ck.
2: Determine a (possibly unconnected) regionΩ around

the current curves.
3: Advance the level-set functionU in Ω, according to the

level-set flow equation (Equation1):

∆U = time_step×β |∇U |. (1)

4: From the updatedU function, determine the new curves
as its zero level-set.

5: Repeat Steps 2–4 until convergence.

Step 1 calculates the initial level-set functionU as the
signed distance to the curves. This is done by definingU at
each vertex as its minimal geodesic distance to all the curves.
This distance can be calculated using [MR08] or approxi-
mated by the Fast Marching method [KS98, SSK∗05]. The
sign ofU is then set to alternate across boundaries.

Step 2 limits the regionΩ over which∆U is calculated.
This step is not essential to the algorithm; the propagation
could be applied on the whole mesh.Ω is used since it can
significantly lower the number of vertices in which the up-
dates must be calculated, and thus refine performance.

Step 3 is the key step of the algorithm. It computes the up-
date toU by applying Equation1. Computing∆U involves
the gradient operator∇U and the divergence operator (re-
quired forβ , as will be later discussed). Section5 describes
how these operators are performed directly on the mesh.

After Step 4, which determines the new curves from the
updatedU , the algorithm iterates until the curves do not
change between subsequent iterations.

Many flows can be realized using Algorithm 1. For mesh
segmentation refinement, we use thegeodesic flow, first in-
troduced in [CKS97] for images. This flow operates by de-
forming the boundary curves towards the segment bound-
aries, while attempting to minimize curve lengths.

The geodesic flow is derived from the minimization of an
energy functional J(C ) defined using a curveC with respect
to a feature indicator functiong (Definition3.5):

J(C ) =
∫

|C ′(q)| ·g(|∇I(C (q))|)dq. (2)

Here,C (q) is the given parameterization of the curve,I de-
notes the scalar quantity whose features are searched for, and
the indicator functiong is defined as a monotonically de-
creasing function of the gradient. The intrinsic curve length
∫

|C ′(q)|dq is thus weighted byg(|∇I(C (q))|), which is in-
dicative of the length significance at each curve point. In ef-
fect, this functional penalizes the curve length in the non-
feature regions (having highg values).

Explicitly, it can be shown that the flow minimizingJ is:

∂C

∂ t
= gκ~N− (∇g·~N)~N = (gκ − (∇g·~N))~N. (3)

The effect of the flow is to deform the curveC using a com-
bination of forces. The term−(∇g ·~N) attracts the curve to-
wards regions of lowg values, hence towards the features.
The termgκ (κ being the curve’s local curvature) attempts
to reduce the curve’s overall length, thereby smoothing the
curve. In regions whereg is low (probable features), the fea-
ture attraction forces dominate, while around highg values
(non-features) the curve shortening forces dominate. Thus, g
acts as a weighting term as well as the feature indicator.

In the level-set formulation, Equation3 is given by:

∆U = time_step×|∇U |(div(g
∇U
|∇U |

)), (4)
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wherediv is the divergence operator applied to the vector
functiong ∇U

|∇U | . (See [CKS97] for a derivation.)

As g should act as an attractor around areas of concep-
tual part boundaries, the minima rule [Bie87] suggests that
it should take on low (attractive) values around the mesh’s
deep concavities. To achieve this, we use:

g =
1

1+(
|K|
γ )n

, (5)

with K chosen as the minimal surface curvature. Since con-
vex regions typically do not influence the segmentation,K
values corresponding to convex areas are set to zero.γ is a
user-defined parameter, which accounts forK’s dependence
on the model’s scale. In all our examples,n = 2.

Implementation issues:Two issues arise when implement-
ing Algorithm 1. The first regards the choice of the time step
at each iteration (Equation1). The second concerns the re-
gion Ω over whichU and∆U are calculated.

The difficulty in determining the time step arises from the
fact that the expressions that govern the flow speed, such
asκ,∇g ·~N,div(·) etc. do not scale linearly with re-scaling
of the mesh. For example, scaling the mesh by a factor ofa
scalesκ by a−1, leading to a relative speed change ofa−2. To
compensate for this, a simple heuristic, which turns out to be
satisfactory, is to set the time step relative to a small fraction
(typically 1

100) of the square of the curve’s total length.

In general,Ω is defined as the set of vertices whose dis-
tance to the curves is less than a given value. This set can be
either defined as an n-ring neighborhood around the curves,
or as the set of vertices whose geodesic distance to the curves
(already computed during initialization) is below a thresh-
old. In our implementation a 7-ring neighborhood is used.

As the curves propagate into new regions, the values of
U in the new vertices need to be updated accordingly. In
addition, theU values inΩ are re-initialized (similarly to
Step 1) every few iterations as a regularizing process. This
prevents accumulation of numerical inaccuracies.

5. Calculating the gradient & divergence

To perform the geodesic flow (Equation4), we derive the
differential operators of gradient and divergence on meshes.

5.1. The gradient operator

Given a scalar functionf defined on a manifoldM, the gra-
dient∇M f at a pointp is a vector onM’s tangent plane atp,
with the same direction and magnitude as the maximum rate
of change off at p. If a parameterization ofM is given,

χ = (u,v, f geom(u,v)) : Λ ⊂ R
2 → M,

with Λ = {(u,v)|u,v∈ R}, ∇M f on p∈ χ(Λ) is [Do 76]:

∇M f =
fuG− fvF

EG−F2 χu +
fvE− fuF

EG−F2 χv, (6)

with fu, fv representing the partial derivatives off in Λ at
p, andE,F,G are given as the coefficients of the first funda-
mental form ofM at p.

Since such a parameterization is not given, we calculate
∇M f at each mesh vertexv0 by approximating its local
neighborhood, as described in Algorithm 2.

Algorithm 2 Gradient calculation algorithm

1: Approximate the local geometry ofM, f̂ geomatv0.
2: Calculate the gradient of the geometryχ̂u andχ̂v.
3: Approximate the local level-set function̂U on the local

parameterization planeΛ.
4: Calculate the gradient of̂U : Ûu andÛv.
5: Calculate the gradient of the level-set function∇MU ac-

cording to Equation6, using the approximationŝUu, Ûv,
χ̂u, χ̂v.

Since the methods used for performing Stages 1-2 are
similar to those used in Stages 3-4, we discuss only the for-
mer, which addresses the geometry of the mesh. Stages 3-4
have the function̂f geomdescribing the geometry (the meshz
values) replaced by a function̂U describing the level-set.

Let f̂ geom= ( f̂ geom
0 , · · · , f̂ geom

N )T be the values of̂f geom

at v0 and its N neighbors. Assume thatv0 is at the origin
and its normal is aligned with the z-axis. We distinguish be-
tween two cases – fitting the local geometry to either a linear
or a quadratic form. In the linear form,̂f geomis found by fit-
ting the local geometry tôf geom(u,v) = w1u+w2v+w3. The
quadratic form,f̂ geom(u,v) = w1u2 +w2uv+w3v2 +w4u+
w5v+ w6, is more accurate and is used when the linear ap-
proximation does not conform well enough to the geometry.

After choosing the function type, its approximated coef-
ficientsŵ = [ŵ1 · · · ŵd]T are determined by least-squares fit-
ting, as follows. For the linear case:

f̂ geom(u,v) = w1u+w2v+w3 = (u,v,1)w

f geom = ( f geom
0 . . . f geom

N )T ∼= φT ŵ

φ =





u0 · · · uN
v0 · · · vN

1 · · · 1





ŵ = (φφT )−1φ f geom= Φ f geom, (7)

where the coefficients matrixΦ ∈ R3×(N+1) represents the
approximation used.

In the quadratic case,̂f geom(u,v) = (u2,uv,v2,u,v,1)w,

φ =

















u2
0 · · · u2

N
u0v0 · · · uNvN

v2
0 · · · v2

N
u0 · · · uN
v0 · · · vN
1 · · · 1

















, (8)
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and Equation7 givesΦ ∈ R6×(N+1).

For Step 2, we need to differentiatêf geom. In the lin-
ear case,∇ f̂ geom= ( f̂ geom

u , f̂ geom
v ) = (w1,w2) (Equation7),

hence they can be calculated by extracting the first two rows
in Φ (i.e.Φ1,Φ2) and multiplying byf geom:

∇ f̂ geom= ( f̂ geom
u , f̂ geom

v ) = (w1,w2) = (ΦT
1 ,ΦT

2 )T f geom.

The quadratic case is similar. Sincev0 is defined at the
origin, differentiatingf̂ geom(u,v) results by Equation8 in:

∇ f̂ geom= ( f̂ geom
u , f̂ geom

v ) = (w4,w5) = (ΦT
4 ,ΦT

5 )T f geom.

Steps 1-2 are performed only once in a pre-processing
step, since the geometry of the mesh does not change. Steps
3-5 are performed at each iteration, as the level-set function
keeps changing. The key property in performing Steps 3-5
is that together they result in a linear operator that can be
expressed as a product of a 3× (N +1) matrix Wgrad with
the function’s values. Plugging Equation7 into Equation6
yields (we omit the complete derivation for brevity):

Wgrad =
1

EG−F2 ((Gχ̂u−F χ̂v)Φ1 +(Eχ̂v−F χ̂u)Φ2).

(It can be shown that for the linear case,E = 1−w1
2, F =

w1w2, G = 1−w2
2, and similarly for the quadratic case.)

Each row inWgrad performs a partial derivative in the cor-
responding axis. Thus,

∇MU = WgradU .

As all derivations above are done locally, without a need
for a global parameterization, this method frees us from
providing an external parameterization. Moreover, it can be
shown that invariance to rigid transformations results from
the construction of∇MU . Finally, since the computation at a
vertex depends on its valence, the complexity of this stage is
linear wrt the number of vertices.

5.2. The divergence operator

The planar divergence operator, applied to a vector function
~f (u,v) = ( f1(u,v), f2(u,v)), is defined as:

div~f =
∂

∂u
f1 +

∂
∂v

f2. (9)

On surfaces, the divergence can be quite tricky [Ros97]. Be-
low we propose a simple first-order approximation.

We are given a vertexv0 and its N 1-ring neigh-
bors{v0,v1, . . .vN}, the respective function vectors{~fi , i =
0. . .N} and vertex normals{~ni , i = 0. . .N}. We assume that
~n0 is aligned with the z-axis. We initially apply a rotationRi

to each fi independently, so as to align~ni with the z-axis,
resulting in~ϕi = Ri~fi = (ϕi,1,ϕi,2,0)T .

Given a vector function~ϕ = (ϕ1,ϕ2,0) defined on the

planeΛ, whose values are given at the vertices, we can cal-
culate its divergence by Equation9. In order to relate it to
the divergence on the manifoldχ, we associate the partial
derivatives ∂

∂uϕ1,
∂
∂vϕ2 with χ usingWgrad (Section5.1):

divM~f = Wgrad
1 ϕT

1
+Wgrad

2 ϕT
2

=

= ∑
i

Wgrad
1,i eT

u Ri~fi +Wgrad
2,i eT

v Ri~fi =

= ∑
i

Wdiv
i

~fi = 〈Wdiv, ~f
T
〉, (10)

whereeu = (1,0,0)T , ev = (0,1,0)T ,Wdiv
i,1...3 =Wgrad

1,i eT
u Ri +

Wgrad
2,i eT

v Ri ∈ R
1×3, Wdiv ∈ R

(N+1)X3, and the matrix inner
product is defined as〈A,B〉= ∑i, j Ai j Bi j .

The divergence operator has several benefits. It is per-
formed in a manner respectful of the underlying geometry; it
is linear; and the coefficients matrixWdiv can be calculated
once per vertex, in a pre-processing step.

5.3. Approximation accuracy

To assess the accuracy of our approximations, we measured
the error between the approximate and analytical gradient
on a number of model test cases. The geometries used are
identical to those in [Xu04], with the scalar function set as
f = xy. The experiments were performed on two manifolds:
z= sqrt(1− (x−0.5)2− (y−0.5)2) andz= tanh(9y−9x).

Our gradient approximation was compared both to the
analytical gradient and to the DEC approximation [Hir03]
using both regular triangulations and unstructured, non-
uniform tessellations. Figures2-3 relate the average error
magnitude,err, to the average edge lengthh, for the first
manifold. The results for the other manifold are similar.

Figure 2: Error convergence on a structured mesh

Figure 3: Error convergence on an unstructured mesh
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(a) Refinement of [KLT05] (b) Refinement of [SSCO08] (c) Refinement of [GF08]

(d) Refinement of [ABBP05] (e) Refinement of [ZL05]

Figure 4: Refinements of segmentation boundaries produced by other segmentation algorithms (original – red, refined – blue).
The boundaries were not only smoothed but also propagated tobetter locations.

It is clear that as the mesh is made finer, the error of
our approximation converges to zero at least linearly with
h, even on the irregularly-sampled meshes.

Moreover, comparison of the results to DEC shows that
our method results in a better approximation. DEC proposes
a thorough, coordinate-free formulation for mesh differential
operators [MDSB02,Hir03,ES06] . Our approach focuses on
the gradient and divergence. Similarly to DEC, our operators
are coordinate-free, parameterization independent, posein-
variant, linear wrt the vertex values, and easy to implement.
However, in addition to producing a better approximation,
our scheme is free from DEC’s orientability requirement, as
illustrated by the Klein bottle in Figure8.

6. Results

Figures 1 and 4 show examples of segmentation refine-
ments. The initial boundary curves are produced by known

segmentation algorithms [ABBP05,GF08,KLT05,LLS∗05,
SSCO08,ZL05]. As seen, the original boundaries might not
only be jagged (Figure4), but sometimes pass through un-
desirable locations, as evident in the boundary between the
head and the neck in Figure1. Nevertheless, these bound-
aries are close enough to the appropriate location to serve as
the initial curves for the refinement process. While there ex-
ist algorithms that resolve jaggedness [LLP05], they do not
handle the problem of advancing the boundaries to positions
commonly considered “meaningful” – concave and short.

It is important to note that some of these algorithms
(e.g. [KLT05, SSCO08]) include post-processing stages in
which the boundaries are refined, for instance using mini-
mal cuts. Regardless, our algorithm is able to further refine
upon their results.

Our process not only “smooths” the original curves, but
also moves them to locations that better conform to the mesh

c© 2009 The Author(s)
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features. These refinements are more pronounced for moder-
ately sized models (Figure4(d)), where it is visible that the
improvement gained by passing the curve through the faces
more than makes up for the error introduced by the local
geometry fitting. Figure1 also demonstrates refining a seg-
mentation produced by a parameterization-dependent flow.

An additional application of this algorithm is in interac-
tive segmentation [FKS∗04,LLS∗05] which enables the user
to manually segment the model in accordance with a partic-
ular goal in mind. The user quickly draws an initial coarse
estimate of the boundary curves, which then deforms wrt the
features relevant to this goal. Our algorithm proposes a ready
solution for this problem .

Figure 5 shows an example of deforming a manually-
defined curve. It also demonstrates the algorithm’s ability
to automatically handle changes in the curve topology, per-
forming splitting during the flow.

Figure 5: Interactive segmentation: Starting from a single
user-input curve (red), the curve splits, conforming to the
two leg segments (blue).

Limitations: One limitation of this process is its inability
to handle instances where the segmentation graph (mapping
segments to nodes) has an odd-length cycle. This stems from
a sign conflict, since the curve should reside between oppo-
site signs ofU . In practice, if the regions are sufficiently far
apart, limiting the size ofΩ takes care of this situation. Ad-
ditional limitations, inherent to the use of the level-set for-
mulation, are the inability to handle sharp corners as well as
open curves.

Performance:Curve advancement (Steps 3-4, Algorithm 1)
is linear in the size of the support regionΩ at each time step,
owing to the linearity of the gradient and divergence opera-
tors. In our examples a single step on an Intel Core2 2.6GHz
2GB RAM, using Matlab, takes 5.4 ms, withΩ consisting of
1410 vertices (a 5K-vertex model). For a support regionΩ
consisting of 3135 vertices (a 20K model), it takes 14.8 ms.
Convergence typically requires 1000–2000 steps.

The geodesic distances (Step 1) are approximated using
Fast Marching, having a complexity ofO(N logN) (N being
the size ofΩ). This step takes 50 ms for a 1410-vertexΩ
and 130 ms for a 3135-vertexΩ, and is performed at re-
initialization, typically every 20–40 advancement steps.

7. Additional applications

Our algorithm can be utilized to aid in additional applica-
tions. This section demonstrates two of these: texture seg-
mentation on manifolds and local constriction detection.

7.1. Texture-based mesh segmentation

Most mesh segmentation algorithms are designed from a
purely geometrical viewpoint – the conceptual "parts" they
aim at finding are assumed to be defined only by the model’s
shape. However, there are cases in which the texture carries
additional information about the partitioning. This can occur
in models where the part’s significance is better defined by
its color rather than by its geometrical saliency, or when we
wish to segment a texture that is already mapped on a mesh.

Our algorithm takes advantage of this additional informa-
tion in a straightforward manner. By defining the edge indi-
catorg using the texture information rather than the geome-
try information, the flow will conform to the texture features
while still being mindful of the underlying mesh geometry.
We defineg using Equation5 with K set as the angle in polar
coordinates of the Lab color space of the texture.

Figure 6 shows an example of how texture information
can assist facial segmentation. Starting from an initial (e.g.,
manually drawn) curve, the final curve settles smoothly
along the lip boundaries. This enables us to overcome the
inherent difficulty of this mesh segmentation task, caused by
having the outer boundary of the lips lie in a convex region.

Figure7 shows how multiple texture components are seg-
mented on a colored sphere. Starting from a single ini-
tial curve, topology changes are automatically handled, seg-
menting all the gray elements. In this example, a 2D param-
eterization is difficult to provide, hence it demonstrates the
benefit of performing the segmentation directly on the mesh.

Figure 8 compares the result of our algorithm with
[SK07]. The latter is a parameterization-dependent level-set
flow method, which requires a surface parameterization to be
provided. Unfortunately, this requirement is hard to satisfy,
since an arbitrary mesh cannot easily be mapped to a regular
2D grid. Despite the lack of a given parameterization, our
algorithm is able to achieve a comparable result in terms of
color separation, while converging to a smoother curve.

In Figures7–8 an additional "external" forceν~N is added,
in order to overcome the curvature-induced force in the inter-
mediate stages of the process. This force is weighted using
theg indicator to obtain:∂C

∂ t = (gκ − (∇g·~N)+νg)~N.

7.2. Finding local constrictions

Finding local constrictions of a thin structure often playsan
important part in its analysis [HA03,BWK05]. Examples in-
clude weakness detection in mechanical strength analysis,
blood vessel stenosis location in arteriostenosis patients, and
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Figure 6: Texture-based lip segmentation, starting from the
white curve and converging to the blue.

Figure 7: Texture-based segmentation: starting from a sin-
gle curve (red) and ending with multiple curves (blue).

(a) Our method (b) [SK07]

Figure 8: Texture-based segmentation of a (non-orientable)
Klein bottle

collagen fiber strength analysis in osteoporosis patients.We
propose to use a degenerate case of the geodesic flow within
the general approach of Algorithm 1, in whichg = 1, effec-
tively resulting in thecurvature flowto achieve this.

In Figure9, the user-defined curves advance while cutting

Figure 9: Local constriction detection. The initial curves
(red) are deformed until reaching a steady state (blue). Left:
Inner ear model; Right: Bone section tissue.

through the mesh edges, unconstrained by the vertices. This
illustrates cases in which multiple curves are propagated si-
multaneously (using one globalU function), each indepen-
dently settling at its locally narrowest part of the mesh.

Figure10compares our result with [HA03]’s, in which the
algorithm performs by progressive mesh simplification until
a seed curve is located and then expanded back. By allowing
the curve to cut through the mesh edges, our approach results
in a smoother, shorter curve than would be possible when
limiting the curve to pass through the vertices.

The algorithm’s robustness to noise is demonstrated in
Figure11. We have performed constriction detection on in-
creasingly noisy versions of the original model (with uni-
form noise added in the normal direction). The correct con-
strictions were located even for the very noisy version.

8. Conclusion

This paper has presented an algorithm for refining given seg-
mentation boundaries, resulting in smoother, shorter curves,
which lie nearer to surface features. It is based on an exten-
sion to meshes of the level-set approach for implicitly prop-
agating curves. The algorithm supports automatic topology
changes of the curves, while allowing them to cut through
the mesh edges, significantly reducing the triangulation ef-
fects. In addition, the paper has described a technique for
calculating the surface gradient and divergence operatorson
the mesh vertices, which can find uses in other applications.

The algorithm was applied to segmentation results pro-
duced by five state-of-the art segmentation algorithms and
exhibited refinements. It was also shown that our algorithm
can be used for related curve-driven applications – interac-
tive segmentation, texture-based mesh segmentation, and lo-
cal constriction detection. In these applications refinements
over previous approaches was shown.

In the future, we intend to investigate other curve flows
and their usefulness for additional applications. Moreover,
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(a) [HA03] (b) Our method

Figure 10: Local constriction detection on a human femur.
Our algorithm detects the constriction, while [HA03] ex-
hibits minor jaggedness in the mid section.

Figure 11: Robustness to added noise in the mesh geometry

other indicator functions, that attract the boundaries to dif-
ferent types of features (such as convex sharp edges) relevant
for other segmentation tasks, can also be studied.
Acknowledgments:This work was supported by the Israeli
Ministry of Science, Culture & Sports, grant 3-3421.
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